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Nomenclature

D Aerodynamic drag.

L Lift force.

T Thrust.

W Weight of the flying body.

∆pij Pressure on a panel of the lifting surface.

c̄ Mean aerodynamic chord of the aircraft.

V∞ Free stream velocity.

Γ Circulation.

l Lift per unit width.

C Velocity of the aircraft in the inertial system of reference

V Velocity vector of the free-stream in the inertial system of reference

Ω Angular frequency.

Θ Rate angles vector

ρ Air density.

bref Span of the main wing of the aircraft. Also called reference span.

g Gravity constant (9.81m/s2).

k Reduced frequency k = Ωc
2V∞

p Pressure.

u Velocity of the aircraft in X-direction in the inertial frame of reference

v Velocity of the aircraft in Y-direction in the inertial frame of reference

w Velocity of the aircraft in Z-direction in the inertial frame of reference

z Altitude.

c̄ Mean aerodynamic chord of the aircraft.
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Abstract

It is aim of this thesis to develop a potential flow solver for unsteady aerodynamics in MATLAB environ-
ment. In order to achieve this target a vortex lattice method based has been developed. The validation of
this program involves two different stages. Initially, it is compared with classical experiments and a well
tested code. In a second step, the program is compared with wind tunnel experiments for two different
aircraft’s configurations, classical and with canard. In the end it will be demonstrated that the present
method achieves good agreement in both stages.
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Chapter 1

Introduction

“In the beginning there was nothing, and it
exploded.”

Terry Pratchett, writer, on the Big Bang
theory.

Since the beginning of computational aerodynamics research there have been two different lines of
development; one towards accuracy and other towards time efficiency. Navier-Stokes and Euler equations
solvers can be included In the first trend. Although they are highly accurate, they involve computational
times that are inefficient for early stages of aircraft design. That leads to the second trend, in which po-
tential flow solvers are widely used. Within them, the well-known Vortex Lattice method can be found.
Its main strengths lie on low computational times and robust solutions that achieve reasonably good
approximations under linear aerodynamics conditions.

The last case is the target of this Master thesis. An unsteady vortex lattice method is developed due
to a requirement of the Aerodynamics division at the Royal Institute of Technology of Sweden (KTH).
It is referred as ABSOLUT (Aerodynamic Boundaryless SOLver for Unsteady Terms) because is able to
calculate the aerodynamic coefficients, forces and moments under unsteady conditions. Its steady part is
based on Tornado [32], built initially by Tomas Melin, also in KTH. For the unsteady solver, the present
code finds its source in Hedring [10], a basic program developed by Sven Hedman, specifically created to
solve the cases in chapter 4.

1.1 CEASIOM

CEASIOM (Computerised Environment for Aircraft Synthesis and Integrated Optimization Methods) is
a computational aircraft pre-design tool. It appears as new way of understanding the computer aid to
conceptual design of aircrafts [30]. Most of current commercial software in this field tends to use semi-
empirical theory which can be found in well-known handbooks. Some of them, sophisticated ones, even
recalibrate these methods and data by using experimental tests, previous designs and projects. However,
the final product is not as reliable as it is desired for unconventional configurations. Due to the need of
filling this gap, it arises the SimSAC project [31], frame of CEASIOM development. Its main objective
is to build new software that performs initial fast non-high accuracy analysis but capable of introducing
higher accurate numerical simulations, when requested.

Since it is an international project, CEASIOM system is not unique software, but it is an integration
of different analysis modules by using common tool MATLAB software. Therefore, although it is freeware
software, a MATLAB license is necessary to use it.

1



Chapter 1. Introduction 1.1. CEASIOM

Figure 1.1: Overview of the different modules of CEASIOM

The different modules and their interactions are shown in fig.1.1, obtained from [30]. Each one is
related to a specific aspect of conceptual design. These modules are:

❼ AcBuilder/SUMO: it is the CAD package. It is a coupled system of geometry construction and
mesh generators. Its main characteristic is the adaptable quality of the different geometries and
meshes. Depending on the aerodynamic method that is going to be executed, different files can be
created. A geo.xml file defined with the AcBuilder GUI is sufficient for a first approxiamtion. Lifting
surfaces are modeled as lamina assembled through their usual aerodynamic defining geometries.
Control surface deflections can be modeled by changing the geometry or by manipulating the
numerical flow conditions. The non-lifting elements have only a few key parameters, and their
effects on the lifting surfaces are approximated by the slender body theory. For higher geometry
fidelity, SUMO package provides the proper refinement routines from which surface and volume
mesh files .msh come.

❼ AMB: as its abbreviation indicates, it is the Aircraft Model Builder. It deals with the aerodynamic
calculations for a given geometry from the CAD module. The computational models are dvided
into three groups:

(a) (Tier I): Linear Aerodynamics methods, (mainly Vortex Lattice Method) that in this case
cover low speeds and low angles of attack of the aircraft. The main tool in this model is
TORNADO, which is a VLM code that allows most types of modern aircraft configurations,
from the airfoil characteristics to the control surfaces. It also calculates forces, moments and
the aerodynamic coefficients. The aerodynamic derivatives can be calculated with respect to:
angle of attack, angle of sideslip, roll, pitch, yaw rotations, and control surface deflections.
Although both viscous and aeroelastic effects are supposed to be obtained, only viscous cor-
rections are implemented by using the airfoil code XFOIL [33]. The aeroelasticity version is
still under development. Also USAF digital DATCOM handbook methods can be used as
basic tool.

(b) (Tier I+): For high-speed aerodynamics and aeroelasticity. For this case there are two
different possibilities. The first is to solve the problem with Panel method by using dwfsolve
from SUMO surface mesh file which has been also created from a AcBuilder output. The second
is to use EDGE code from TetGen’s volume mesh files to obtain the transonic aerodata. Both
methods are highly accurate.

2



Chapter 1. Introduction 1.2. TORNADO, a brief overview

(c) (Tier II): RANS (Reynolds-averaged Navier-Stokes method). This high-fidelity analysis al-
lows to extract accurate solutions from extreme flight conditions. However, it requires much
more work than the two previous, not only in the creation of the mesh but also in computing
time cost.

❼ SDSA(Simulation and Dynamic Stability Analysis): this module can execute many different anal-
yses. The main ones are:

(a) Stability analysis: It covers eigenvalues analysis in open and close loop case and time history
identification. The model is linearized by using the Jacobian matrix of the state derivatives
around the equilibrium point numerically.

(b) Six Degree of Freedom: test flights and turbulence.

(c) Flight Control System based on Linear Quadratic Regulator (LQR) theory, which includes
Human Pilot model, Stability Augmentation System, and Actuator model or LQR based FCS.

(d) Performance prediction.

❼ FCDST(The Flight Control System design module): it is a module for simulating the aircraft
control system so it can be integrated in the architecture from the beginning of the design.

❼ NeoCASS: this module allows structural analysis of the aeroelastic behavior of the aircraft in an
early phase of the design. It is based on numerical analysis, which is an improvement in relation to
old semi-empirical methods.

1.2 TORNADO, a brief overview

TORNADO is a potential flow solver developed as a collaboration between the Royal Institute of Tech-
nology (KTH), University of Bristol and Linköping University. Since the beginning its main purpose is
to be used as a tool in conceptual aircraft design and in aerodynamics education [32]. Although the code
has been initially developed by Tomas Melin [21] many extensions have been added to improve the basic
version.

Tornado uses a vortex lattice method that calculates forces, moments and aerodynamic coefficients of
the aircraft for low speeds and low angles of attack. It can also study several modern aircraft configura-
tions, from the airfoil characteristics to the control surfaces. For viscous effects, it works together with
Xfoil [33] or with semi-empirical methods. The main features that differentiate it from classical vortex
lattice codes are related to the geometry definition and an extension for the theoretical solution.

The geometry definition is three-dimensional with multiple wings configurations allowed. There is the
possibility of specifying the characteristics of each section of the wing. These are twist, sweep, dihedral
angles, and the existence of control surfaces. Also, different mean camber lines can be used according
to the profiles selected for a certain section. Therefore, an aircraft can be defined with multiple wings,
with multiple control surfaces in each wing, and different parameters for each section. All of it in three
dimensional fashion.

3



Chapter 1. Introduction 1.2. TORNADO, a brief overview

Figure 1.2: Tornado’s different views of the B-52

For the theoretical solution, the vortex-sling concept has been developed as an extension of the clas-
sical horseshoe. Instead of three straight vortex segments, the new model consists of seven vortex lines
for each panel. The vortex sling starts downstream, in the infinity, reaching the trailing edge of the wing,
going across it until the quarter chord line of its panel. Then, it goes to the other side of the panel and
afterwards back downstream in an analogous way [32]. In case there is a control surface in the section in
which the panel is located, the vortex lines moves first to the hinge line of the control surface before it
goes to the quarter chord line. This improvement allows to add the effect of control surfaces to the vortex
lattice method, which is not possible in classical configurations. In Fig. 1.3 both a horseshoe vortex and
a vortex sling are shown side by side so the differences become clearer.

Figure 1.3: Vortex sling vs horseshoe vortex, [21]

The increase in computational time is balance by the increase in accuracy and the possibility of adding
control surfaces. Tornado has other minor features and extensions that the following list briefly covers:

4



Chapter 1. Introduction 1.3. Linear Aerodynamics

❼ Explicit forces in Newton’s.

❼ Treffz’s plane analysis.

❼ International standard atmosphere.

❼ Velocity in TAS, CAS or Mach.

❼ Compressibility corrections for high subsonic Mach numbers.

❼ Trimmed polars

❼ Stability derivatives with respect to:

– Pitch and yaw

– Angular rates in pitch, roll and yaw.

❼ Control surface power derivatives

❼ Parameter sweep

For an updated list, see [32].

1.3 Linear Aerodynamics

Linear aerodynamics theory covers the cases in which the non-linear effects can be neglected. Hence, its
domain includes small angles of attack (not close to stall limit, Fig. 1.4), and Mach numbers low enough
so compressibility effects are not accounted. In Fig. 1.5 it can be appreciated that from Mach=0.5 the
zero-lift drag suffers a progressively sharper increase. Consequently, small disturbances-theory can be
used under the assumption of small deviations from an equilibrium state of the aircraft.

The Vortex lattice method is included in the linear aerodynamic methods due to its dependence on
the Laplace’s equation. This has to be satisfied to solve the aerodynamic problem. This relations are
explained in chapter 2.

Figure 1.4: Stall limit in a lift-angle of attack curve

In the following sections, diverse examples of linear aerodynamics are depicted in relation to the
unsteadiness of the fluid surrounding the body. A first approach shows that if the motion of a wing, in a
free stream, changes by time, so do the acting aerodynamic coefficients [9]. If this change is fast enough,
the aerodynamic response of the body has a phase lag, and the inertia of the displaced air contributes as
an apparent mass term. In case the mass term is negligible, the aerodynamic analysis can be performed
under the quasi-unsteady assumption.
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Figure 1.5: Compressibility effects on the drag according to Potential Flow theory

1.3.1 Steady Aerodynamics

For steady aerodynamics, the flow field around a flying body does not change with respect to time.
Therefore, the aerodynamic forces and moments keep unchanged along the body’s trajectory. An example
of this case is an aircraft following a steady, straight and level, unaccelerated flight. From a dynamic
point of view, the main forces acting on the aircraft are lift L, weight W, drag D and thrust T. The lift
balances the weight of the aircraft and the thrust balances the drag.

Figure 1.6: Reference system according to CEASIOM definitions [8]

Usually, there is an angle ǫ between the thrust T an the velocity V0 directions, but this is often
neglected (ǫ ≈ 0) because it is small enough, Eq. (1.1). For this case, the aerodynamic study only
concerns the static situation of the airplane, what means that only its steady parameters are accounted
for the calculation. The wake remains unchanged.

L−W + T✘✘
✘sin(ǫ)0 = 0 → L−W = 0

T✘✘
✘cos(ǫ)1 −D = 0 → T −D = 0

(1.1)

In the kinematic analysis, there are only constant straight velocities V so angular rates Ω are set to zero,
Eq. (1.2).
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V = (u0, v0, w0)
Ω = (P,Q,R) = (0, 0, 0)

(1.2)

where P , Q and R are the roll, pitch and yaw angular velocities, defined as in Fig. 1.6.

1.3.2 Quasi-steady Aerodynamics

When the aircraft undergoes a general motion of pitch, roll and/or yaw, the forces and moments vary
with time. One simple approach for the calculation of such forces and moments is to assume that at any
instant the wing behaves as if it were moving with constant angular rates equal to their instantaneous
values. This is known as the quasi-steady assumption and implies that there are no time-dependent
effects [27].

Under this condition, the aerodynamic forces are calculated as a sequence of static situations. It is a
succession of ”pictures”of the aircraft at different moments, so the study is performed without regarding
the past state (there is no time-dependency). In this case, for the examination of the moving body, the
change of both aerodynamic and rate angles are not considered. Also, the wake is modified according to
the aircraft instantaneous motion.

An example of it is a constant pull-up. The main forces acting on the aircraft are lift L, weight
W , drag D , thrust T (as in steady conditions), and inertial forces. For a general case of quasi-steady
aerodynamics, the kinematics values could be the ones in Eq. (1.3).

V0 = (u, v, w)
Ω = (P,Q,R)

(1.3)

1.3.3 Unsteady Aerodynamics

Despite the appealing of the quasi-steady assumption due to its simplicity, sometimes is not sufficiently
accurate. In case of harmonic or fast maneuvers, more complex aerodynamic analysis must be used in
order to predict accurately the dependency of aerodynamic forces and moments on the time content of
dynamic motions [27]. The classical approaches to analyze the effects of these motions are Wagner’s
and Theodorsen’s functions. Wagner’s function can be used to consider the case of general motion (time
domain), while Theodorsen’s has main importance to predict aeroelastic effects and the response to con-
tinuous turbulence (frequency domain), [27].

When analyzing certain accelerated flights, it is necessary to include in the analysis the wake influence
on the aircraft and its own motion history. This is the field of unsteady aerodynamics, an analysis that
depends on the history of the motion. It is mandatory to obtain accurate results from sudden flight ma-
neuvers, or short period harmonic motions. An example of it is a diving maneuver, in which the aircraft
after a sudden pitch-down descends with a high negative pitch angle. In this case, the most important
difference with respect to the quasi-steady approximation is the effect of the wake on the aerodynamic
forces and the effects due to the changes of the rotation rates.

The kinematic parameters for general motion (unsteady aerodynamics) analysis are shown in Eq. (1.4).
Straight velocity V and angular rate Ω do change with time.

V(t) = (u(t), v(t), w(t))
Ω = (P (t), Q(t), R(t))

(1.4)
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Chapter 2

Vortex Lattice Method

“Potential flow is so unphysical that the only
fluid to obey its assumptions is dry water”

Richard Feynman, physicist.

2.1 Basics of fluid dynamics

Whenever a flow field is studied there are several ways to classify it. From a classical point of view, a
flow field can be either viscous or inviscid, compressible or incompressible, unsteady or steady. While the
toughest analysis comes from a fluid that is viscous, compressible and unsteady, the simplest scenario is
the one that concerns to flow fields that are steady, incompressible and inviscid [15].

Viscosity, which is also called internal friction, is a fluid’s internal resistance to flow. For aerodynamic
purposes a flow is considered viscous when it is close to a solid boundary, like the wing of an airplane, where
the viscous layer is called boundary layer, Fig. 2.1. It is also viscous the flow in the wake downstream the
airplane. Therefore, in aerodynamics, a fluid can be assumed as inviscid when it is outside these areas.

Figure 2.1: Boundary layer velocity profile

A flow with constant density is called incompressible. In contrast, a flow where the density is variable
is called compressible [1]. All aeronautical flow fields are compressible, but this is only accounted when
the ratio between the local velocity of the fluid and the local speed of sound (Mach number) reaches a
certain point.

9
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Figure 2.2: Fixed and moving systems of reference, [15].

Every flow field is also time-dependent, but in this case as in the previous, there are some conditions
that the fluid must accomplish so this property is not neglected. The election of a reference system has
main importance. A body moving relative to a fixed reference system (i.e. Earth) always generates an
unsteady flow while the same flow field in a fixed-body reference system can produce a steady flow field
[15], see Fig. 2.2. The state and motion of the fluid can be characterized by its velocity, pressure, and
temperature. Hence, the flow is steady if all these entities are independent of time in all points of the
chosen reference system.

2.1.1 Kinematic concepts

The kinematics of flow fields is geometrically described with concepts such as:

❼ Pathline: is the path taken by a volume-less fluid particle.

❼ Streamline: a line in the flow field with the property that the fluid velocity vector is pointing in its
tangent direction. If flow is steady, pathlines and streamlines coincide [1].

❼ Stream tube: real or imaginary tube in the flow field bounded by streamlines.

❼ Stream tube flow: 1-D approximation in which the velocity, the density, the pressure are constant
over the stream tube sections of the coordinate s along the stream tube (and the time).

Figure 2.3: Cross section of a stream tube

2.1.2 The Continuity Equation

Figure 2.4: Stream tube
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In a steady stream tube the mass flow passing through each cross section of it must be the same, Fig. 2.4.
This last affirmation is known as the Conservation or Continuity Equation, which is shown in a reduced
form in Eq. (2.1) and in its general form in Eq. (2.2).

ρ(s)V(s)A(s) = constant (2.1)

where A(s) is the stream tube area in a section determine by the path coordinate s.

∂ρ

∂t
+∇(ρv) = 0 (2.2)

In case of incompressible, steady flow, Eq. (2.2) leads to Eq. (2.3).

∇v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

= 0 (2.3)

2.1.3 Bernoulli equation

The Bernoulli equation (2.4) describes the behavior of a fluid moving along a streamline. It is obtained
by integrating the Euler equations [25] along a streamline for an inviscid, steady and incompressible flow.
Usually, the variation of the potential energy term ”ρgz” can be neglected in the air flow [15]. Thus, its
physical meaning is clear, there is an inverse relation between the velocity Vs and the pressure p.

p+
1

2
ρV 2

s + ρgz = constant along the streamline (2.4)

This equation allows to calculate the forces in many aerodynamic problems. In section 2.4 its unsteady
form is posed.

2.2 Potential Flow Theory

In an incompressible and inviscid flow, from the continuity equation there is:

∇ · v = 0 (2.5)

Further, as the flow is irrotational, a velocity potential is introduced:

v = ∇φ (2.6)

Hence, for an incompressible and irrotational flow, the following equation can be posed:

∇2φ = 0 (2.7)

Eq. (2.7) is known as Laplace equation, which is a second order linear equation. The characteristics
associated to linear equations make Laplace’s useful for most of aerodynamic problems. It can be applied
when the flow satisfies the potential conditions so the velocity potential exists. As a final remark, there
are two phenomena that produce vorticity in aeronautics, viscosity and curved shock waves.

2.2.1 Kelvin’s circulation theorem

Let C1 be a fluid curve in an incompressible, inviscid flow field, i.e. a curve frozen in the fluid, Fig. 2.5.
The circulation around the curve C is defined as:

Γ =

∮

~vd~s (2.8)
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Figure 2.5: Representation of Kelvin’s theorem

At some time t, this curves moves in the space. If the flow is inviscid, since C is a fluid curve, from
Euler equations [25] it follows Eq. (2.9), a form of angular momentum conservation.

dΓ

dt
= 0 (2.9)

Eq. (2.9) is known as Kelvin’s circulation theorem. It states that the circulation is constant around any
material curve in inviscid flow. For further information, read [16].

2.2.2 Helmholtz theorems

Based on the results of the previous sections, Von Helmholtz stated the following vortex theorems for
inviscid flows:

❼ The strength of a vortex filament is constant along its length.

❼ A vortex filament cannot start or end in a fluid, it must form a closed path or extend to infinity.

❼ The fluid that forms a vortex tube continues to form a vortex tube and the strength of the vortex
tube remains constant as the tube moves about (hence vortex elements, such as vortex lines, vortex
tubes, vortex surfaces etc, will remain vortex elements with time).

2.2.3 Kutta-Joukowsky theorem

A generic aerodynamic force in an incompressible, inviscid, irrotational flow in an unbounded fluid is of
magnitude ρV∞Γ per unit width, and acts in a direction normal to the free stream [16]. By using vector
notation, the previous expression becomes Eq. (2.10), the Kutta-Joukowski theorem.

l = ρV∞ × Γ (2.10)

where l is the aerodynamic force per unit width, V∞ is the free stream velocity and Γ is the circulation
around the airfoil in Fig. 2.6. Circulation Γ is positive defined according to right-hand rule.

There are two conclusions that are worthy to highlight from Kutta-Joukowski theorem. The first is
that, within the domain of the potential theory, the force over an airfoil is perpendicular to the free stream
velocity. The second is that the lift needs of circulation Γ in order to exist. For further information about
the derivation of the equation, check [22].
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Figure 2.6: Kutta-Joukowski

2.2.4 Boundary conditions

The potential flow theory states some boundary conditions that have to be fulfilled to solve Laplace
equation. The first of them requires zero-normal velocity across the body’s solid boundary surfaces:

(∇φ+V)n = 0 (in X, Y, Z coordinates) (2.11)

where ∇φ is the variation of the velocity potential (or flow disturbance) in (X, Y, Z) coordinates, V
is the total velocity on the body surface and n is the normal vector to the surface. The second boundary
condition states that the flow disturbance produced by the motion of the lifting body in the fluid has to
diminish far from the body. It is posed in Eq. (2.12).

lim
|R−R0|→∞

∇φ = 0 (2.12)

where R is the position of the disturbed flow particle and R0 is the location of the body.

The Kutta condition (Fig. 2.7) states that the flow must leave the aerofoil at the sharp trailing edge
[1]. In inviscid, potential flow, it implies that there must be a stagnation point at the trailing edge. The
implementation of the Kutta condition in a mathematical model is done in two main ways:

❼ The pressure jump over the trailing edge is prescribed to be zero.

❼ There is a streamline that leaves the aerofoil trailing edge along the bisector to the trailing edge
angle δTE .

Figure 2.7: Kutta assumption for the wake shape near the trailing edge

2.2.5 Biot-Savart’s Law

Find the solution to:

∇× u = w
∇u = 0

(2.13)
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in free space, say w has compact support.

Since u is divergence free, we may say

u = ∇×A (2.14)

where A is the vector potential for u. Take the curl again,

∇× (∇×A) = w (2.15)

∇ (∇A)
choose=0

−∆A = w (2.16)

Since w is a curl we have ∇ · w = 0 so our “choice” ∇ · A = 0 is justified. From the Green’s function
for the Laplace operator in free space there follows:

A(x) =
1

4π

∫

w(y)
1

|x− y|
dV (2.17)

and finally:

u = ∇×A(x) =
1

4π

∫

w(y)×∇
1

|x− y|
dV (2.18)

u =
1

4π

∫

w(y)×
x− y

|x− y|3
dV (2.19)

Eq. (2.19) is the Biot-Savart law. If w is concentrated to a surface or curve, the integral is changed
accordingly.

2.2.6 Horseshoe vortex

For posing an aerodynamic model the first thing to do is to establish the properties that the model have
to fulfill [15]. In the present case, these are:

❼ For a wing generating lift there must be a circulation around each curve encircling any aerofoil
section.

❼ Downstream each wingtip there is a trailing vortex.

A valid model with these properties is the so called horseshoe vortex model, Fig. 2.8. In the following
sections other configurations are depicted.

Figure 2.8: Physical problem and mathematical model for a horseshoe vortex, [1].

The horseshoe vortex model consists of a bound vortex and two trailing vortices. There is also a
starting vortex parallel to the bound vortex and located downstream of the wing, in the infinity. The
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bound vortex replaces the wing and becomes the source of lift through the Kutta-Joukowski law, Eq.
(2.10). According to one of the Helmholtz vortex theorems the bound vortex cannot end at the wing tips,
so it continues downstream, creating the wake, which is modeled by the trailing vortices. The two half-
infinite vortices generate a downsweep along the bound vortex. With the coordinate system in Fig.2.8
this induced downsweep is given by using Biot-Savart law, Eq. (2.19).

2.2.7 Vortex Rings

The vortex rings are a generalization of the horseshoe model. Theoretically, the horseshoe vortex is pre-
sented as a vortex ring with trailing segments of infinite length, Fig. 2.9a. However, in practice, it only has
three segments while the vortex ring is formed by four straight segments. The bound vortex is forward,
the starting one is in the rear position and, linking both of them, there are two trailing vortices, Fig. 2.9b.

(a) Horseshoe vortex, [1] (b) Vortex ring

Figure 2.9: Vortex ring definition

One advantage of this configuration with respect to horseshoe vortices is that by using vortex rings
the zero normal flow condition can be satisfied on the actual wing surface.

2.3 Classical Vortex Lattice Method

The vortex lattice method (VLM) is a potential flow solver based on the lifting line model, [24]. ”It rep-
resents the wing as a planar surface on which a grid of horseshoe vortices is superimposed” [2]. Although
this definition is correct for the classical method, there are several VLM that can modify that statement.
In this section, only the classical implementation is described, so the basic horseshoe vortex model is
taken into account.

Knowing that vortices represent lift from the Kutta-Joukowski theorem, one approach is to place the
vortex and then satisfy the boundary condition of zero normal velocity on the wing surface using the
”1/4− 3/4 rule”[35]. The procedure is:

1. Divide the planform up into a lattice of quadrilateral panels, and put a horseshoe vortex on each
panel.

2. Place the bound vortex of the horseshoe vortex on the 1/4 chord element line of each panel.

3. Place a collocation point on the 3/4 chord point of each panel at the midpoint in the spanwise
direction (sometimes the lateral panel centroid location is used).

4. Assume a flat wake in the usual classical method.

5. Determine the strengths of each Γn required to satisfy the boundary conditions by solving a system
of linear equations.

6. Calculation of the forces and moments by using the Kuttta-Joukowski theorem.
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Figure 2.10: Classical vortex-lattice method, [35].

Since the wake is assumed flat, the trailing segments are aligned with the free stream velocity so
they are force free. This requirement may produce detachments for a given angle of attack α. However,
as small angles of attack are assumed, the wake sheet can be placed in the same plane of the lifting surface.

After the discretization of the wing, the zero normal flow condition has to be satisfied. Eq.(2.11) is
defined as an addition of the known free stream speed V∞ and the unknown velocities induced by the
wing bound vortices vb:

(V∞ + vb) · n = 0 (2.20)

Eq. (2.20) is solved at every collocation point by following a straightforward process. A calculation
of the induced velocities starts with Eq. (2.19) for Γ = 1, in a horseshoe model. The outcome are the
influence coefficients, which are defined in the form of Eq. (2.21).

aij = (u, v, w)ij · ni (2.21)

where n is the normal vector to the panel i and (u, v, w)ij are the velocities induced on the collocation
point i by the vortex j. From Eqs. (2.20) and (2.20) a linear system of equations (2.22) is set:
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(2.22)

where the circulations Γj are the unknowns. After they are calculated, the lift generated by each
bound vortex is obtained through Eq.(2.10). In this case, it is posed in a discretized way as Eq.(2.23).

∆Li = ρV∞ × Γi∆bi (2.23)

where ∆Lij is the lift of the panel i and ∆bi is the length of the bound vortex of the same panel. To
obtain the total lift of the wing, the lifts of all the bound vortices of the wing are summed.

A more sophisticated VLM is Tornado [21], which has been described in section 1.2. It calculates
solutions for complex aircraft configurations at steady and quasi-steady flight conditions. However, it
lacks an unsteady implementation yet. For more information about this and other vortex lattice solvers,
read [21], [34] or [4].
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2.4 Unsteady VLM, theoretical background

This section provides a theoretical introduction to the unsteady vortex lattice method. A more detailed
explanation of it is given in the next chapter.

Previously, it has been established that a velocity field can be obtained by solving the continuity
equation, which does not include time-dependent terms. However, for unsteady conditions these are
introduced through the boundary conditions [16]. This statement is the basis of unsteady potential flow
theory. Thus, for solving unsteady flows, the same methods as in the steady case apply, with slight
modifications. They are, basically, a different treatment of the tangential flow boundary condition, use
of the unsteady Bernoulli equation and a more complex wake than in the steady case.

In a dynamic study, the path of an aircraft is determined by the sum of all the forces acting on the
aircraft. Since the VLM only concerns about the aerodynamic analysis, the motion of the aircraft follows
a prescribed path. Then, two systems of reference are defined, an inertial fixed-to-earth system (X,Y,Z)
and a non-inertial fixed-to-body one (x,y,z), Fig. 2.11. The motion of the (x,y,z) system, in relation to the
inertial (X,Y,Z), is defined by the instantaneous position of its origin O, Eq. (2.24), and the orientation
of the frame, given by the rotation angles, Eq. (2.25).

Figure 2.11: Kinematics of the aircraft motion, [16].

R0(t) = (X0, Y0, Z0) (2.24)

Θ(t) = (φ, θ, ψ) (2.25)

After inviscid, irrotational, and incompressible flow is assumed, a velocity potential Φ(X,Y, Z) and,
consequently, the Laplace equation Eq. (2.26) can be defined in the inertial coordinate system:

∇2Φ = 0 (in X, Y, Z coordinates) (2.26)

The first boundary condition requires normal velocity across the body’s solid boundaries. It is posed
as Eq. (2.27).

(∇Φ+V)n = 0 (in X, Y, Z coordinates) (2.27)

Since Eq.(2.26) does not depend directly on time, the time dependency is introduced by Eq.(2.27).
The second boundary condition requires that the flow disturbance, due to the body’s motion through the
fluid, should diminish far from the body:

lim
|R−R0|→∞

∇Φ = 0 (for any t) (2.28)

For the unsteady flow Kelvin theorem supplies an additional equation that can be used to determine
the stream-wise strength of the vorticity shed into the wake [16]. It states that in the potential flow
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region the angular momentum cannot change, so the circulation Γ around the fluid curve enclosing the
wing and the wake is conserved.

dΓ

dt
= 0(foranyt) (2.29)

The solution of this problem, which becomes time-dependent because of the boundary condition
(2.27), is executed in the body-fixed coordinate system. Then, a transformation between the coordinate
systems has to be defined:





x
y
y



 = f (X0, Y0, Z0, φ, θ, ψ)





X
Y
Z



 (2.30)

where the left side represent the coordinates (x, y, z) in the non-inertial coordinate frame and the
right side has the transformation matrix f (X0, Y0, Z0, φ, θ, ψ) and the coordinates (X, Y, Z) in the
inertial system. Similarly, the kinematic velocity V of the lifting surface as viewed from the inertial
frame of reference is given by:

V = − [V0 + vrel +Ω× r] (2.31)

Then, if Eq.(2.31) is substituted in Eq.(2.27), it follows:

(∇Φ−V0 + vrel +Ω× r)n = 0 (in x, y, z coordinates) (2.32)

From this equations it is noticed that, for incompressible flow, the instantaneous solution of Eq. (2.26)
is independent of time derivatives and, consequently, steady-state techniques can be used for the unsteady
problem by substituting the boundary condition at every moment. However, the wake has to be treated
differently. Its separation line is dictated by the Kutta condition, and, along trailing edges of lifting
surfaces, the velocity has to be finite.

For the wake modeling, additional considerations are taken into account. To obtain the wake strength
the simplest solution to this problem is to apply the Kutta condition along the trailing edges of lifting
wings.

ΓT.E. = 0 (2.33)

The validity of the assumption depends on the component of the kinematic velocity, normal to the
trailing edge, which must be much smaller than the characteristic velocity for Eq. (2.7) to be valid, [16].
Besides, the Kevin condition can be used to calculate the change in the wake circulation:

dΓ

dt
= 0 (2.34)

Also, since the trailing edge has a finite angle, a new assumption has to be made to define how the
flow is shed in the wake. It is enough to postulate that the wake leaves the wing at the bisector of the
trailing edge angle δT.E./2, as shown in Fig.2.7

The only equation that has to be defined yet is the unsteady Bernoulli equation. In the inertial frame
of reference, from Eq.2.4, it becomes:

p∞ − p

ρ
=

(∇Φ)2

2
+
∂Φ

∂t
=

1

2

[

(

∂Φ

∂X

)2

+

(

∂Φ

∂Y

)2

+

(

∂Φ

∂Z

)2
]

+
∂Φ

∂t
(2.35)

where p∞ is the pressure in the free stream, (∇Φ)2

2 is the gradient of the velocity potential and ∂Φ
∂t

is
the velocity potential time derivative. The last can be obtained in terms of the circulation, establishing
the following relations [16]:

Φ± = ±

∫

γ

2
dl (Integrating from the leading edge) (2.36)
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Since for the vortex model that is used here ∆Φ = Γ, then:

±
∂Φij

∂t
= ±

∂Γij

2∂t
(2.37)
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Chapter 3

ABSOLUT, the Computational

Method

“Aeronautics was neither an industry nor a
science. It was a miracle.”

Igor Sikorsky, helicopter’s inventor.

ABSOLUT is a potential flow solver, developed in MATLAB environment, which is based on Hedring,
a Fortran algorithm developed by Sven Hedman [10], and Tornado [32]. The main differences from Hedring
consist of a more complex geometry discretization and a general motion definition.

With respect to Tornado, the main divergence is that the present code is an unsteady vortex lattice
method and employs, instead of vortex slings, vortex rings. Its solution method concerns the time domain
so it follows an iterative process divided in time-steps. The wing (or wings), which has been divided in
panels, starts its motion with no wake at first. However, in the following time steps the vortex rings of
the trailing panels are shed at the rate of one row of rings per step, Fig 3.1. This sequence is used for
any prescribed motion of the lifting surface.

Figure 3.1: Unsteady Vortex lattice method for vortex rings

The forces are calculated in the same way as in the classical vortex lattice method, described in the
previous chapter. First, a linear system of equations is solved in order to obtain the circulation of the
vortex rings. Then, the forces are calculated by means of the Kutta-Joukowski theorem. Nevertheless, in
this case there are certain modifications that introduce the time-dependence. Eq. (2.22) is modified so
it takes account the rotation rates of the aircraft and the velocity induced by the wake. Besides, a new
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term is added to the Kutta-Joukowski equation in order to include the lag influence.

The following sections of this chapter aim to describe in depth relevant features of the computational
method explained here.

3.1 Code Structure

As it is shown in the flow chart of the code, Fig. 3.2, the program has three main divisions:

❼ The preprocessor manages input variables such as the geometric data and the prescribed motion
of the aircraft configuration. Besides, it defines the geometry of the lifting surfaces and discretizes
them. The final task of this step is the generation of the lattice mesh according to the geometry
and the type of motion of the aircraft.

❼ In the processor the solver calculates the forces and moments under steady and unsteady aerody-
namic conditions. It also models the wake shape.

❼ The postprocessor calculates the stability derivatives and generates the plots of the solutions
obtained from the solver.

Figure 3.2: Flow chart of the code

For a functional description of the different files and variables of the code, check appendix A.

3.2 Preprocessor

After obtaining the inputs and adjusting them for the next step, the Preprocessor starts an iterative
process, Fig. 3.3. The lifting surfaces are defined, discretized and meshed, partition by partition. The
coordinate systems are the same as in Tornado and in [16]. The origin O is usually placed in the center of
gravity, the axis OZ points downward, the OX axis backward in the direction of the mean aerodynamic
chord and the OY axis forms, together with the other two, a right handed coordinate frame.
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Figure 3.3: Flow chart of the Preprocessor

3.2.1 Inputs

As in Tornado, the user is able to set the parameters that define the geometry of the wing configuration
together with the flight characteristics. The only difference is that in this extension there are some more
flight options. Since this solver works for both unsteady and steady cases, there is the possibility of
choosing one of them. The steady alternative of the code works, basically, as Tornado. However, in
the unsteady choice new variables appear. There is the chance of selecting a harmonic motion for the
aircraft and of specifying unsteady deflections of the control surfaces (with the harmonic option too).
Consequently, the aerodynamic analysis of moving control surfaces is also possible.

3.2.2 Discretization

The discretization of the lift surfaces is performed as in Tornado [21]. Thus, to define the geometry of
the wings, they are divided in multiple partitions or segments, Fig. 3.4.
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Figure 3.4: Planform view of the main semi-wing of a B-747 model

A partition of a wing is a quadrilateral element that is defined by the coordinates of its four corners.
Each segment has the same properties of a whole wing, which means that it has sweep angle Λ, taper
ratio λ, dihedral angle Γ, as well as twist θ.

The coordinates of a partition are specified by Tornado and ABSOLUT similarly.
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❼ First quad of the wing: reference point is the apex of the wing. From the coordinate established
in the geometry inputs, in case there is torsion in this wing section, a rotation is performed in
Y-direction, taken as rotation center the quarter chord of the wing.

❼ Other quads of the wing: reference point is the second vertex of the previous partition. Then, the
rest of the segment is rotated as before.

❼ Flap partition: reference point is the fourth vertex of the main partition.

The process to obtain the final position of the partition is described by Eqs. (3.1), (3.2, (3.3)), (3.4, (3.5))
and (3.6). The first four define the displacement of the partition in relation to the quarter chord point.
Therefore, rotations about Y axis are predominant. The subscripts in and out refer to the inboard and
outboard side of the partition respectively.

∆x =









(1− cos(θin)) · cos(Λ)
(1− cos(θout)) · cos(Λ)
(1− cos(θout)) · cos(Λ)
(1− cos(θin)) · cos(Λ)









(3.1)

∆y =









−sin(θin) · sin(Γ) · cos(Λ)
−sin(θout) · sin(Γ) · cos(Λ)
−sin(θout) · sin(Γ) · cos(Λ)
sin(θin) · −sin(Γ) · cos(Λ)









(3.2)

∆z =









sin(θin) · cos(Γ)
sin(θout) · cos(Γ)
sin(θout) · cos(Γ)
sin(θin) · cos(Γ)









(3.3)

C =





∆x
∆y
∆z



 (3.4)

Eq (3.5) prescribes, mainly, rotations around X and Z axis,

B =





0 b · tan(Λ) b · tan(Λ) + λ · cr cr
0 b · cos(Γ) b · cos(Γ) 0
0 b · sin(Γ) b · sin(Γ) 0



 (3.5)

In Eq. (3.6) all rotations are set together:





x
y
z



 = B · crot +C+ cref (3.6)

where crot is the distance from the leading edge to the quarter chord line of the wing and cref is the
reference coordinate for the partition. The discretization of the wing in several panels is done in the same
way as Tornado, [21]. An example is given in Fig. 3.5 where a X31 VLM model has been divided into
panels.
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Figure 3.5: Planform view of X31 VLM model discretized

3.2.3 Lattice meshing

Once the aircraft geometry is discretized, the meshing of it is performed by using the vortex rings concept,
section 2.2.7. As explained in chapter 2, the boundary conditions to solve the Laplace equation (2.7)
must be fulfilled. Consequently, the vortex rings are placed according to classical VLM rules. The bound
vortex is located at the quarter chord line of each panel, while the rear segment is at a distance of the
panel of a quarter chord of it. The trailing segments link the first two in the X-direction.

(a) Flap with discontinuity
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(b) Present meshing

Figure 3.6: Lattice meshing for steady conditions

Trailing edge panels involve a special situation, whether the wing is analyzed in steady or unsteady
situation. For the most simple case, the wing does not have any control surface and it is studied under
steady conditions. The starting segment of the ring is located as previously, one quarter chord far from
the trailing edge. However, if the wing has control surfaces a discontinuity appears in the lattice, Fig. 3.6a.
To fix this problem, it has been established that the rear vortex segments of the trailing edge must be
a chord length far from the bound vortex segments of the leading edge in each wing section, Fig. 3.6b.
For an aircraft studied in unsteady flow conditions, the distance from the rear vortex to the trailing edge
panel ∆x is obtained by Eq. (3.7).

∆x = KV∞∆t (3.7)

where V∞ is the free stream velocity, ∆t is the time step between two calculations and K is a constant
that usually is taken between 0.2− 0.3 [16].
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3.2.4 Airfoil

A more realistic approach than the classical VLM is to adjust the wing geometry to the airfoil in each
wing section. As only surfaces are accounted for this method, the wing airfoil geometry is approximated
by the mean camber line.

The generation of camber lines in each partition starts with the airfoils chosen for the inboard and
outboard sides of it. In case the segment has the same airfoils in both kinks, every section of the partition
has the same camber line. However, if the inboard airfoil is different from the outboard one, the profiles
in between are calculated through linear interpolation of the values of the main two, adjusted by the
relative distance to each side. The last situation is known as aerodynamic twist.

Despite Tornado defines the normals of each panel as if they were placed in each airfoil, in fact it does
not displace the real panel to the mean camber line. It is impossible due to the characteristics of the
horseshoe (sling) vortices. However, in ABSOLUT vortex rings are actually placed on the mean camber
line. In Fig. 3.7, blue segments represent the orientation of the vortex sling panels (Tornado) while the
red segments do the same for the position of the vortex rings panels (ABSOLUT). The black curve is
meant to be the mean camber line and the arrows the normal direction in each division of it.

Figure 3.7: Profile definition
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Figure 3.8: Coordinates of X31-W1 airfoil

When obtaining the mean camber line, three cases are possible. In the first one, the discrete coor-
dinates of the airfoil are obtained from a database, and several points are calculated by interpolating at
the upper and lower sides. Then, the mean camber line is obtained, Fig. 3.8. Also, it can occur that the
airfoil is not in the database. If it is a 4-series NACA profile, the mean camber is generated by well-known
formulas, which can be found in [29]. In the last case, the airfoil is not found in the database and it is
not a NACA profile, so it is assumed a flat plate (NACA 0012). Fig. 3.9 shows how the shape of a wing
partition changes due to the addition of camber to it. The black mesh represents the partition prior to
the camber addition. The red one, on the contrary, is the segment when the camber has already been
added.
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Figure 3.9: Wing’s partition of the TCR-C15 VLM model

The addition of the real camber, not only the normal directions, has no main importance for the
calculation of the different forces, since they only concern about the orientation of the panel.

3.3 Processor, the solver

The potential flow solver follows the chart shown in Fig. 3.10, based on one from [16]. It performs a
certain number of iterations that is established by the input variables. When iteration number is larger
than the number of steps, the loop stops and the postprocessor starts.

Figure 3.10: Flow chart of solver

For the steady version the solver flow chart looks almost the same, apart from the lack of some steps.
In the steady version the number of steps is one, so the loop disappears. Also, since the analysis is steady
or quasi-steady both the kinematics and the wake roll-up steps also vanish.

3.3.1 Kinematics

As it has been explained in section 2.4, for the unsteady case, two systems of reference are defined, one
fixed to Earth (inertial) and the other fixed to the aircraft body (non-inertial). For the inertial system
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of reference it is assumed flat Earth. In Fig. 3.11 both systems are shown according to CEASIOM defi-
nitions [8]. In the fixed Earth axes (O1, X1, y1, z1), z axis points downwards, while x and y axes conform
a right-handed coordinate system. In the body axes system the origin is a constant point of the body
(usually 1/4 Mean Aerodynamic Chord), axis OX is parallel to the MAC and pointed forward, axis OZ
is pointed down, and axis OY is pointed to the right wing.

In t = 0 body and Earth coordinate systems are aligned. However, for next time steps a transition
coordinate of reference (O,Xg, yg, zg) is generated. It is parallel to the Earth system but its origin is
attached to the one of the body fixed frame.

Figure 3.11: Wind’s reference system according to CEASIOM definitions [8]

Eq. (3.9) is the rotation matrix between the transition (O,Xg, yg, zg) and the body-fixed system
(O, x, y, z) velocities,[8]. The roll angle φ, the pitch θ and the yaw ψ define the rotations performed
about xg, yg and zg respectively in the same order in which they have been named. They are quasi-Euler
angles.





ẋ
ẏ
ż



 = AV





U
V
W



 (3.8)

where (ẋ, ẏ, ż) are the linear velocities in the gravity inertial system and (U, V,W ) are the velocities in
the body system of reference

AV =





cosθcosψ cosψsinθsinφ− cosφsinψ sinφsinψ + sinθcosφcosψ
cosθsinψ sinψsinθsinφ+ cosφcosψ sinθcosφsinψ − cosψsinφ
−sinθ sinφcosθ cosφcosθ



 (3.9)

Eq. (3.10) describes the influence of the rate velocities in the transformation between coordinate
frames. The deformation terms are added in Eq. (3.11).





U5

V5
W5



 =





−θ̇z + ψ̇y

−ψ̇x+ φ̇z

−φ̇y + θ̇x



 (3.10)





U6

V6
W6



 =





0
0

− δη
δt



 (3.11)

where − δη
δt

is the deformation change in time of the lifting surface. ABSOLUT updates the position
of the aircraft in the inertial frame of reference in each time step, given the the prescribed path and
velocities for the aircraft. In case the aircraft has control surfaces, as ailerons, rudder or elevators, a new
term is added.
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3.3.2 Influence coefficients and boundary conditions

To fulfill the zero-normal velocity across the body’s solid boundary, Eq. (3.13), first the velocities induced
by aircraft rings on their collocation points are calculated by using Biot-Savart equation (2.19) with
circulation set to Γ = 1. The velocity induced in a collocation point i by a vortex ring j is the result of
adding of the four vortex segments of the ring. These induced velocities with unitary circulation become
influence coefficients aij of Eq. (3.13) in the following equation:

aij = ωij · ni (3.12)

where ωij is the velocity induced in the collocation point i by the vortex ring j and ni is vector normal
to the surface of the panel i. For the case of a rigid aircraft without moving parts (control surfaces or
deformations), the influence coefficients remain constant in time. The reason is that the Biot-Savart only
depends on the relative coordinates of the vortex rings with respect to the collocation points. From Eq.
(2.22) it follows Eq. 3.13. They differ in the time dependence so Eq. 3.13 right hand-side is modified in
each time step.













a11 a12 · · · a1N
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(3.13)

The right hand-side of Eq.(3.13) is calculated in Eq. (3.14), Vw(t) = (uw, vw, ww) is the inwash
produced by the wake in any of the collocation points, and V(t) = (u(t), v(t), w(t)) are the velocities
obtained from Eq. (2.31) in the non-inertial system of reference.

RHSk = −[U(t) + uw, V (t) + vw,W (t) + ww, ]k · ~nk (3.14)

Once the circulations Γ of every vortex ring are obtained, the velocities induced in each bound
segment have also to be calculated. Therefore, the same process is followed, with the exception of that
the circulation has already been obtained, so the velocities are gathered as in Eq. (3.15).

Vbv = V(t)bv +Vw(t)|bv + Γ · aij |bv (3.15)

where bv subscript denotes that the velocities are obtained in the bound vortex segment of the vortex
rings.

3.3.3 Forces and Moments

In the steady case, forces are calculated as in Tornado. The only exception is that, since vortex rings
are treated here, instead of horseshoe vortices, the bound vortex strength of each ring is calculated as
the difference between the total circulation of it and the circulation of the precedent vortex ring. An
explanation of how horseshoe vortices and vortex rings are related is given in [23].

In order to calculate the forces in the unsteady case Eq. (2.35) has to be discretized, becoming
Eq. (3.18)

∆pij |st = ρ(Γij − Γi−1,j)×Vbv (3.16)

∆pij |un =
Σt −Σt−1

∆t

where Σ =
Γij − Γi−1,j

2
+ Γi−1,j

(3.17)

∆pij = ∆pij |st +∆pij |un (3.18)

where the subscript t means time.

∆F = −(∆p∆S)ijnij (3.19)

∆m = ∆~r ×∆~F (3.20)
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3.3.4 Stability derivatives

The dynamic derivatives are obtained by using expansion series of MacLaurent. That is a common
approach in linear aerodynamics. An example is given in Eq (3.21), where the dependency of the lift
forces on the different parameters of flight is described.

CL(t) = CL0 + CLαα(t) + CLqq(t) + CLα̇α̇(t) (3.21)

where CL is the lift coefficient and the different subscripts state the variable of which it is dependent.
The calculation of the different components of Eq. (3.21) is handle depending on the subscript. CL0 and
CLα can be calculated under the steady assumption; the first is a constant of the aircraft while the other
depends on a steady variable, the angle of attack. Together, they form the steady or real part of the
lift coefficient. In CLq case, it can be obtained by using the quasi-steady analysis of the aircraft motion.
However, CLα̇ is the lift coefficient dependent on rate of change of the angle of attack. It depends on the
wake, so it can only be studied under unsteady conditions. CLq and CLα̇ are the unsteady or imaginary
part of the lift. To calculate CLα̇, Eq. (3.22) is divided in its imaginary and its real part. Then, it is
used Eq. (3.22):

CLα̇ =
1

k ·∆α

(

Im(C̄L)− CLq q̂(t)
)

(3.22)

where k is the reduced frequency of the motion, Im(C̄L) is the imaginary part of the mean value of CL(t),
∆α is the amplitude of the motion and q̂(t) is the nondimensional pitch rate according to [8]. For more
information about how the rest of derivatives are calculated, read [18] and [19].

3.3.5 Wake treatment

There are different procedures to treat the wake released from the aircraft in a vortex lattice method.
For the steady case, the wake is assumed to be aligned with the free stream and to extend to the infinity.
It is modeled as a sum of vortex rings with their trailing segments at distance of 60 ·bref from the trailing
edge of the wing so its effects are likely neglected, Fig. 3.12.

(a) Detail B747 lattice
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Figure 3.12: Flat wake for steady case, α = 25◦.

For unsteady conditions, as it is explained at the beginning of the chapter, the trailing edge vortex
rings are shed in the wake each time step. The strength of these vortex rings is assumed to be constant
and equal to the circulation they had on the wing. To fulfill this requirement, each vortex ring of the
wake can be treated as a rigid body with constant direction in the space. However the rigid rings’ wake
has a drawback in its behavior. It is too unstable, and so they are the solutions obtained with such
model. Hence, it becomes necessary to smooth the wake behavior in order to stabilize it. The method to
achieve it is explained in section (3.3.6).

On the other hand, other type of wake can be modeled. In this one, the wake vortex rings move ac-
cording to the local velocity in its vortex corners, so they are deformable. In case of a strong wake roll-up,
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the size of the wake vortex ring can increase. Apart from the cited deformation, the wake rings suffer a
certain torsion in its edges, , and so a change in orientation. These effects, are against the conservation
of angular momentum, but the present method presumes them small enough to be neglected, [16].

In Figs. 3.13 and 3.14 the rigid and the deformable vortex rings models are respectively shown. In
both plots, a flat plate of aspect ratio AR = 8 has been set suddenly in a constant forward speed at an
angle of attack α = 5◦. Due to its instability, the wake in Fig. 3.13 has been smoothed, so it does not
perform any roll-up. This, however, can be appreciated in Fig. 3.14. Consequently, the deformable wake
has been chosen, since it is more realistic, as the wake model of the present code.
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Figure 3.13: Rigid rings’ wake after a sudden acceleration of a flat plate with k = 3, see section 3.3.6.
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Figure 3.14: Deformable rings’ wake after a sudden acceleration of a flat plate with k = 0.

For the selected wake, the local stream velocity is the resultant of the velocities induced at each vortex
ring corner by the wing and wake itself, and it is measured in the inertial frame of reference (O1, X1, y1, z1)
[16]. To calculate the motion of the vortex rings, the induced velocity (u, v, w)t is updated at each time
step. Then, the vortex elements are displaced by using Eq. 3.23.

(∆X,∆y,∆z)t = (u, v, w)t∆t (3.23)
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where (∆X,∆y,∆z)t is the displacement of a certain vortex ring corner due to a velocity (u, v, w)t
over a time ∆t.

3.3.6 Singularities in the solution

Cut-off method

Though Biot-Savart equation is valid for most of the situations, there are certain cases in which it
calculates unrealistic induced velocities. An example arises when the projection of one of the straight
vortex segments intersects with the point in which the velocity is calculated. Instead of a zero induced
velocity (reality), the resultant of Eq. (2.19) becomes singular because the minimum distance to the

segment is h = |r1×r2|
2

r0

= 0. A discrete form of the Biot-Savart law is Eq. (3.24).

ω1,2 =
Γ

4π

r1 × r2

|r1 × r2|2
r0 ·

(

r1

r1
−

r2

r2

)

(3.24)

In the described case a simple approach is chosen. Whenever at a collocation point is a distance inferior
to 10−8 m from the vortex segment, the induced velocity is set to zero, the so called cut-off method. This
is valid for steady conditions as well as for unsteady calculations of single wings. Nevertheless, whenever
there is interaction between the wake and downstream surfaces another solution is necessary.

Vortex core size

Whenever the wake interacts with a wing surface, it produces disturbances that can cause its own collapse
and instabilities in the forces calculation. To correct the numerical effect, a core size ǫ has been set in
Eq. (3.24), which leads to Eq. (3.25). As it is stated in Eq. (3.26), the core size of each vortex ring is
established as the maximum length of each panel. Its main effect is to smooth the wake changes and to
eliminate the instabilities in the results.

In ABSOLUT, k (see Eq. (3.25)) is a factor that helps to adapt the core size to different aircraft
geometries. It is divided in two different constants, kwake and kwing, which depends on the location of
the vortex segment. If this is in the wing, it only affects the wake motion and the factor is named kwing.
In case the segment is part of a wake vortex ring, the size of the core influences both the wake motion
and the wing, and the parameter is called kwake.

An important drawback of this procedure arises whenever the factor k is set too large. A consequence
is that wake slows its motion and it even becomes “frozen“ in time. For conventional configurations,
kwake = 0 and kwing = 0.1 have reported satisfactory results, while for an aircraft with canard, this
parameters rise to kwake = 0.5 and kwing = 1. A brief description of how the size of the vortex core is
obtained can be found in section 5.2.2.

q1,2 =
Γ

4π

r1 × r2

(|r1 × r2|+ kǫ· r0)2
r0 ·

(

r1

r1
−

r2

r2

)

(3.25)

ǫ ≃ max(∆b,∆c) (3.26)

where ∆b is the panel span and ∆c is the panel chord length.
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Code Validation

The logic of validation allows us to move
between the two limits of dogmatism and
skepticism.

Paul Ricoeur, philosopher

The first cases that have been used to validate the program are the ones from Hedring, [10]. It certifies
the goodness of the solutions by comparing its results with the ones given in [26] and [16]. All of them
are run for flat plates with simple geometries.

4.1 Deflected Flap

The first case tests a wing under steady conditions. A tapered flapped flat plate has been chosen. The
wing is swept back Λ = 35◦ in its quarter chord line, and it has an aspect ratio of 4. The flaps deflects
symmetrically an angle δ = 5.73◦ . For the simulation the wing has been divided into 10 panels in
chordwise direction and 16 in spanwise direction. It is compared with experimental results from [17] and
computational results from Hedring [10]. The velocity is set to V = 10 m/s.

Figure 4.1: Flat plate wing with swept back Λ = 35◦

A planform view of the wing can be seen in Fig. 4.1. The colored panels represent the flaps. The
dashed line indicates in which section the pressure distribution has been calculated in Fig. 4.2. This figure
shows the pressure distribution in the cited section of the wing when the flap is deflected. It is appreciated
that the three set of results have the same tendency. After a smooth fall of the pressure, it suffers a sharp
increase due to the flap deflection. Then, it goes down to match the Kutta condition (p = 0) at the trailing
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edge of the wing. However, there are differences in the values obtained. The experimental pressure is
lower than the computational one in almost every point of the chord. It also starts its growth before the
two lines. The solvers obtained almost the exact the same results in every part but for the top of the
curve, where Hedring calculates a higher pressure. Nevertheless, both computational calculations seem
to agree almost perfectly.
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Figure 4.2: Pressure distribution for a deflection of 5.73➦

4.2 Sudden acceleration

Flat rectangular wings of different aspect ratios are suddenly set into a constant forward speed at α = 5◦.
The results of the present program are compared with the ones from [10]. The characteristics of the test
are given in table [4.1].
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Figure 4.3: Lift coefficient for sudden acceleration of a flatplate
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Variable Value
nx 4

ny (b/2) 12
U∞∆/c 1/16
nsteps 152

Table 4.1: Sudden acceleration data

It is appreciated in Fig. 4.3 that the curve from Absolut, differs slightly from Hedring.

4.3 Heaving motion

The periodic lift has been calculated for a rectangular flat plate in heaving oscillation at a reduced
frequency of k = 0.5 and an amplitude of h = 0.1 m. The rest of characteristics of the flat plate and the
motion are stated in table [4.2].
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Figure 4.4: Lift coefficient for heaving motion of a flatplate at k = 0.5.

Fig. 4.4 depicts the evolution of the lift coefficient with time. An initial unrealistically large lift
coefficient suffers a drop after the first time step because the wake shedding starts. In the next time
steps, it becomes steady, following a harmonic undamped motion. The two set of computational methods
give exactly the same results. The only exceptions are located at the top and the bottom of the curve,
where the present method gives slightly lower lift coefficients.

Variable Value
AR 4
nx 4

ny (b/2) 12
U∞∆/c 1/16

α 0◦

nsteps 80

Table 4.2: Heaving motion data
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4.4 Flapping flap

The hinge moment for a full-span flap of 40% chord on a rectangular wing is calculated in this case. The
rigid flap is oscillating at a reduced frequency k = 0.47. The results are compared with the ones in [10]
and [26].
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Figure 4.5: Chβ for a wing with an oscillatory flap

In Fig. 4.5 the hinge moment coefficients of the different methods follow the trend of the experiments
but they do not match them. It is interesting to point out that ABSOLUT solver fits the Doublet-lattice
method while having a little gap with Hedring’s. However, the three curves are quite similar.

Variable value
AR 4
nx 4

ny (b/2) 12
α 0◦

nsteps 80

Table 4.3: Flapping flap data

4.5 Bending wing

In the last test a flat plate oscillates in its first bending mode at Mach = 0.24. This corresponds, at sea
level and standard atmospheric conditions, to V∞ = 82.7m/s. The nondimensional amplitude is defined
by Eq. (4.1).

h = 0.18043 |(y/s)|+ 1.70255(y/s)2 − 1.13688
∣

∣(y/s)3
∣

∣+ 0.25387(y/s)4 (4.1)

where y/s is the relative span position. The rest of the data can be found in table 4.4. Fig. 4.6 shows
pressure distributions in two sections of the wing. For the present method and Hedring, the pressures are
calculated at y/s = 0.0625 and y/s = 0.9375. The experimental data are obtained in sections y/s = 0
and y/s = 0.9 from [26].
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Figure 4.6: Pressure distributions for an oscillating wing

It is noticed in Fig. 4.6 that the numerical methods agree perfectly. With respect to the experimental
case the agreement is also good. It is only noticeable the small gap between the results in Fig. 4.6a due
to the difference between the sections in which the pressures have been calculated.

Variable value
AR 3
nx 8

ny (b/2) 8
k 0.47

Mach 0.24
nsteps 80

Table 4.4: Bending wing data

4.6 Discussion of results

In all the previous cases ABSOLUT shows good agreement with the experimental data and almost
perfect matching with Hedring. The last is expected since the present program is based on Hedring, so
the calculations have been executed under the same conditions. Therefore, the code is proved to work
for unsteady cases with simple geometries.
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Chapter 5

Wind tunnel tests

‘When the weight of the paper equals the
weight of the airplane, only then you can go
flying.”

Attributed to Donald Douglas (Mr. DC-n)

In this chapter, the code is tested with experimental data obtained from wind tunnel measurements
for two different configurations, a conventional aircraft and one with canard stabilizator. Tornado is in-
cluded in this study in order to assure the goodness of ABSOLUT’s calculations. To execute the analysis,
a three-step approach has been designed; first, the geometric characteristics of the wind tunnel model are
compared with the ones of the VLM model. Afterwards, ABSOLUT’s results in steady conditions are
contrasted with the ones from Tornado and the wind tunnel. The dependency on changes in the angle of
attack and the sideslip angle are treated.

The last test aims to calculate unsteady derivatives with a reasonable accuracy. For the conventional
configuration, the code is compared with the wind tunnel tests and computations of other programs.
For the canard configuration, ABSOLUT is only proved against the experiments, as no other unsteady
numerical calculations has been accomplished with other programs.

5.1 F12 configuration

DLR-F12 is a 1:29 scale aero-model based on an Airbus A-320. It was chosen for CEASIOM wind tunnel
tests as an airplane with conventional configuration. All the information about the test campaign can
be found in [13]. It does not have any control surface as it can be appreciated in Fig. 5.1. The main
geometric characteristics of the model are presented in table 5.1 in comparison with the VLM models in
Tornado and in ABSOLUT:

Wind tunnel Tornado ABSOLUT
Sref (m

2) 0.444 0.450 0.450
c̄(m) 0.253 0.257 0.257
bref (m) 2.018 2.040 2.040
Ref. point x (m) 1.040 - -
Ref. point y (m) 0 - -
Ref. point z (m) -0.030 - -

Table 5.1: Comparison of fundamental geometrical data of F12

Table 5.1 presents no difference between Tornado and ABSOLUT geometry definition. Nevertheless,
when considering the aero model, there are slight deviations for the VLM aircrafts but they are not large
enough to suppose a difference for the calculations. About the reference point, it is important to point
out that, since it is an input variable, it has only to be adjusted according to the given data. However,
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some geometrical data are missing. The main one is the type of airfoils used, so NACA0012 are selected.
Then, the model for the computations is regarded as an approximation not as good as it would be desired.

Figure 5.1: F12 model in wind tunnel

5.1.1 Steady results

To evaluate the steady characteristics of the DLR-F12 the sweep in the angle of attack α has been con-
sidered first. In Fig. 5.2, both Tornado and ABSOLUT curves are superimposed. However, there is a gap
between experimental and numerical results as well as a difference in the slope. This can be explained
from the airfoils used. As NACA0012 do not have camber is reasonable to expect that the lift is lower
than in the wind tunnel model. Deviations shown in Fig. 5.3 are not so significant because the parasite
component of the drag increase the total drag in the experimental data.

The lateral force, roll moment and yaw moment have no changes for different angles of attack. Hence,
they are not plotted in any graph. The analysis of the pitch moment coefficient in Fig. 5.4 shows
that Tornado and ABSOLUT follow the trend of the experimental pitch coefficient though there is a
considerable difference in the slope. The computation curves cut the experimental data at α = 3◦.

−4 −2 0 2 4 6 8

−0.4

−0.2

0

0.2

0.4

0.6

0.8

C
L

α(°)

 

 

Experiments

Absolut

Tornado

Figure 5.2: Lift coefficient variation for a sweep in α
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Figure 5.3: Drag coefficient variation for a sweep in α
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Figure 5.4: Pitch moment coefficient variation for a sweep in α

Figs. 5.5, 5.6 and 5.7 show the effects of a sweep in the sideslip angle β for an angle of attack
α = 3.11◦. There is a considerable difference in the slope of the lateral force between the computational
methods and the wind tunnel results., Fig. 5.5. Since Tornado and ABSOLUT do not consider the fuselage
in the calculations, the deviation is expected. Also, the fuselage effect is even more noticeable for the
calculation of the lateral moments of Figs. 5.6 and 5.7. Since there is no variation of the longitudinal
forces and moments for a sweep in the sideslip angle, figures of them have been neglected.

41



Chapter 5. Wind tunnel tests 5.1. F12 configuration

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

C
Y

β(°)

 

 

Experiments

Absolut

Tornado

Figure 5.5: Lateral force coefficient variation for a sweep of the sideslip angle β
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Figure 5.6: Roll moment coefficient variation for a sweep of the sideslip angle β
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Figure 5.7: Yaw moment coefficient variation for a sweep of the sideslip angle β
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5.1.2 Unsteady results

The last step of ABSOLUT test with respect to F12 is the unsteady analysis, which is its ultimate goal.
Table 5.2 shows results for a pitching motion of the aircraft for a frequency f = 3Hz, an equilibrium
angle α = 0◦ and an amplitude ∆α = 4.52◦. Calculations performed by other codes are also present
in the table. The first two columns refer to the steady stability derivatives, which have considerable
deviations between experimental an numerical methods. The force and moment derivatives due to a
change in the pitch rate show agreement in the numerical results. They have calculated under the quasi-
steady assumption. In which respect to ABSOLUT’s results for the unsteady derivatives, it matches the
experimental results with a reasonable accuracy.

CLα Cmα CLq Cmq CLq + CLα̇ Cmq + Cmα̇

DLR exp. data 5.77 -2.25 0.00 0.00 9.30 -24.24
DLR Euler 5.62 -2.29 7.15 -19.76 6.45 -25.10
DLR NS 4.97 -1.59 6.65 -17.90 6.30 -22.71
ONERA NS 5.40 -1.83 6.28 -17.86 5.88 -22.44
TsAGI 5.30 -1.99 6.99 -18.40 7.19 -24.01
ABSOLUT 5.20 -3.72 7.68 -19.92 8.10 -23.23

Table 5.2: Results for pitch motion test on F12 model for α0 = 0◦, ∆α = 4.52◦ and f = 3 Hz

The results for a roll motion with frequency f = 3Hz at angle of attack α = 6◦ and an amplitude
∆φ = 4.52◦ are compared in table 5.3. As they are calculated under the quasi-steady assumption, there
are no disturbances due to the wake. While the roll Clp and yaw moments due to the rolling motion
match the experimental moments accurately.

CY p Clp Cnp

DLR exp. data 0.46 -13.97 -3.34
DLR Euler 0.97 -14.41 -4.46
DLR NS 0.86 -13.96 -4.05
ONERA NS -0.67 -14.61 -3.34
TsAGI -0.56 -14.81 0.76
ABSOLUT 0.34 -14.61 -3.06

Table 5.3: Results for roll motion test on F12 model for α0 = 6◦, ∆φ = 4.86◦ and f = 3 Hz

The last test performed for the DLR-F12 is a harmonic yaw motion at angle of attack α0 = 6◦,
∆β = 4.32◦ and f = 3 Hz. The equilibrium sideslip angle is β = 0. Some differences are appreciated
in the three first columns where the values dependent on the yaw angle are shown. For the unsteady
derivatives, the deviations keep high. Since the VLM has no fuselage, these results are expected.

CY r Clr Cnr CY r + CY β̇ Clr + Clβ̇ Cnr + Cnβ̇

DLR exp. data - - - 3.59 4.50 -9.65
DLR Euler 2.45 6.71 -9.47 - - -
DLR NS 2.28 6.25 -8.86 - - -
ONERA NS -2.37 -4.81 6.28 - - -
TSAGI 3.32 2.69 12.38 - - -
ABSOLUT 1.75 3.89 -6.8 1.48 3.20 -5.76

Table 5.4: Results for yaw motion test on F12 model for α0 = 6◦, ∆β = 4.32◦ and f = 3 Hz
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Chapter 5. Wind tunnel tests 5.2. TCR-C15 configuration

5.2 TCR-C15 configuration

The Trans Cruiser Aircraft (TCR) is a virtually designed aircraft. It is meant to be a civil transport
airplane at substantial transonic speed. Within its mains features there is an integrated form with low
wetted area, fuel-efficient transonic cruise and low noise radiation. The main characteristic of the C15
configuration is the canard in the front part of the fuselage. The model is a 1:40 scale down version of
the aircraft. As with the F12, its main geometrical features are compared with Tornado and ABSOLUT
definition.

Figure 5.8: TCR general configuration

In table 5.5 the geometry for the TCR-C15 wind tunnel model is compared with the geometry of the
VLM model. All the parameters coincide with the exception of the mean aerodynamic chord c̄. Since
this fact only means that in the wind tunnel model that chord is calculated with a different definition
from Tornado and ABSOLUT, next results for both Tornado and ABSOLUT are normalized for that
chord. The point used as a reference for the moments, as for the DLR-F12, is defined according to the
TCR-C15 model data.

Wind tunnel Tornado ABSOLUT
Sref (m

2) 0.306 0.306 0.306
c̄(m) 0.294 0.404 0.405
bref (m) 1.12 1.116 1.116
Ref point for the moments (m) 0.874 0.874 0.874

Table 5.5: Comparison of fundamental geometrical data of TCR-C15

It is important to point out that, for this aircraft, there are no missing data. All the geometry is well
known, including the different airfoils used in the wings. All the experimental data are obtained from [7].

5.2.1 Steady results

Here, the steady coefficients form the numerical methods match the experimental results almost perfectly
in Fig. 5.9. For the pitch moment coefficient, however, the curves from ABSOLUT and Tornado only
follow its trend. It is noticeable that ABSOLUT fits much better the experimental set of data in Fig. 5.10
than Tornado. This may be due to the addition of the real mean camber line to the vortex rings unlike
in Tornado, where only the normals of the airfoil are defined.
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Figure 5.9: Normal force coefficient vs angle of attack at V∞ = 40 m/s
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Figure 5.10: Pitch coefficient vs angle of attack at V∞ = 40 m/s

To analyze the sweep in the sideslip angle β = −8 : 8◦ at an angle of attack α = 6◦ (no lower value is
available) the variations of the lateral forces and moments are described in the next three figures. In Fig.
5.11 the lateral force show different slopes between the numerical and the experimental curves. However.
the moments in Figs. 5.12 and 5.13, both ABSOLUT and Tornado are much closer to the wind tunnel
data. It is noticeable that the roll moment and the lateral force coefficients are calculated more accurately
with Tornado.

Unlike the DLR-F12 model, in the TCR-C15 the computations have close agreement with the exper-
imental results. This is caused by the accurate VLM geometry used in this case.
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Figure 5.11: Lateral force coefficient variation for a sweep of the sideslip angle β
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Figure 5.12: Roll moment coefficient variation for a sweep of the sideslip angle β
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Figure 5.13: Yaw moment coefficient variation for a sweep of the sideslip angle β
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5.2.2 Unsteady results

For the unsteady analysis of the TCR-C15 configuration, longitudinal moments and forces have been
tested. ABSOLUT also obtains good approximations for the dynamic derivatives in TCR.

CLα Cmα CLq Cmq CLq + CLα̇ Cmq + Cmα̇

SIMSAC exp. data 2.86 -0.97 - - 7.02 -5.78
Tornado 3.03 -0.75 4.19 -6.30 - -
ABSOLUT 3.03 -1.03 4.28 -6.28 7.72 -5.56

Table 5.6: Results for pitch motion test on TCR-C15 model for α0 = 0◦, ∆α = 3◦ and f = 1 Hz.

For this case, a core size of kwing = 1 has been used to smooth the wake and a core size of kwake =
0.5 has reduced the disturbances in the wing. The explanation for this circumstance is that, in the
canard configuration, the instabilities produced in the solution by the wake are much larger than in the
conventional aircraft. The lifting surfaces are much closer in TCR VLM model than in F12’s, as it can
be appreciated in Fig. 5.15. Also, the tip vortices of the canard have to be accounted. Therefore, the
interaction wake-wing is higher in the TCR motion so a higher core size ǫ has to be used in Biot-Savart
equation, see section 3.3.6. To obtain proper factors k, an empirical approximation has been followed.
It starts with kwing = 1, which has been found to be a good value to smooth the influence of the wing
on the wake. For the value kwake, it has been increased successively until the instabilities in the forces
disappear. In TCR-C15, for a pitch harmonic motion, the normal force was observed, as its high resultant
with respect to the other forces make it easier to analyze. In Fig. 5.14, it can be appreciated that, for
the same oscillatory pitch motion, the instabilities in the solution have been smoothed by establishing
different core sizes for the wake and wing vortex rings.
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Figure 5.14: Lift coefficient variation with time for TCR-C15 in oscillatory pitch motion at α0 = 0◦,
∆α = 3◦ and f = 1 Hz.

5.3 Agreement between ABSOLUT and the experimental re-

sults

With respect the DLR-F12 case, the steady results have considerable differences with respect to the
experimental ones. The two main reasons are lack of camber in the airfoils, which applies to all the
forces, and lack of fuselage effects, which mainly affects lateral forces and moments. In spite of this
situation, the unsteady stability derivatives have matched reasonably the data from the wind tunnel
tests, selecting a core size k = 0.1 to stabilize the wake.
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Figure 5.15: Comparison between the TCR configuration and the DLR-F12

For the TCR-C15 configuration the situation is different. The geometry is known so the computations
match almost perfectly the experiments under steady and quasi-steady conditions. For the dynamic
derivatives there is also good agreement.
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Conclusions

“And yet it moves”

Attributed To Galileo Galilei, scientist

From the results shown in chapter 4, it can be concluded that ABSOLUT is able to calculate aerody-
namic coefficients for simple geometries under unsteady conditions. An special case has been the elastic
motion of a wing in its first bending mode. Since the results match the experiments, it can be assured that
elastic motion of a wing can be achieved as an extension for the present program. Also, the oscillating
flap case shows another kind of motion relative to the wing coordinate system. The success in this case
can be regarded as another proof of the goodness of ABSOLUT for solving relative motions in unsteady
conditions. As only slight deviations from experimental and other computational methods have been
obtained, the first statement is considered proven.

ABSOLUT has also been checked for steady computations of modern aircraft configurations. In this
calculations, the present method has shown that is as accurate as Tornado, the steady vortex lattice
method in which ABSOLUT is based on. Nevertheless, some remarkable results have arisen; when the
aircraft has non-symmetric airfoils, the results from the present code differ from the ones of Tornado.
Specifically, the longitudinal forces and moments solutions calculated by ABSOLUT become closer to the
wind tunnel data. Then, the modification of the wing geometry according to the mean camber line can
be stated as useful. In spite of these facts, the code can be regarded as equivalent to Tornado.

In the unsteady cases, the program accuracy depends on the aircraft configuration. For the clas-
sical configuration (DLR-F12) provides reasonable approximations to the experiments for longitudinal
dynamic derivatives. When obtaining the lateral derivatives, the fuselage influence is cause of higher
disagreements with the real model results. It is noticeable that, for the DLR-F12, the lack of geometrical
information affects, mainly, the steady derivatives calculation. When TCR-C15 is studied, the results
are much more accurate. The reason for this agreement is a better knowledge of the geometry. However,
the wake-wing interactions are higher for this type of aircraft, due to a close distance between the canard
and the main wing as well as the effect of the tip vortices of the canard. Therefore, it is affirmed that
canards configurations need higher corrections in the wake as well as in the wing calculations by using a
higher core size than in conventional configurations (as DLR-F12).

The well tested steady wake model provides the expected results. The unsteady wake proportionates
also accurate results, although its modeling has some drawbacks. The main ones are the stretching and
torsion of the vortex rings, which do no fulfill the angular momentum equation.

In the end, it can be stated that ABSOLUT is an unsteady Vortex Lattice method that calculates
with reasonable accuracy the dynamic derivatives.
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[9] Gülçat, Ü. “Fundamentals of Modern Unsteady Aerodynamics,” Springer, 2010.

[10] Hedman, S., ”Calculations of Unsteady Aerodynamics for Wings in Incompressible Flow,” Hed PM
960301.

[11] Hedman, S., ”Unsteady Flows around Oscillating Wings in Incompressible Flow,” KTH.
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Appendix A

Code structure

In this appendix there is a brief explanation of the different functions of the code as well as how they are
related to each other.

❼ main.m: Script of unsteady potential solver. This file calls the different functions for steady and
unsteady problems. Calls: fgeo, fstate, presolver and postpro.

❼ fgeo.m: It is the geometry input function of the program. Called from main.m. Calls: nothing.
Inputs: it does not have.

❼ fstate.m: This function defines the flight conditions. Then, it gathers them in state array. Called
from main.m.

❼ presolver.m: This function calls flattice and fsolver function accordding to the type of analysis
chosen.. Called from main.m.

❼ flattice.m: It dicretizes the geometry, places the vortex rings and collocation points, calculates the
panel normals, areas and also the reference parameters of the wing. Called from presolver.m. It
calls prelattice.m, fcorner.m, tmesh.m, fring.m, supereval.m and fnormal.m.

❼ prelattice.m: It calculates the number of panels in each subdivision of the wing as well as the
mean camber lines of the inboard and outboard airfoils and the sweep angle of the leading each of
each partition. Called from flattice.m. It calls farfoil.m.

❼ farfoil.m: It calculates the mean camber line of the inboard and outboard airfoil of each partition.
Called from prelattice.m.

❼ fcorner.m: It defines the partition by calculating its corner’s coordinates in the wing system.
Called from flattice.m.

❼ tmesh.m: Formerly TORNADO’s function. It defines the partition mesh, given its corner points
and number of panels in x- and y-directions, and the mesh type. Called from flattice.m.

❼ fring.m: This function defines the vortex rings and the panels on a discretized partition, considering
the mean camber line of the different airfoils. Called from flattice.m.

❼ fnormal.m: Calculation of the panels normal and areas . Called from flattice.m.

❼ fsolver.m: This is the connector file for the iterative process that is performed to solve the unsteady
problem. Called from presolver.m. Calls: ISAtmosphere, rotation, transformation, shedding, fcoeff,
fgamma, fwake (when unsteady) and forces.

❼ ISAtmosphere.m: Formerly TORNADO’s function. It provides, given a certain altitude, air
density, speed of sound, static pressure and viscosity, all according to the International Standard
Atmosphere tables. Called from fsolver.

❼ rotation.m: Calculation of the distance of the center of gravity and other reference points with
respect to collocation points and vortex corners . Called from fsolver and from transformation.
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Appendix A. Code structure

Figure A.1: Code structure

❼ transformation.m: Transformations between wing and inertial reference systems according to the
defined motion of the wing. Called from fsolver. Calls rotation.

❼ shedding.m: Wake-shedding. Release of the wake vortices from the trailing edge of the wing in
the inertial reference system according to the motion of the wing. Called from fsolver.

❼ fcoeff.m: This function calculates the influence coefficients matrix from the induced velocities in
each collocation point. Called from fsolver. Calls: finvel.

❼ finvel.m: Arrangement of matrices to calculate the induced velocities.. Called from fcoeff. Calls
fvortex.

❼ fvortex.m: This function calculates the velocity that a vortex segment induces in a certain point
X,Y,Z by using the Biot-Savart law. Called from finvel.

❼ fgamma.m: This function calculates the vortex strength in each panel.Application of the solid-
boundary condition. Called from fsolver.

❼ fwake.m: This function calculates the wake roll-up.

❼ forces.m: This function calculates the different aerodynamic parameters. Called from fsolver.

❼ postpro.m: This function provides plots and data from the results.Called from main.

❼ fderivativesst.m: This function calculates the steady derivatives through a central difference in
the state of motion selected. Called from presolver. Calls fsolver.

❼ fderivativesunst.m: This function calculates the steady derivatives through a central difference
in the state of motion selected. Called from presolver.

❼ split.m: Solves Harmonic motion in imaginary and harmonic part. Function reaimaJO, from
Hedring, slightly modified. Called from fderivativesunst.
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Appendix B

Some remarks on the DLR-F12 tests

It is not possible to reproduce directly some of the results given in chapter 5 for the DLR-F12 experiments.
The reasons are related to the way the nondimenional system is defined in [13].

First at all, the reference length that is used for all the derivatives is the mean aerodynamic chord c̄
of the airplane. This is the general choice for the longitudinal derivatives. However, in the calculation of
the lateral ones it is usual to choose the span of the main wing b. ABSOLUT uses NASA system, as in
[5].

The second source of change is the definition of the reduced frequency. In [13] is defined as in Eq. B.1.
Then, the nondimensional dynamic derivatives in the cited test campaign are calculated in the same way
as Eq. B.2. So, when calculating, the dynamic derivatives, they should be divided by two to match the
experimental results.

k =
ωc̄

V∞
(B.1)

CLq + CLα̇ =
∂CL

∂ qc̄
V∞

+
∂CL

∂ α̇c̄
V∞

(B.2)
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Appendix C

Future work

Next sections describe future tasks hat can be done to improve ABSOLUT:

C.1 C functions

Change fsolver.m and all its subfunctions to C programming language. This should decrease the compu-
tation time to the minimum as well as allow to change easily, in Matlab, the pre- and post- processors.

C.2 Gust field

Gust field influence on the aircraft. There is an interesting model in [4].

C.3 Aircraft propeller

It seems proper to add an unsteady model of a propeller as in reference [16]. The main features of this
extension are:

❼ Propeller definition: Each rotor is defined as a new wing, with a certain number of blades. After
one blade is generated, by symmetry, the new blades are created too.

❼ Time step: Since the propeller rotation velocity is much higher than the airplane’s one, its time-
step has to be smaller, which means that for each iteration in the solver, the rotor sheds more rows
of vortex rings than the aircrafts (only one).

❼ Vortex tubes: It seems that an adequate model for the propeller’s lattice, for the Biot-Savart’s
Law, involves vortex tubes instead of vortex lines.

C.4 Flexible wing

An initial stage of this development has been done in the chapter 4.

C.5 Aeroelasticity

Since the aerodynamic model is already developed, a structural model is left. However, further research
has to be done in order to specify the characteristics of the structural models and their interaction with
the aerodynamics.
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