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Abstract. Unsteady aerodynamics modeling must accurately describe nonlinear aerodynamic characteristics in 

addition to unsteady aerodynamic characteristics. The Volterra series has attracted increasing attention as a powerful 

tool for nonlinear system modeling. It is essential to incorporate the influence of the second-order Volterra kernel or 

higher-order kernels to build a nonlinear unsteady aerodynamics model. The main difficulty in the identification of 

higher-order kernels is that the number of parameters to be identified increases exponentially with the order of a 

kernel. This paper expands the Volterra kernels with the four-order B-spline wavelet on the interval as the basis 

function, converts the problem into the solution of low-dimensional equations, and obtains a stable solution. A 

nonlinear unsteady aerodynamics model is built by identifying the second-order and third-order kernels of the lift, 

drag, and pitching moment coefficients of the NACA0012 airfoil. Then the model is verified at different reduced 

frequencies using CFD. 

1 Introduction 

Aerodynamics exhibit evident nonlinear unsteady 

hysteresis characteristics when a complex flow of shock 

waves, flow separation, vortices, etc. occurs in a flow 

field [1]. At this point, aerodynamics depend not only on 

the current exercise state but also on their time history [2], 

and the conventional aerodynamic derivative modeling 

method becomes difficult to apply [3]. Thus, the study of 

unsteady aerodynamic modeling methods is required. 

Several methods have been proposed for unsteady 

aerodynamic modeling [4-6]. The Volterra series [7] 

method is a mathematical model that describes the 

nonlinear time-invariant system proposed by Italian 

mathematician Volterra. There have been a few studies on 

aerodynamic modeling in recent years [8-10]. The 

Volterra series method is a series model whose ability to 

describe the nonlinear characteristics of a system 

increases with the number of kernels involved. Most 

existing studies only use the first-order Volterra kernel or 

the truncated second-order Volterra kernel [10]. Hence, 

such methods are only suitable for aerodynamic modeling 

with linear or weak nonlinearities and are difficult to 

apply for strongly nonlinear aerodynamic modeling. 

Second-order or even higher-order kernels are rarely used 

because the identification of higher-order kernels is 

difficult. For example, second-order kernel identification 

based on an impulse response is extremely complicated 

and time consuming [9]. As the number of parameters to 

be identified increases exponentially with kernel order, 

the introduction of higher-order kernels leads to the 

so-called dimensionality disaster, which results from 

solving high-dimensional ill-posed equations. 

Regarding the difficulties in Volterra kernel 

identification, Silva [11] and Balajewicz [12] proposed a 

truncation method that preserves the main diagonal of a 

high-order kernel or its nearby elements. As this approach 

neglects a large number of coupling factors in the Volterra 

kernel, it reduces the ability of the Volterra series to 

express nonlinearities. The other method is the basis 

function method [13, 14], which uses a set of basis 

functions to expand the Volterra kernel, thereby 

transforming the problem into the estimation of limited 

expansion coefficients. 

In this paper, the Volterra kernel is expanded using the 

B-spline wavelet on the interval (BSWI) as a basis 

function. The identification of Volterra kernels is 

converted into a small number of wavelet coefficients by 

utilizing its good approximation characteristics. This 

considerably reduces the number of parameters to be 

identified. Finally, the ability of the Volterra series to 

describe nonlinear unsteady aerodynamics is verified by 

predicting the lift coefficient, drag coefficient, and 

pitching moment coefficient of the NACA0012 airfoil in 

plunging motion at transonic speed. 

2 Volterra series 

The Volterra series theory [15] shows that the input 

output relation of any continuous-time, causal, 

time-invariant, fading memory, and nonlinear system can 

be formulated as an infinite sum of multidimensional 

convolution integrals. 
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where  y t  is the response of a nonlinear system to 

input  u t , 0y  is the steady-state response,  1h   is 

the first-order Volterra kernel and the linear unit impulse 

response, and  1 2, , ,  n nh L  is the nth-order Volterra 

kernel. Without loss of generality, higher-order kernels 

 2nh n  are supposed to be symmetric, namely, 

 1 2, , ,   n nh L       1 2
, , ,    n n

h L , where 

 1 ,    2 , , n L  are all the permutations of 

integers 1 through n [15]. 

Silva [11] showed that for a linear system, 

higher-order kernels are zero and the system is 

completely characterized by the first-order kernel. For a 

nonlinear system, the first-order kernel reflects the linear 

part of the system and higher-order kernels represent the 

nonlinear part of the system. Even though the Volterra 

series is the sum of infinite terms, the nonlinear influence 

for an actual physical system decays rapidly with the 

increase in kernel order. Thus, the first few terms can 

typically represent the system quite accurately [16]. This 

study is limited to the first three order kernels; hence, Eq. 

(1) reduces to 

        0 1 2 3   y t y y t y t y t   (2) 

where 
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where      1 2 3, ,y t y t y t  are the responses of the 

first-order kernel, second-order kernel, and third-order 

kernel, respectively. 

It should be noted that this identification problem is 

ill-posed in that the objective is to determine the structure 

of the system from input and output measurements [17].  

Therefore, to obtain stable kernel estimation, a 

regularization method must be used to solve the least 

square problem. In this study, we use truncated singular 

value decomposition. 

3 Volterra kernel identification based 
on BSWI 

3.1 B-spline wavelet on the interval (BSWI) 

On a bounded interval, the BSWI basis function has 

the good characteristics of semi-orthogonality, symmetry,  

and smoothness [18]. The BSWI function is 

 ,  , ,j
m k t m k j ¢ , where ¢  is the set of all integers, 

m  is the order of the B-spline, and j  is the dilation 

index that determines the scale or resolution of the 

function. 1,2 1j
k m       is the translation index 

that provides the position of the function. The four-order 

BSWI  3
4,k t , where 3j  , is shown in Figure 1. 

Concrete expressions are provided in [18]. 

 
Figure 1. Four-order B-spline wavelet on the interval ( 3j  ) 

The basis function in the two-dimensional case is the 

tensor product of two one-dimensional basis functions 

        
1 21 2

, ,, ,
,j j j

m k m km k k
x y x y     (4) 

where  
   ,

, ,
, s v

j k m
x y  is the two-dimensional basis 

function. Similarly, the basis function in the 

three-dimensional case is the tensor product of three 

one-dimensional basis functions, the complete expression 

for which is provided in [13]. 

3.2 Volterra kernel identification 

The first-order kernel part of Eq. (3) is discretized for 

the identification of the first-order Volterra kernel. The 

response at  2 1,2, , j
nt n n NL  is 

      1, 1
0

d
nt

j n ny t h u t      (5) 

where N  is the number of sample data. 

The first-order kernel can be represented as a linear 

combination of basis functions 

    
1

1 1

1

2 1

1, , ,

1

j

j j
j m k m k

k m

h    


 

    (6) 

Substituting Eq. (6) into Eq. (5), the following simplified 

matrix form can be obtained: 

 
11

1 j, j j= αy M α   (7) 

where 
1j

α  is a vector of 1

,
j

m k  in Eq. (6), namely, the 

coefficient of the basis function that represents the 

first-order kernel. 
1j
αM  is a coefficient matrix of 

1j
α ; it 

is composed of  1

,
j

m k   and  nu t   in Eq. (5). Eq. 

(7) is solved for 
1j

α  to obtain 1h  from Eq. (6). 

The second-order kernel part of Eq. (3) is discretized 

for the identification of the second-order Volterra kernel. 

The response at nt  is 
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The second-order kernel can be represented as a 

linear combination of two-dimensional basis functions. 
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Substituting Eq. (9) into Eq. (8), the following simplified 

matrix form can be obtained: 

 
22

2 j, j j= αy M α   (10) 

where 
2j

α  is a vector of  
2

1 2, ,

j

m k k
  in Eq. (9), namely, 

the coefficient of the basis function that represents the 

second-order kernel. 
2j

αM  is a coefficient matrix of 

2j
α ; it is composed of    2 2

1 2
1 2, ,

j j

m k m k
     and  1nu t   

 2nu t   in Eq. (8). Eq. (10) is solved for 
2j

α  to 

obtain  2h  from Eq. (9). 

The identification of the third-order kernel is similar 

to that of the second-order kernel. Hence, it is not 

repeated here. 

4 Aerodynamics modeling with Volterra 
series 

Considering the plunge motion of the NACA0012 

airfoil at transonic speed as an example, this study 

verified the ability of the Volterra series to predict 

nonlinear unsteady aerodynamics and the effectiveness of 

BSWI basis functions for Volterra kernel identification. 

4.1 Input 

Input selection and design is extremely important in 

system identification, and it directly determines the 

accuracy of parameter identification. In Volterra kernel 

identification, first-order kernel identification is a linear 

system identification problem and there are several input 

signals such as impulse [11] and sweep frequency [19]. 

Higher-order kernel identification is a nonlinear system 

identification problem, and currently, there is no universal 

input signal. This study used an orthogonal 

phase-optimized multisine input designed by Morelli[20]. 

 

1

2
sin

M

n n

n

nt
u A
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   (11) 

where u  is the input, nA  is the amplitude, T  is the 

time length of input excitation, n  is the phase shift, and 

M  is the total number of available harmonic frequencies. 

The first step is to select the time period, T , for the 

input, which determines the smallest harmonic frequency 

resolution, 1  Hzf T  , and the limit on the minimum 

frequency, min 2f T . The second step is select the 

frequency band,  min max,  Hzf f , for the input. The total 

number of frequencies is  max minfix 1M f f f      , 

where “fix” indicates rounding to the nearest integer 
toward zero. The third step is select the input power 

spectrum by specifying and the amplitude of the input to 

determine the amplitude, nA , of each component. The 

last step is to assign the starting values for phase angles, 

 ,n    , and then apply an optimization algorithm to 

adjust n  to achieve the minimum relative peak factor 

(RPF) for the input. 

      
 

max min 2
RPF

2 T

u u
u

u u N

     (12) 

where N  is the number of sample data. The orthogonal 

phase-optimized multisine input is a sum of selected 

harmonic sinusoids, and it is orthogonal. This input can 

reflect the coupling of different frequencies, and it is 

suitable for the identification of nonlinear systems [14]. 

When the airfoil is in plunge motion, only the angle of 

attack changes. Considering the angle of attack as an 

independent variable, the relationship between the angle 

of attack and displacement is 

    
0

tan d
t

s t V u         (13) 

where V  is the freestream velocity, u is the angle of 

attack, and s  is the displacement of the airfoil. The 

output used for identification is calculated through CFD. 

The conditions are, 0.8 M  and 
67.2 10 Re , and  

a rigid dynamic grid is used. 

 
Figure 2. Orthogonal phase-optimized multisine input 

4.2 Volterra kernel identification of 
aerodynamics 

The orthogonal phase-optimized multisine input is 

considered, and then the outputs with different amplitude 

inputs are used to separate the responses generated by 

various order kernels to identify them separately. The 

initial angle of attack, 0 1   , is selected as the 

reference state, the input duration is 20 sT  , the 

minimum and maximum frequencies are min 3 20  Hzf   

and max 30 Hzf   respectively, and the amplitude of 

each component of the input is 2nA M . The input 

can be seen in Figure 2. The first three order kernels 

identification results of the lift coefficient, drag 

coefficient, and pitching moment coefficient are shown in 

Figure 3-Figure 5, where the third-order kernels, 

 3 1 2 3, ,  h , are plotted at 3 0.01 s  . 
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(a)  1 h  

 

(b)  2 1 2, h  

 

(c)  3 1 2, ,0.01h    

Figure 3. Volterra kernel of lift coefficient when angle of attack 0 1    

 

(a)  1 h  

 

(b)  2 1 2, h  

 

(c)  3 1 2, ,0.01 h  

Figure 4. Volterra kernel of drag coefficient when angle of attack 0 1  

 

(a)  1 h  

 

(b)  2 1 2, h  

 

(c)  3 1 2, ,0.01 h  

Figure 5. Volterra kernel of pitching moment coefficient when angle of attack 0 1    

4.3 Transonic aerodynamics validation 

The aerodynamics model has been established as we 

have obtained the Volterra kernels. The next step is to 

validate the ability of the Volterra series to predict 

nonlinear unsteady aerodynamics. The displacement of 

the airfoil in plunge motion at the initial angle of attack, 

0 1   , is 

 
    
    

0.5236 cos 23.612 1

0.1309 cos 94.448 1

 

 

s t t

s t t
  (14) 

The corresponding reduced frequencies are 0.05 and 0.1. 

The lift coefficient, drag coefficient, and pitching 

moment coefficient calculated by the Volterra series and 

CFD are shown in Figure 6 and Figure 7. When the 

reduced frequency is 0.05, the aerodynamics calculated by 

the first-order kernel reflect the basic features. However, 

there are clear errors. The system is nonlinear at this time. 

Prediction accuracy improves considerably with the 

introduction of the second-order kernel. Prediction results 

become extremely close to CFD results after the 

third-order kernel is introduced. When the reduced 

frequency is 0.1, the errors in aerodynamics calculated by 

the first-order kernel are reduced, and prediction accuracy 

is gradually improved after the introduction of 

higher-order kernels. 

In summary, higher-order kernels characterize the 

nonlinearity of aerodynamics. To accurately predict 

aerodynamics, it is necessary to incorporate the influence 

of higher-order kernels based on the first-order kernel. 

 
(a) LC  

 
(b) DC  

 
(c) mC  

 

Figure 6. Aerodynamics in plunge motion when angle of attack 0 1    and reduced frequency 0.05k 
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(a) LC  

 
(b) DC  

 
(c) mC  

 
Figure 7. Aerodynamics in plunge motion when angle of attack 0 1    and reduced frequency 0.1k 

5 Conclusion 

1) In this study, the Volterra series is developed for 

nonlinear unsteady aerodynamics modeling. The 

first-order Volterra kernel can only describe the linear 

characteristics of the system. It is critical to incorporate 

the influence of higher-order kernels to accurately predict 

nonlinear aerodynamics. 

2) Regarding the difficulties in Volterra kernel 

identification, the Volterra kernels are expanded with the 

BSWI as the basis function. The problem is transformed 

into the solution of low-dimensional equations, and a 

stable solution is obtained. 

3) A nonlinear unsteady aerodynamics model is 

built by identifying the first three order kernels of the lift, 

drag, and pitching moment coefficients of the 

NACA0012 airfoil in plunging motion at transonic speed. 

The aerodynamics at different reduced frequencies 

computed by the Volterra series and CFD verify the 

ability of the Volterra series to predict nonlinear and 

unsteady aerodynamics. 

The aerodynamics modeling in this study focused on 

the plunge motion. At this time, only the angle of attack 

changes, and this is a single variable situation. Actually, 

aerodynamics have multiple influencing factors such as 

pitch rate. The next step is to investigate the application 

of multivariate Volterra series methods in unsteady 

aerodynamics modeling. 
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