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It is recognized in the engineering community that there is an increasing need to move
towards unsteady simulations in computational fluid dynamics. This trend also dictates an
increasing application of uncertainty quantification methods to unsteady problems. In this
paper, an Unsteady Adaptive Stochastic Finite Elements method based on interpolation at
constant phase (UASFE-cp) is introduced for resolving the effect of random parameters in
unsteady simulations. It achieves a constant accuracy in time with a constant number of
samples, in contrast with the usually fast increasing number of samples required by other
non-intrusive methods. Results for the stochastic bifurcation behavior of an elastically
mounted airfoil with nonlinearity in the flow and the structure are presented.

I. Introduction

Most uncertainty quantification methods are mainly developed for steady problems such as steady heat
transfer prediction.21 One of the most widely used uncertainty quantification methods is Monte Carlo
simulation,8 in which many deterministic problems are solved for randomly varying parameter values. (Non-
intrusive) Polynomial Chaos methods7, 9, 22 attempt to reduce the number of deterministic solves by using
a polynomial interpolation of the samples in parameter space. An effective sampling in suitable Gauss
quadrature points is employed in the Probabilistic Collocation approach.1 A more robust approximation is
achieved by Stochastic Finite Elements methods,5, 11, 18 in which a piecewise polynomial interpolation of the
samples is employed.

In unsteady problems non-intrusive uncertainty quantification methods usually require a fast increasing
number of samples with time to maintain a constant accuracy. This behavior is caused by the increasing
nonlinearity of the response surface for increasing integration times. This effect is especially profound
in problems with oscillatory solutions in which the frequency of the response is affected by the random
parameters.14 The frequency differences between the realizations lead to increasing phase differences with
time, which in turn result in an increasingly oscillatory response surface and more samples. Asymptotic
behavior is of practical interest in, for example, post-flutter analysis of fluid-structure interaction systems.15

Resolving the effect of input randomness in these long time integration problems requires a large number
of deterministic computations. Especially in computationally intensive unsteady flow computations and
fluid-structure interaction simulations, such a large sample size can lead to impractically high computational
costs. For applications involving oscillatory motion a Fourier chaos basis has been developed by Millman et.

al.12 Other unsteady applications can also be found in literature.2, 13 In this paper, an efficient alternative
approach for uncertainty quantification in oscillatory problems is proposed.

The concept of applying uncertainty quantification to a time-independent parametrization of unsteady
samples instead of to the samples themselves was introduced by the authors to achieve a constant accuracy
in time with a constant number of samples.16, 20 The parametrization consist of a damping factor, frequency,
relative phase, amplitude, a reference value, and the normalized (higher-period) shape function. Due to this
time-independent parametrization the interpolation accuracy is independent of time. The time-independent
parameterization was combined with a global polynomial Probabilistic Collocation1 interpolation in Proba-
bilistic Collocation for Limit Cycle Oscillations (PCLCO).20 A more robust approximation was developed by
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using an Adaptive Stochastic Finite Elements (ASFE) interpolation based on Newton-Cotes quadrature in
simplex elements18 in the Unsteady Adaptive Stochastic Finite Elements method based on time-independent
parametrization (UASFE-ti).17, 19 It was demonstrated for, for example, an elastically mounted cylinder
problem that the constant number of samples due to the time-independent parameterization results for long
time integration problems in a reduction of computational costs by orders of magnitude compared to other
methods.19, 20

In this paper, the idea of performing the uncertainty quantification interpolation at constant phase is
presented to further improve the accuracy and extend the applicability compared to time-independent pa-
rameterization, while maintaining a constant accuracy in time with a constant number of samples. As men-
tioned above, the usual increase of the number of samples with time is caused by increasing phase differences
between the realizations. Scaling the oscillatory samples with their phase and performing the uncertainty
quantification interpolation of the samples at constant phase instead of at constant time, eliminates the effect
of the phase differences. The increase of the number of samples with time due to an increasingly oscillatory
response surface is, therefore, avoided by interpolation at constant phase. In addition to the constant number
of samples in time, interpolation at constant phase has the following three advantages over time-independent
parametrization: (1) the parametrization error is eliminated; (2) time-dependent functionals can be resolved;
and (3) transient behavior can be captured.

The uncertainty quantification interpolation at constant phase is performed using the Adaptive Stochastic
Finite Elements (ASFE) method with Newton-Cotes quadrature and simplex elements.18 The resulting
Unsteady Adaptive Stochastic Finite Elements method based on interpolation at constant phase (UASFE-
cp) can be applied to problems in which the phase of the oscillatory samples is well-defined. The UASFE-cp
formulation is introduced in section II. The stochastic bifurcation behavior of the fluid-structure interaction
system of nonlinear flow around an elastically mounted airfoil with nonlinear structural stiffness is analyzed
in section III. Results for this application involving transient behavior in the post-bifurcation region are
compared to those of UASFE-ti. The paper is concluded in section IV.

II. Unsteady Adaptive Stochastic Finite Elements based on interpolation at

constant phase

The procedure for interpolation at constant phase in the Unsteady Adaptive Stochastic Finite Elements
framework is developed in section II.A. The Adaptive Stochastic Finite Elements formulation employed for
the interpolation is briefly reviewed in section II.B.

II.A. Interpolation at constant phase

Consider a dynamical system subject to n uncorrelated second-order random input parameters a(ω) =
{a1(ω), . . . , an(ω)} ∈ A, which governs an oscillatory response u(x, t, ω)

L(x, t; u(x, t, ω)) = S(x, t), (1)

with operator L and source term S defined on domain D×T , and appropriate initial and boundary conditions.
The spatial and temporal dimensions are defined as x ∈ D and t ∈ T , respectively, with D ⊂ R

d, d = {1, 2, 3},
and T = [0, tmax]. A realization of the set of outcomes Ω of the probability space (Ω, F , P ) is denoted by
ω ∈ Ω, with F ⊂ 2Ω the σ-algebra of events and P a probability measure.

Assume that the phase of the oscillatory samples uk(t) ≡ u(t, ωk) for realizations of the random param-
eters ak ≡ a(ωk) is well defined for k = 1, . . . , Ns. The argument x has been dropped here for convenience
of the notation. In order to interpolate the samples uk(t) at constant phase, first, their phase as function
of time φk(t) is extracted from the deterministic solves uk(t). Second, the time series for the phase φk(t)
are used to transform the samples uk(t) to functions of their phase u∗

k(φk) instead of time. For discrete
time histories the vectors ~uk and ~u∗

k are identical. Third, the transformed samples u∗
k(φk) are interpolated

to the function u∗(φ, ω) using Adaptive Stochastic Finite Elements interpolation. This step involves both
the interpolation of the sampled phases φk(t) to the function φ(t, ω) and the interpolation of the samples
u∗

k(φ̃) to the function u∗(φ̃, ω) at constant phase φ̃. Repeating the latter interpolation for all phases φ̃ results
in the function u∗(φ, ω). Finally, transforming u∗(φ, ω) back to u(t, ω) using φ(t, ω) yields the unknown
response surface of the system response as function of the random parameters a(ω) and time t. Integrating
this response surface approximation results in an approximation of the statistical moments of the response.
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The phase φk(t) is extracted from the samples based on the local extrema of the time series uk(t). A
trial and error procedure identifies a cycle of oscillation based on two or more successive local maxima.
The selected cycle is accepted if the maximal error of its extrapolation in time with respect to the actual
sample is smaller than a threshold value ε̄k for at least one additional cycle length. The function for the
phase φk(t) in the whole time domain t ∈ T is constructed by identifying all successive cycles of uk(t) and
extrapolation to t = 0 and t = tmax before and after the first and last complete cycle, respectively. The
phase is normalized to zero at the start of the first cycle and a user defined parameter determines whether
the sample is assumed to attain a local extremum at t = 0. If the phase φk(t) cannot be extracted from one
of the samples k = 1, . . . , Ns, Adaptive Stochastic Finite Elements interpolation can directly by applied to
the time-dependent samples uk(t).

Since each sample reaches a different minimum and maximum phase in the time domain t ∈ T , the
ASFE interpolation at constant phase is restricted to the range of phases that is reached by all samples
in an element. The UASFE-cp interpolation is then limited to the time domain which corresponds to
φ̃ ∈ [maxkφk(0), minkφk(tmax)] in the elements. The time domain of approximation approaches [0, tmax]
as the number of elements Ne increases. Outside this domain, ASFE can directly be applied to the time-
dependent samples uk(t).

II.B. Adaptive Stochastic Finite Elements interpolation

The interpolation of the samples at constant phase is performed in parameter space A using a non-intrusive
Adaptive Stochastic Finite Elements (ASFE) interpolation based on Newton-Cotes quadrature points in
simplex elements.18 The ASFE formulation employs a piecewise quadratic approximation of the response
surface by dividing parameter space A into Ne simplex elements Ai with i = 1, . . . , Ne. The quadratic
approximation in the elements is constructed by performing deterministic solves for the values of the random
parameters a(ω) that correspond to the

(

n+2
2

)

second-degree Newton-Cotes quadrature points in the elements
shown in Figure 1a. The two-dimensional example of Figure 1 can geometrically be extended to higher-
dimensional parameter spaces A.

The initial discretization of parameter space A by the adaptive scheme consists of the minimum of
Neini

= n! simplex elements and Nsini
= 3n samples, see Figure 1b. The elements Ai are adaptively refined as

illustrated in Figure 1c using a refinement measure based on the largest absolute eigenvalue of the Hessian, as
measure of the curvature of the response surface approximation in the elements, weighted by the probability
represented by the elements. The actual refinement measure ρi is the product of the refinement measures
ρφi and ρu∗

i
for the two ASFE interpolations of φk(t) to φ(t, ω) and u∗

k(φ̃) to u∗(φ̃, ω), respectively. The

stochastic grid refinement is terminated when δNe
< δ̄, where δNe

is defined as

δNe
= max

(

|µu⌊Ne/2⌋
(t) − µuNe

(t)|∞

|µuNe
(t)|∞

,
|σu⌊Ne/2⌋

(t) − σuNe
(t)|∞

|σuNe
(t)|∞

)

, (2)

with µu(t) and σu(t) the mean and standard deviation of u(t, ω), or when a threshold for the maximum
number of samples N̄s is reached.

Due to the location of the Newton-Cotes quadrature points the required number of deterministic solves is
relatively low, since the deterministic samples are reused in successive refinements and the samples are used in
approximating the response in multiple elements. Where necessary the elements are subdivided into Nelin =
2n subelements with a linear approximation of the response without performing additional deterministic
solves to preserve monotonicity and extrema of the samples. This prevents unphysical predictions due to
overshoots and undershoots near singularities at the expense that the method does not achieve exponential
convergence for smooth responses as Galerkin and Gauss quadrature Stochastic Finite Elements methods
can.

As is common in multi-element methods, the probability of the random parameters a(ω) is assumed to be
zero outside a finite domain. Probability distributions on infinite domains are truncated at a small enough
threshold value for the probability, such that the truncation error is small compared to other numerical
errors that occur in practical applications.
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III. Stochastic bifurcation behavior of an elastically mounted airfoil

A special class of responses that cannot be represented by time-independent parametrization consists of
responses with a transient part. An application of practical interest with transient behavior is the (post-
)bifurcation analysis of an elastically mounted airfoil with nonlinear structural stiffness. The governing
equations for a two-degree-of-freedom airfoil in an inviscid flow are outlined in section III.A. In section III.B
the effect of randomness in the ratio of natural frequencies ω(ω) at the deterministic bifurcation point is
studied. The P-bifurcation behavior of the probability distribution of the system response is analyzed in
section III.C. The results are compared to those of UASFE-ti.

III.A. Governing equations

The nonlinear structural stiffness is modeled by a cubic spring stiffness term in the following two-degree-of-
freedom model for coupled pitch and plunge motion of the airfoil:6

ξ′′ + xαα′′ +
( ω̄

U∗

)2

(ξ + βξξ
3) = −

1

πµ
Cl(τ), (3)

xα

r2
α

ξ′′ + α′′ +
1

U∗2
(α + βαα3) =

2

πµr2
α

Cm(τ), (4)

where βξ = 0m−2 and βα = 3rad−2 are nonlinear spring constants, ξ(τ) = h/b is the nondimensional plunge
displacement of the elastic axis, see Figure 2a, α(τ) is the pitch angle, and (′) denotes differentiation with
respect to nondimensional time τ = Ut/b, with half-chord length b = c/2 = 0.5m and free stream velocity
U = 103.6m/s, which corresponds to a Mach number of M∞ = 0.3 for free stream density ρ∞ = 0.12kg/m3

and pressure p∞ = 1.0 · 105Pa. The radius of gyration around the elastic axis is rαb = 0.25m, bifurcation
parameter U∗ is defined as U∗ = U/(bωα), and the airfoil-air mass ratio is µ = m/πρ∞b2 = 100, with m
the airfoil mass. The elastic axis is located at a distance ahb = −0.25m from the mid-chord position and
the mass center is located at a distance xαb = 0.125m from the elastic axis.10 Randomness is introduced
in the ratio of natural frequencies ω(ω) = ωξ/ωα, with ωξ and ωα the natural frequencies of the airfoil in
pitch and plunge, respectively. The randomness is described by a symmetric unimodal beta distribution
with parameters β1 = β2 = 2 around a mean of µω = 0.2 in the domain ω(ω) ∈ [0.15; 0.25].

The nondimensional aerodynamic lift and moment coefficients, Cl(τ) and Cm(τ), are determined by
solving the nonlinear Euler equations for inviscid flow4 using a second-order finite volume scheme on an
unstructured hexahedral mesh with 7.5 · 103 volumes in spatial domain D with dimensions 30c × 20c. An
Arbitrary Lagrangian-Eulerian formulation is employed to couple the fluid mesh with the movement of the
structure. The fluid mesh is deformed using radial basis function interpolation of the boundary displace-
ments.3 Time integration is performed using the BDF-2 method with stepsize ∆τ = 0.4 until τmax = 1000.
Initially the airfoil is at rest at a deflection of α(0) = 0.1deg and ξ(0) = 0 from its equilibrium position.
The initial condition of the flow field is given by the steady state solution for the initial deflection shown in
Figure 2b in terms of the static pressure p. The output of interest is the angle of attack α(τ, ω). The plunge
deflection ξ(τ, ω) gives equivalent results.

In the deterministic case, the airfoil exhibits an oscillation which either decays to zero or diverges until it
reaches a limit cycle oscillation after a transient, depending on the value of bifurcation parameter U∗. The
deterministic bifurcation behavior of the system for the mean frequency ratio µω is given in Figure 3a in
terms of the amplitude Aα of pitch angle α(τ) as function of normalized bifurcation parameter U∗/U∗

L. The
linear flutter point U∗

L is determined numerically by a trial and error procedure for the linear system with
βα = 0. The location of the flutter point U∗/U∗

L = 1 is not affected by the nonlinear term, since the onset
of flutter is a linear phenomenon. For U∗/U∗

L = 1 the response is a linearly stable periodic motion of which
the amplitude Aα is approximately equal to the initial condition α(0). The system shows a supercritical
Hopf-bifurcation with zero amplitudes Aα below the flutter point for U∗/U∗

L < 1 and finite amplitudes Aα

increasing with U∗/U∗
L for U∗/U∗

L > 1. In the next section the effect of randomness in ω(ω) on the response
at the deterministic bifurcation point U∗/U∗

L = 1 is resolved. The stochastic system bifurcation as function
of bifurcation parameter U∗/U∗

L is analyzed in section III.C.
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III.B. Transient behavior captured

The large effect of randomness in the frequency ratio ω(ω) on the linearly stable response in the deterministic
bifurcation point is illustrated by the Nsini

= 3 initial samples for ωk ∈ {0.15; 0.2; 0.25} in Figure 3b. Sample
αk(τ) for the mean value of the frequency ratio µω = 0.2 is periodic with amplitude Aα ≈ α(0) as expected.
Decreasing the frequency ratio to ω = 0.15 results in a qualitative change to a damped response. On the other
hand, increasing ω to 0.25 leads to the onset of unstable behavior, which a single deterministic simulation for
the mean value µω would have missed. The corresponding realization shows a transient diverging oscillation
until τ = 400 where it reaches a periodic limit cycle oscillation with a constant amplitude of Aα = 8.0deg
due the hard spring structural nonlinearity. The system, therefore, shows a supercritical Hopf bifurcation as
function of ω(ω) as well.

The effect of the transient behavior of part of the realizations on the time histories of the mean µα(τ)
and standard deviation σα(τ) is shown in Figure 4 for UASFE-cp with Ne = 5 and Ne = 10 elements. The
results are compared to those of UASFE-ti with Ne = 10. The mean µα(τ) is initially a diverging oscillation
due to diverging transient oscillation of part of the realizations. For τ > 600 the mean shows a decaying
oscillation due to the effect of ω(ω) on the frequency of the response in combination with the constant limit
cycle oscillation amplitude of the post-flutter realizations beyond their transient. The transient contributes
also to the fast initial increase of the standard deviation σα(τ) to 2.3deg at τ ≈ 1000, which is more than
a factor 20 larger than the deterministic amplitude Aα ≈ 0.1deg of the periodic oscillation for µω. The
successive UASFE-cp approximations for Ne = 5 and Ne = 10 elements display the convergence of the
adaptive refinement. It has been verified that it requires Ne = 16 elements to obtain a comparable degree
of convergence using uniform grid refinement. The adaptive refinement, therefore, results here in a 36%
reduction of the required number of samples from Ns = 33 to Ns = 21. The UASFE-ti formulation does
not predict the initial increase of µα(τ) and σα(τ), since it is unable to model the transient behavior of
the samples αk(τ). The large errors in the UASFE-ti approximation compared to the UASFE-cp results
demonstrate the importance of capturing transient behavior.

III.C. Stochastic bifurcation behavior

By repeating the preceding analysis for a range of values of bifurcation parameter U∗/U∗
L, the stochastic

bifurcation behavior of the system can be explored. Due to the random frequency ratio ω(ω), the system
bifurcation can no longer be described by a single deterministic flutter point, but rather by a P-bifurcation
region for the probability distribution. The response surface approximation of α(ω) at τ = 800 as function of
ω(ω) for U∗/U∗

L ∈ [0.95; 1.05] is shown in Figure 5. The bifurcation of the probability distribution as function
of U∗/U∗

L is here the primary output of interest. The two-dimensional surface of Figure 5 is, therefore,
constructed using one-dimensional approximations as function of ω(ω) at discrete steps ∆U∗/U∗

L = 0.0125
given by the black lines instead of a full two-dimensional response surface approximation. A bifurcation
line in the ω-U∗/U∗

L plane can clearly be identified between (ω, U∗/U∗
L) = (0.25; 0.975) and (ω, U∗/U∗

L) =
(0.15; 1.025). For lower values of ω(ω) and U∗/U∗

L the response is a pre-bifurcation decaying oscillation
which results at τ = 800 in a pitch angle α(ω) close to zero. The bifurcation region starts at U∗/U∗

L = 0.975
for ω = 0.25 and extends to U∗/U∗

L = 1.025, after which the system develops a fully oscillatory response. In
the post-bifurcation domain for U∗/U∗

L > 1.025 the maximum deflection |α(ω)| continues to increase with
increasing U∗/U∗

L.
These results are reflected in the P-bifurcation behavior of the cumulative probability distribution function

of |α(ω)| at the discrete values of U∗/U∗
L and τ = 800 in Figure 6. The cumulative distribution is shown

here since it enables quantitative observations about the probability of flutter. The solutions based on two
different grids with Ne and ⌊Ne/2⌋ elements as used in convergence criterion (2) are shown to display the
convergence of the approximations. In order to capture the stochastic bifurcation the required number of
elements Ne is in the bifurcation region of U∗/U∗

L ∈ [0.975; 1.025] up to 5 times larger than in the pre-
or post-bifurcation domain. In the pre- as well as the post-bifurcation range a discretization with a single
element is actually already sufficient.

When we define the bifurcation point as the absolute pitch angle |α(ω)| which corresponds to a 50%
probability of flutter at the deterministic flutter point U∗/U∗

L = 1 in Figure 6e, then we can determine the
probability of flutter as function of bifurcation parameter U∗/U∗

L. The pre-bifurcation domain of U∗/U∗
L <

0.975 shows a 100% probability of a damped response in Figures 6a and 6b. The 3.8% probability of post-
flutter behavior at U∗/U∗

L = 0.975 indicates the start of the P-bifurcation. The probability of flutter increases
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further with increasing U∗/U∗
L to 24.2% and 94.5% at U∗/U∗

L = 0.9875 and U∗/U∗
L = 1.0125, respectively.

The maximal possible pitch angle |α(ω)| continues to increase with U∗/U∗
L in the post-bifurcation domain

for U∗/U∗
L ≥ 1.025, in which the probability of flutter is larger than 99.5%. These results indicate that

based on the assumed input probability distribution the acceptance of 24.2%, 3.8%, or 0% probability of
flutter would reduce the location of the stochastic bifurcation point by 1.25%, 2.5%, or 3.75% compared to
its deterministic position, respectively. The availability of this quantitative probabilistic information can be
utilized in practice in reducing the safety factors in actual designs.

A typical P-bifurcation can also be recognized in the evolution of the probability density of amplitude
Aα(ω) for increasing U∗/U∗

L at τ = 800 in Figure 7. In the pre-bifurcation domain of U∗/U∗
L < 0.975 the

probability density resembles a Dirac delta function at Aα = 0. At U∗/U∗
L = 0.9875 the probability still has

a maximum at Aα = 0 and decays monotonically to zero for positive values of Aα. The probability density
develops a local maximum at a positive amplitude Aα = 5.7deg for U∗/U∗

L = 1. The local maximum increases
and occurs at increasing values of Aα until it turns into the global most probable point at U∗/U∗

L = 1.025. In
the post-bifurcation domain of U∗/U∗

L ≥ 1.025 the unimodal probability density function allows for positive
Aα values only. The increased insight into the bifurcation behavior of the elastically mounted airfoil through
these detailed stochastic results demonstrates the additional value of a stochastic analysis compared to a
deterministic simulation for complex physical systems.

IV. Conclusions

The concept of performing the uncertainty quantification interpolation at constant phase is presented
to achieve a constant accuracy in time with a constant number of samples, while resolving time-dependent
functionals such as in transient behavior. The usually fast increasing number of samples with time in other
methods is caused by an increasingly oscillatory response surface with time due to increasing phase differences
between the realizations. Scaling the oscillatory samples with their phase and performing the uncertainty
quantification interpolation of the samples at constant phase instead of at constant time, eliminates this effect
of the increasing phase differences. The interpolation at constant phase is performed using a robust Adaptive
Stochastic Finite Elements (ASFE) method based on Newton-Cotes quadrature in simplex elements. The
resulting Unsteady Adaptive Stochastic Finite Elements method based on interpolation at constant phase
(UASFE-cf) can be applied to problems in which the phase of the oscillatory samples is well-defined.

Results for an elastically mounted airfoil with nonlinearity in the flow and the structure demonstrate
that randomness in the frequency ratio ω(ω) can lead to the onset of unstable behavior, which a single
deterministic simulation for mean value µω would have missed. The UASFE-ti formulation does not capture
the fast initial amplification of the standard deviation σα(τ) of the pitch angle α(ω) caused by the transient
behavior of the samples to more than a 20 times its deterministic amplitude. The adaptive refinement of
UASFE-cp results, for this problem, in a 36% reduction of the required number of samples to Ns = 21
compared to uniform grid refinement. The bifurcation of the cumulative probability distribution of the
absolute pitch angle |α(ω)| shows that due to the random ω(ω) a 2.5% reduction of the flutter boundary
compared to its deterministic location still results in a 3.8% probability of flutter. A stochastic bifurcation
analysis of the probability density of pitch amplitude Aα(ω) reveals a typical P-bifurcation behavior from a
Dirac delta function at zero amplitude to a unimodal probability density function for positive amplitudes.
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Figure 1. Discretization of two-dimensional parameter space A using 2-simplex elements and second-degree Newton-

Cotes quadrature points given by the dots.
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Figure 2. The elastically mounted airfoil in uniform Euler flow.
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Figure 3. Results for the elastically mounted airfoil.
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Figure 4. Results of UASFE-cp with Ne = 5 elements and Ns = 11 samples, and Ne = 10 and Ns = 21 compared to those

of UASFE-ti with Ne = 10 and Ns = 21 for the elastically mounted airfoil with U∗/U∗
L = 1.
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Figure 5. Response surface approximation of α(ω) at τ = 800 as function of random ω(ω) and bifurcation parameter

U∗/U∗
L by UASFE-cp for the elastically mounted airfoil.
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Figure 6. Cumulative probability distribution of absolute pitch angle |α(ω)| for U∗/U∗
L ∈ [0.95; 1.05] at τ = 800 for the

elastically mounted airfoil.
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Figure 7. Probability density of amplitude Aα(ω) for U∗/U∗
L ∈ [0.95; 1.05] at τ = 800 for the elastically mounted airfoil.
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