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Abstract: The present article investigates the combined influence of nonlinear radiation, Stefan 

blowing and chemical reactions on unsteady EMHD stagnation point flow of a nanofluid from a 

horizontal stretching sheet. Both electrical and magnetic body forces are considered. In 

addition, the effects of velocity slip, thermal slip and mass slip are considered at the boundaries. 

An analytical method named as homotopy analysis method is applied to solve the non-

dimensional system of nonlinear partial differential equations which are obtained by applying 

similarity transformations on governing equations. The effects of emerging parameters including 

Stefan blowing parameter, electric parameter, magnetic parameter etc. on the important 

physical quantities are presented graphically. Additionally, an entropy generation analysis is 

provided in this article for thermal optimization. The flow is observed to be accelerated both 

with increasing magnetic field and electrical field. Entropy generation number is markedly 

enhanced with greater magnetic field, electrical field and Reynolds number, whereas it is 

reduced with increasing chemical reaction parameter.  

Keywords: Stefan blowing; Nonlinear radiation; Nanofluid; EMHD; Entropy; Chemical 

reaction; Electrical field; Magnetic field; Homotopy solutions; Unsteady flow.  
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 Nomenclature   

0B  Magnetic Field Strength (T) Nb Brownian Motion Parameter (--) 

C Nanoparticles Concentration (--) Nt Thermophoresis Parameter (--) 

BD  Brownian Diffusion (m2 /s) Pr Prandtl number (--) 

TD  Thermophoresis Diffusion (m2 /s) q Embedding Parameter (--) 

E Electric Parameter (--) R Radiation Parameter (--) 

0E  Electric Field Strength (N/C) Re Reynolds Number (--) 

Ec Eckert Number (--) s Stefan Blowing Parameter (--) 

G Dimensionless Stream function (--) S Dimensionless Concentration(--) 

k Thermal Conductivity (W/m-K) Sc Schmidt Number (--) 

K Chemical Reaction Parameter (--) t Time(s) 

M Magnetic Parameter (--) w
r

T
t

T


 

Temperature Ratio (--) 

1N  Velocity Slip Parameter (--) u  Velocity (m/s) along x -axis 

2N  Thermal Slip Parameter (--) v  Velocity (m/s) along y -axis 

3N  Mass Slip Parameter (--) x, y Similarity Variables (--) 

 Greek Symbols   

  Thermal Diffusivity (m2/s)   Dimensionless Temperature Difference  

  Stagnation Parameter (--)  c  Heat Capacity (J/Km3) 
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  Dynamic Viscosity (Ns/m2)   Dimensionless Temperature (--) 

  Electrical Conductivity (S/m)   Diffusive Constant (--) 

  Stream Function (m2/s) 
1  Dimensionless Velocity slip parameter  

  Kinematic Viscosity (m2/s) 
2  Dimensionless Thermal slip parameter  

  Non-Dimensional Time (--) 
3  Dimensionless Mass slip parameter  

1  Ratio of Heat Capacities (--)   

 Subscripts   

  Ambient condition nf  Nanofluid 

w  Condition on surface p Nanoparticles 

 

1. INTRODUCTION 

Stefan blowing (wall injection) finds substantial applications in industrial systems such as drying 

and purifying processes where boundaries are perforated. The “blowing effect” occurs due to the 

mass transfer of molecules or nanoparticles from one location to another. Mass transfer is also 

fundamental to absorption, evaporation, combustion, distillation and materials synthesis. The 

concept of blowing effect is provided by the Stefan problem which is an application of mass 

transfer [1] of species. Stefan blowing problem states that there exist a relation between the rate 

of mass transfer and flow field at the wall, because mass transfer is dependent upon the flow 

field and flow field is generated by mass blowing at wall. Fang and Jing [2] have considered the 

Stefan blowing effects to investigate the mass and heat transfer of a viscous fluid over a linearly 

stretching sheet and observed that velocity, temperature and concentration are increasing 
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functions of blowing parameter. Uddin et al. [3] have provided a numerical study of 

bioconvection nanofluid flow over a plate incorporating the effects of Stefan blowing, velocity, 

thermal and mass slips at the wall. In addition, Uddin et al. [4] investigated the second order 

velocity slip and Stefan blowing effects for bio-nanofluid flow with passively boundary 

conditions.  

Nanofluids [5–8] constitute based fluids containing nano-sized metallic particles.  The presence 

of metallic nano-particles enhances thermal conductivity properties of such fluids. Shahzad et al. 

[9] have presented the analytical study of the magnetohydrodynamic flow of Cu based 

nanoparticles. They have observed that the heat transfer enhances near the surface due to the 

presence of Cu-nanoparticles. Sheikholeslami and Bhatti [10] have applied finite element method 

to investigate the influence of Coulomb force on the force convective nanofluid flow .and 

observed an enhancement in Nusselt number due to electric field. A broad literature is available 

regarding the different types of study on nanofluid [11–18] due to a vast amount of applications 

of it in industries and engineering field.  

In high-temperature materials processing, thermal radiation is significant. Generally two 

modelling approaches are employed for simulating radiative heat transfer effects, namely linear 

and nonlinear models. Nonlinear radiation is valid for both high and low temperature difference 

but linear radiation is valid only for low temperature difference. Thus, to provide a more general 

and physically realistic simulation, in the present work, we consider the nonlinear thermal 

radiation in the present article. Numerous studies of radiative flows have been communicated. 

Khan et al. [19] have investigated the nonlinear radiation effect on a magnetohydrodynamic 

nanofluid flow from a sheet and have shown that the rate of heat transfer is increased for a 

shrinking sheet whereas it is decreased for a stretching sheet. Bhatti and Rashidi [20] have 
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examined the combined influence of thermal radiation and diffusion on nanofluid flow over a 

stretching sheet.  Sheikholeslami [21] has investigated the effect of Lorentz force and radiation 

on a 
3 4 2

Fe O H O  nanofluid and achieved and enhancement in rate of heat transfer due to an 

enhancement in radiation parameter. Rashidi et al. [22] have considered the impact of thermal 

radiation with aligned magnetic field on a Cu  and 
2 3

Al O -water nanofluid flow over a stretching 

sheet. Further studies include [23,24] for different configurations and with multiple body force 

effects.  

Materials processing systems often involve chemical reactions, which may be destructive or 

constructive in nature and can influence significantly heat and mass diffusion phenomena. 

Generally boundary layer flow models utilize first order chemical reaction effects and assume 

the reaction to be destructive. Chemical reactions are instrumental in transforming material 

constitution. This phenomenon also arises in chemical engineering industries, electrochemistry, 

hydrolysis, electro-plating and combustion processes (furnaces, fires, jet propulsion etc). 

Interesting studies of reactive flows include Mishra et al. [25] on magnetic viscoelastic fluids, 

Mohamed [26] on two-phase nanofluids, Venkateswarlu and Narayana [27] on radiative rotating 

nanofluid flows, Bég et al.[28] on dissipative radiative hydromagnetic double diffusion transport 

and Matin and Pop [29] on porous nanofluid flows. Further investigations include [30–33] in 

which chemical reaction has been shown to have a significant influence on heat and/or mass 

transfer characteristics.   

The second law of thermodynamics provides a way to quantify the level of disorder of a 

thermodynamically system. This study is known as entropy generation analysis which is very 

useful in optimizing thermal engineering systems to operate at high working efficiency. The 
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method of entropy generation minimization was originally proposed by Bejan [34] in 1996. 

Many researchers have investigated the effects of physical parameters on entropy generation in 

various thermal flow regimes. Tshehla and Makinde [35] have calculated the rate of entropy 

generation in steady flow of a liquid with variable viscosity for two concentric cylindrical pipes.  

Das et al.[36]  have elaborated on entropy generation in an unsteady MHD flow of nanofluid 

from a stretching sheet, observing that metallic nanoparticles generate a large amount of entropy. 

Rehman et al. [37] have considered the steady Jeffery nanofluid flow over a stretching sheet, 

indicating that entropy generation number is an increasing function of thermophoresis parameter, 

Eckert number and Brinkman number. Qing et al. [38] have studied the entropy generation 

analysis on a magnetohydrodynamic flow of Casson nanofluid with the effects of chemical 

reactions and nonlinear thermal radiation over a stretching surface. Bhatti et al. [39] have applied 

successive linearization method to investigate the entropy generation analysis for non-Newtonian 

nanofluid over stretching surface. 

The preceding studies have not considered entropy generation for the combined unsteady 

electro-magnetic nanofluid stagnation flow from a stretching sheet with the simultaneous effects 

of Stefan blowing, chemical reaction, nonlinear thermal radiation, velocity slip, thermal slip and 

mass slip. Both electrical and magnetic body forces are incorporated in the mathematical model 

[40]. The system of governing equations has been transformed into a non-dimensional system of 

nonlinear partial differential equations by applying similarity transformations. The non-

dimensional boundary value problem is thereafter solved with the homotopy analysis method 

(HAM) employing power-series expansions. Homotopy analysis method is discovered by 

Liao[41–43] which is an excellent analytical technique to solve the nonlinear ordinary and partial 

differential equations. Rehman et al. [44] have compared the numerical results obtained via 
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shooting technique with HAM results of Casson fluid flow over an exponentially stretching 

sheet. In this article, we employ this technique to solve the system of nonlinear partial 

differential equations [45] which a non-dimensional form of governing equations. The present 

problem has applications in thermal management [46] of high heat flux electronics such as heat 

pipes, energy conversion devices and biomedical research.   

The article is structured as follows. Section 1 is the introductory part. Section 2 covers the 

problem formulation. Section 3 entails the entropy generation analysis. Section 4 elaborates the 

analytical homotopy solutions and convergence characteristics. A brief discussion of results is 

presented in section 5. Section 6 summarizes the conclusions.  The current work is relevant to 

electromagnetic nano-materials processing.   

2.  MATHEMATICAL MODEL 

In this problem, we analyze the composite influence of Stefan blowing, destructive first order 

chemical reaction and nonlinear radiation on two-dimensional time dependent EMHD (Electro-

magneto-hydrodynamic) stagnation point flow[47] of an electrically-conducting incompressible 

nanofluid from a stretching sheet. Fig.1 represents the geometry of the problem in which the 

point O is a stagnation point. The horizontal x -axis is located along the sheet and the vertical y -

axis is fixed in a direction perpendicular to the sheet. At the surface of sheet, the effects of 

velocity, thermal and mass slips are also considered. Such phenomena are known to arise in 

materials processing systems. Under these considerations, the boundary layer equations for 

conservation of mass, momentum, energy and nanoparticle (species) concentrations are defined 

may be shown to assume the form [21,48,49]: 
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The following boundary conditions are imposed at the sheet (wall) and in the free stream[3] : 

at 0,y       1( ) ,w

u
u u x N

y


 


    ,

1

B

w

D C
v

C y

 
     

 2 ,w

T
T T N

y


 


   3 ,w

C
C C N

y


 


 

as y  ,   u u ,    T T , C C ,                                                                                     (5) 

where u (m/sec), v (m/sec) are the velocities along the x (m) and y (m) axes respectively and t 

(s) represents the time. The velocity of the sheet is xbxuw )(  where b is the sheet (wall) 

stretching parameter and free stream velocity is defined asu ax  . The term nf (m2/s) 

represents the kinematic viscosity whereas nf (Ns/m2) represents the dynamic viscosity of 

nanofluid. In addition, the term 
nf

 (kg/m3) is density of nanofluid, nf (S/m) is electrical 

conductivity of nanofluid, nfk  is thermal conductivity of nanofluid, ( )nfc (J/K-m3) is heat 

capacity of nanofluid  and 2(m /s)
( )

nf

nf

nf

k

c



 is thermal diffusivity of nanofluid . 0B (T) and 
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0E (N/C) define magnetic and electric field strength respectively. The terms BD (m2 /s) and 

TD (m2 /s) signify Brownian and thermophoresis diffusion respectively and K (s-1) represents 

chemical reaction coefficient. T (K) and T (K) are nanofluid and ambient temperatures, C and 

C are nanoparticles volume fraction and ambient volume fraction and the term 

1

( )

( )

p

nf

c

c





 represents the ratio of heat capacities (J/K-m3) of nanoparticles to nanofluid 

whereas 1N , 2N and 3N are velocity slip, thermal slip and mass slip parameters respectively. 

wT and wC are respectively nanofluid temperature and nanoparticles volume fraction at surface. 

The radiative heat flux rq (W/m2) is defined as[50]: 

4
1

1

4 Stefan-Boltzmann constant ( )

3 Rosseland mean absorption coefficient ( )
r

T
q

k y

 
 

 
,                                                        (6) 

which is obtained by Rosseland approximations. This approximation is valid for optically-thick  

fluids which can absorb or emit radiation at their boundaries.  

Proceeding with the analysis, the following similarity transformations are applied to convert 

Eqns. (1)-(5) into non-dimensional form [51,52]: 

 
nf

a
x y

y
 ,      ( , )nfa y x G x y  ,    

( , )
  

G x y
u a x

x





,    ( , ),nfv a yG x y   

( , )
w

T T
x y

T T
 







,     ( , )

w

C C
S x y

C C









,      1 ,  ,y e at

                                                     (7) 

where x is similarity variable, ( , ),G x y  ( , )x y and ( , )S x y are non-dimensional stream function, 

temperature and nanoparticles concentration, respectively and  represents the non-dimensional 
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time. The term  represents the dimensional stream function which satisfies Eqn. (1) and is 

defined by the Cauchy-Riemann equations, ,  u v
y x

  
  
 

.  

 The non-dimensional forms of Eqns. (2)-(5) can be written as:   
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where the non-dimensional physical parameters are defined as: 
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 is local 

Reynolds number, 
K

a
  is chemical reaction parameter,

( )

(1 )

w

w

C C
s

C y





is Stefan blowing 

parameter, 1 1

nf

a
N

y



   is velocity slip parameter , 2 2

nf

a
N

y



   is thermal slip parameter,  

3 3

nf

a
N

y



   is mass slip parameter and  is the stagnation parameter.                                                                                                                                                            

In this study, the important engineering quantities are the skin friction coefficient, the local 

Nusselt number and Sherwood number. These quantities evaluate the transport phenomena at the 

wall (sheet) and are defined respectively as: 

Skin friction coefficient:      

 
 2

w
nf

nf

C
ax




 ,                                                                                                                        (12) 

where w represents wall stress, which is defined as:     

0

w nf

y

u

y
 







 .                                                                                                                          (13) 
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Using eqs. (7), (12) and (13), we obtain 

''(0, )
Re

nf

y
Cf C G y  .                                                                                                            (14)  

Local Nusselt number[19,21,53]: 

 
0( )

w r y
nf w

x
Nu q q

k T T 


 


,                                                                                                  (15) 

where wq represents heat flux at wall and is defined as: 

 
0w nf p p y

q k T h j


    ,                                                                                                           (16)  

Here  ( )p p wh c T T   is enthalpy and jp is the sum of the Brownian and thermophoresis 

diffusion terms, defined as.    

.p p B T

T
j D C D

T
      

 
                                               (17)     

Using eqs. (6), (7), (15), (16) and (17), we obtain 

34
'(0, ) 1 '(0, )

Re 3
r

y R
Nur Nu y Nt t NbS y           

.                                                      (18)                   

Sherwood Number: 

m

B

q x
Sh

D C

 ,                                                                                                                                (19) 

where mq represents mass flux at wall and defined as:  
p

m

p

j
q


  .                                            (20) 



13 

 

 

 

Using Eqns. (6), (17), (19) and (20), we obtain 

'(0, ) '(0, )
Re

y Nt
Shr Sh S y y

Nb
      

.                                                                                 (21) 

3. ENTROPY GENERATION ANALYSIS 

The volumetric rate of entropy generation, due to the effects of heat transfer, nonlinear radiation, 

viscous dissipation, diffusion and electromagnetic field is defined as [36,54]: 

 

2 2 2

1

2
1

2
20 0 0

16
1

3

,

nf nf g B

G

nf

g B nf nf

k R DT u C
S

k k y T y C yT

R D B E B uC T
u u

T y y T T



 

 


  

         
                   

   
        

                                                         (22) 

where gR (J mol-1K-1) is gas constant. 

The characteristic rate of entropy generation is:  

2

2 2

( )
.

nf w
c

k T T
S

x T






                                      (23) 

The non-dimensional entropy generation number is obtained by applying similarity 

transformations on the ratio of GS and CS  which is defined as:   

22 2 22
2

2

Re 4 Pr. 1
1 1 ,

3

G

c

S R Ec G G G S S
Ns yM E

S y x x x x x xx

                                                                
                                                                                                                                                     (24)        

where 
g

nf

R DC

k
  is diffusive constant  and  wT T

T






  is non-dimensional temperature 

difference. 
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4. SOLUTIONS WITH HOMOTOPY ANALYSIS METHOD (HAM) 

To solve the non-dimensional system of nonlinear partial differential Eqns. (7)-(9) with 

boundary conditions (10), the homotopy analysis method has been applied. On the basis of 

suggestions of Liao[42], we have selected the following initial guesses, linear operators and 

auxiliary functions: 

The initial guesses:    

   0

1 3

1
( , ) 1

1 1

x s
G x y e x

Sc


 


   

 
,    0

2

( , )
1

x
e

x y







, 0

3

( , )
1

x
e

S x y







,                     (25) 

which are satisfied the boundary conditions (10).  

The linear operators: 

 
3

3
,G

G G
L G

xx

 
 


  

2

2
,L

xx


   
 


 

2

2
,S

S S
L S

xx

 
 


                                                (26) 

which are satisfied the conditions: 

1 2 3( ) 0x x
GL C C e C e

   ,  4 5( ) 0x
L C C e

  , 6 7( ) 0x
SL C C e

  .                                       (27) 

The auxiliary functions:  1GH  , 1H  , 1SH  . 

The zeroth order equation: 

0(1 ) [ ( , , ) ( , )] ( , ) [ ( , , ), ( , , ), ( , , )]G G G G G G Sq L x y q G x y qh H x y N x y q x y q x y q      ,            (28) 

0(1 ) [ ( , , ) ( , )] ( , ) [ ( , , ), ( , , ), ( , , )]Sq L x y q x y qh H x y N x y q x y q x y q             ,               (29)                                 
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0(1 ) [ ( , , ) ( , )] ( , ) [ ( , , ), ( , , ), ( , , )]S S S S S S Sq L x y q S x y qh H x y N x y q x y q x y q      ,              (30)  

associated with:  
(0, )

(0, ) 0,S
G

ys
y

Sc x

 
 


  

2

1 2

(0, ) (0, )
0,G Gy y

x x

   
  

 
                                                                  

2

(0, )
(0, ) 1 0,

y
y

x




  
  

 3

(0, )
(0, ) 1 0,S

S

y
y

x

  
  


 

as ,x           
( , )

1,G x y

x





 ( , ) 0,x y     ( , ) 0.S x y                                                        (31)  

where [0,1]q  and ,  Gh h  and Sh are the auxiliary parameters. The convergence of Eqns. (28)-

(31) are dependent on the values of these auxiliary parameters. The term ,  GN N  and SN are 

defined as: 

23 2 2 2
2

3 2 2
1 ( 1) ( 1) 1

2

G G G G G G
G G

x
N y y y y M y E

x y x xx x x

     


                                 
,                                  

                                                                                                                                      (32) 

222 2

2 2

2 22 2 2
3 2 3

2 2 2

1
( 1) ( 1)

Pr 2

4
      ( 1) 3 3( 1)

3Pr

S G
G

r r

x
N Nb Nt y y y y Ec

x x x x y x x x

R
t t

x x x x x

     


    
  

       

      

                                   

                                   





         

22
2 2

2
3( 1) 2  rt

x x

 
 

  
             

  ,                                                                                      (33) 

2 2

2 2
( 1) ( 1)

2

S S S S
S G S

Nt x
N Sc y y y y y

x Nb x x y x

     
     

             
.                              (34) 
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On differentiating Eqns. (28)-(30) m times and dividing by !m , then with subsequent 

substitution of 0q  , we obtain: 

1 1( ( , ) ( , )) ( , )G
G m m m G G mL G x y G x y h H R x y    ,                                                                    (35) 

1 1( ( , ) ( , )) ( , )m m m mL x y x y h H R x y


       ,                                                                        (36) 

1 1( ( , ) ( , )) ( , )S
S m m m S S mL S x y S x y h H R x y    ,                                                                             (37) 

with boundary conditions:  

at 

0,x 
( , )

( , ) 0m
m

S x ys
G x y

Sc x


 


,

2

1 2

( , ) ( , )
0m mG x y G x y

x x


 
 

 
, 2

( , )
( , ) 0m

m

x y
x y

x

  
 


, 

3

( , )
( , ) 0m

m

S x y
S x y

x
 

 


, 

as x  , ( , ) 0,  ( , ) 0m mG x y x y   and ( , ) 0mS x y  .                                                             (38) 

In the above Eqns., the term   ( , )G
mR x y , ( , )mR x y


and ( , )S

mR x y are defined as: 

1

1
0

1
( , )

1!

m
G G
m m

q

N
R x y

m q









 

3 21
1 1 1 1

13 2
0

m
m m i m m i

m

i

G G G G
y G

x x x x


     




                     
  

2 2

1 1

2
( 1) ( 1)

2

m mG Gx
y y y

y x x

  
   

  
 2 21 1 (1 ) (1 )m

m

G
M y M y E

x
       

,                        (39)                                      

1

1
0

1
( , )

1!

m

m m

q

N
R

m q

  








 
= 

2 1 1
1 1 1

2
0 0

1

Pr

m m
m m i i m i i

i i

S
Nb Nt

x x x x x

    
    

 

     
       

   
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 
2 2 21 1

31 1 1 1 1

2 2 2
0 0

4
( 1) ( 1) 1

2 3Pr

       ,

m m
m i i m i m m m

i r

i i

G G x R
y G Ec y y y t

x x x y x x

    
      

 

     
             
 

 

 
2 21 1 1 1 1

1 1 1

2 2
0 0 0 0 0 0 0

3 3 1
m i m i m i m i m

k m i k m i k m i
j i j j i j k r i

i j k i j k i

t
x x x x

        
      

       
 

      

        
               

        

21 1 1
21 1 1

2
0 0 0 0 0

3( 1) 2
m m i m i

i ji m i m i m i
r j i j j

i i j i j

t
x x x xx

     
  

     


    

     
               

   ,                  (40)             

1 2 2 1
1 1 1 1 1

1 2 2
00

1

1
( , ) ( 1) ( 1)

1! 2

                                                ,

m m
S S m m m m m
m mm

iq

m

N S S S SNt x
R x y Sc y G y y y

m q x Nb x x y x

y S





 
    






      
               





             (41) 

where 

0

( , , )1

!

m
G

m m

q

x y q
G

m q









, 

0

( , , )1

!

m

m m

q

x y q

m q








and 

0

( , , )1

!

m
S

m m

q

x y q
S

m q









.              (42) 

The convergence of the following series of solutions is dependent on the appropriate choice of 

auxiliary parameters Gh , h   and Sh : 

0
1

( , , ) ( , ) ( , ),m
m

G x y q G x y G x y



                                                                                                (43)                       

0
1

( , , ) ( , ) ( , ),m
m

x y q x y x y  



                                                                                                  (44) 

0
1

( , , ) ( , ) ( , ).m
m

S x y q S x y S x y



                                                                                                (45) 
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To solve the above eqs., we have applied the symbolic software Maple-18 and obtained the 

terms   ( , )mG x y , ( , )m x y  and ( , )mS x y  in the following form: 

1 2 3( , ) x
m PSG x y c c x c e G

    ,                                                                                                (46) 

4 5( , ) x
m PSx y c c e    ,                                                                                                          (47) 

6 7( , ) x
m PSS x y c c e S

   ,                                                                                                         (48) 

where the suffix “PS” represents the particular solution. The all ( 1..7)ic i  are calculated with 

the help of the boundary conditions (38).  

4.1 Convergence of HAM solutions: 

The convergences of series (43)-(45) are dependent on the appropriate values of auxiliary 

parameters Gh , h   and Sh  which can be obtained by sketching h-curves[55]. We have sketched 

the h-curves with ''(0, )G y , '(0, )y and '(0, )S y for different values of y up to the 8th order of 

approximations and obtained a horizontal line in the ranges [ 0.048,0]Gh   , [ 0.048,0]h    and 

[ 0.02,0]Sh   which are displayed in Fig.2. Table-1 represents the order of convergences 

of ''(0, )G y , '(0, )y and '(0, )S y for the values of auxiliary parameters, 0.024Gh   , 

0.012h    and 0.004Sh   which indicates that the results are convergent up to four decimal 

places at 20th order of approximations. Hence, these are the appropriate values of auxiliary 

parameters ,  Gh h  and Sh . In Table-2, we present a comparison of the values of  { '(0, )}S y  

obtained by homotopy analysis method and shooting method for steady non-radiative flow which 

presents a good agreement between both. Table-3 shows the comparison of the present values of  
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''(0, )G y with previous published values i.e. Wang[56] and Abbas et al. [57] for  M = 0, E = 0, s 

= 0, 1 0  and different values of .   Excellent correlation is achieved confirming the validity 

of the HAM solutions.                                                                                                                                                                                                                                           

5. DISCUSSION OF RESULTS 

In this section, we present a brief discussion of influence of physical parameters on 

velocity '( , )G x y , temperature ( , )x y , concentration ( , )S x y , skin friction coefficient Cf , local 

Nusselt number Nur , Sherwood number Shr and entropy generation number Ns  via graphs and 

tables. The default values of leading parameters are taken as: 0.1,  0.1,M E  0.1,Nt   Nb = 

0.1, Pr 5 , Ec = 0.3, R = 0.1, 1.5rt  , 0.5,  0.1,  0.5,s  1 2 3 2,     Re 1,  

0.5  , 0.1 . The symbolic software Maple 18 running on personal computer (core i5) is 

used for finding HAM solution. The numerical HAM values of Nusselt number and Sherwood 

number are presented in Table-4 with variation in the values of Ec, 2 3, ,   & Nt     and fixed 

values of other parameters. This table shows that these both quantities are decreased with an 

increase in the value of Eckert number and thermal slip parameter but increased with 

thermophoresis and stagnation parameter and also represents that Nusselt number increases as 

the values of mass slip parameter increases but Sherwood number decreases with an increase in 

the value of this parameter. 

The profiles of velocity '( , )G x y , temperature ( , )x y and concentration ( , )S x y  in opposition to 

x are presented in Fig 3 in which Fig 3(a) and 3(b) are sketched to elucidate the effects of 

magnetic field parameter M and electric field parameter E on velocity. It is evident that 

'( , )G x y is an increasing function of both of these parameters. The behavior of M can be 
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understood by the term

2

0
( )

nf

nf

B
u u


   in the primitive momentum conservation eqn. (2). Since, 

in our study, the boundary layer velocity u is less than the external free stream velocity u , 

therefore the term

2

0
( )

nf

nf

B
u u


  become negative. Furthermore in the transformed momentum 

conservation eqn. (8), the term 





 



 E
x

G
yM 12 , both magnetic and electrical body force 

terms become effectively positive. These body forces therefore assist momentum development 

and lead to flow acceleration. Thus velocity increases with an increase in the value of magnetic 

parameter, M. Fig 3(c) depicts temperature profile versus transformed transverse coordinate, x 

for different values of radiation parameter R. It is apparent that ( , )x y increases with an increase 

in the value of R. This parameter is defined as 

1

3

1
4

k
nf

k

T

R





 and features in the augmented 

thermal diffusion term in the heat conservation eqn. (9). It defines the relative contribution of 

thermal radiation heat transfer to thermal conduction heat transfer. When R <1 thermal 

conduction dominates. When R = 1 both thermal conduction and thermal radiation contributions 

are equal. For R >1 thermal radiation dominates over thermal conduction. In the present 

simulations, we confine attention to the last of these three cases i.e. 0< R <1 wherein thermal 

radiative flux is substantial. Fig. 3 (c) clearly reveals that there energizing of the flow with 

increasing R values. This enhances thermal diffusion and therefore elevates temperatures and 

also thermal boundary layer thickness. Similar observations have been reported by Shehzad et al. 

[58] and Venkateswarlu et al. [27]. Fig.3 (d) depicts the concentration profile vs. x for different 

values of chemical reaction parameter  which shows that concentration is a decreasing function 
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of . We consider the destructive type of homogenous chemical reaction. Increasing the 

chemical reaction parameter  produces a decrease in velocity and therefore also momentum 

boundary layer thickness is therefore increased substantially with greater chemical reaction 

effect. However concentration distributions decrease when the chemical reaction increases. 

Physically, for a destructive case, with stronger chemical reaction, greater destruction of the 

original nano-particle species takes place. This, in turn, suppresses molecular diffusion of the 

remaining species which leads to a fall in concentration magnitudes and a corresponding 

depletion in concentration boundary layer thickness.  

Figs. 4(a) -4(c) illustrate the influence of magnetic parameter M, electric parameter E, Stefan 

blowing parameter s, dimensionless time ,  velocity slip parameter 1 and stagnation 

parameter  on skin friction coefficient Cf .  Cf  increases with an increase in the values of M 

since magnetic body force accelerates the flow whereas it decreases with electric field E. 

However the converse response is computed with s, 1 and   . In this figure, we have computed 

the effects of blowing parameter on skin friction for the values of 1,0,1s   . Here 

1s   indicates suction at the sheet surface, 0s  implies a solid wall (no lateral mass flux) and 

1s  indicates injection at the wall. We have observed that as the value of blowing parameter 

(mass transfer) increases, skin friction at the surface decreases i.e. strong lateral mass flux into 

the boundary layer decreases the skin friction at the sheet surface.  

Fig.5 depicts the combined effects of s and  on local Nusselt number and Sherwood number; 

evidently both quantities are decreasing function of s but increasing function of  .With greater 

progression of time therefore heat and mass transfer at the sheet (wall) is enhanced and wall 
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suction (s=-1) induces a similar influence. Wall injection (s=1) however depresses heat and mass 

transfer rates at the wall. 

Fig.6 describes the effects of radiation parameter on Nur and Shr and shows that as the value of 

radiation parameter increases, the Nusselt number increases but Sherwood number decreases. 

Clearly with greater temperatures generated at higher values of radiation parameter the heat 

transferred to the wall is boosted. Conversely wall mass transfer rate is depressed owing to an 

increase in concentration of nano-particles in the boundary layer.  

Fig. 7. shows that Nur and Shr are both increased with chemical reaction parameter. The 

destruction in nano-particle species with stronger chemical reaction effect (higher  values), 

leads to a depletion in concentration values in the boundary layer. This encourages the transfer of 

species to the wall and elevates Sherwood number. The species diffusion to the wall also assist 

thermal diffusion and elevates wall heat transfer rates.  

       The second law of thermodynamics states that generally entropy of a system always 

increases. This statement is confirmed by Fig 8 (a)-(c) which depict the effects of magnetic 

parameter M, electric parameter E and Reynolds number Re on entropy generation number Ns . 

In all three graphs 8a-c, there is a non-trivial increase in entropy generation number Ns . 

Magnetic field, electrical field and inertial effect (Reynolds number) therefore all encourage 

entropy generation in the nanofluid regime. However Fig. 8(d) indicates that entropy generation 

number is decreased with an increment in chemical reaction parameter. When the temperature of 

any substance is minimized, this inhibits molecular motion and therefore the entropy of the 

system decreases.  
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Fig. 9(a)-(c). visualize the combined effects of parameters (M, E), (Nt, Nb) and (Re, R), in three-

dimensional plots of Ns . Inspection of the  Fig.9(a) reveals that Ns increases with an increase in 

the value of thermophoresis parameter Nt whereas the contrary behavior is generated with 

increasing Brownian motion parameter Nb. Fig. 9(b) shows the combined effects of Reynolds 

number and radiation parameter. With increasing Reynolds number, the entropy generation 

number also increases which is consistent with the results of Fig. 8(c).There is a weak 

modification of Nsdue to radiation parameter. Furthermore it is apparent that Fig. 9(c) concurs 

with the results of Fig. 8(a) and 8(b). 

 

6. CONCLUDING REMARKS 

An analytical study of the collective influence of Stefan blowing and chemical reaction on 

unsteady nonlinear radiative EMHD stagnation-point flow of nanofluid from a stretching sheet 

has been presented with slip effects. Homotopy analysis method (HAM) solutions have been 

derived for the transformed, nonlinear partial differential boundary value problem. The principal 

conclusions of the present simulations may be summarized as: 

• Velocity is an increasing function of magnetic and electric parameter. Temperature 

increases with an increase in the value of radiation parameter whereas concentration 

decreases with an increase in the value of chemical reaction parameter. 

• Skin friction coefficient increases with an increase in the value of M and   whereas it 

demonstrates the opposite response with s,  , E and 1 . Local Nusselt number decreases 

with an increase in the value of Stefan blowing parameter s whereas it increases with R, 
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 and . A similar response is computed for Sherwood number with s, and ; however 

the converse trend is observed with R . 

• Entropy generation number is an increasing function of M, E, Re , and Nt whereas it 

demonstrates the contrary behaviour with   and Nb.      
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Table-1 Order of Convergence of HAM results: Order of convergence of the values of  

''(0, )G y ,    '(0, )y and  '(0, )S y for the fixed values of parameters 0.5,  Nt = Nb = 0.1, 

Sc = 3,  Ec = 0.5, M = 0.1, Pr = 5, E = 0.1, s = 0.5, R = 0.1, 1.5,rt  0.1,  1 2 3 5,      y = 

0.5 

Order ''(0, )G y  
   '(0, )y

  '(0, )  S y
 

5 0.1498 0.1670 0.1668       

10 0.1507 0.1672 0.1669      

15 0.1509 0.1674 0.1669      

20 0.1509 0.1674 0.1669 

25 0.1509 0.1674 0.1669 

 

Table-2 Validation of HAM Results: Comparison of HAM values of  '(0, )  S y with the 

values obtained by shooting method (limiting case) for the different values of Stefan blowing 

parameter s and fixed values of other parameters Nt = Nb = 0.1, Sc = 5, Ec = 0.3, M = 0.1, Pr = 

5, E = 0.1,  R = 0, 0.1,  1 2 3 5,      y = 1, 0.5   

s  '(0, )  S y
 

 HAM     Shooting 

0.1 0.1725     0.1726 

0.3 0.1724     0.1724 

0.5 0.1721     0.1723 

0.7 0.1720      0.1721 
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Table-3: Comparison of present values of ''(0, )G y  to the published results for particular 

case: 

  Present values Wang [56] Abbas et al.[51] 

0 1.2327 1.232588 1.232587 

0.1 1.1467 1.14656 1.146561 

0.2 1.0511 1.05113 1.051129 

0.5 0.7132 0.71330 0.713294 

1 0 0 0 

 

Table 4: HAM values of Nusselt and Sherwood number: The numerical values of Nusselt and 

Sherwood number obtained by homotopy analysis method on the fifteen order of approximations 

for the different values of Ec, 2 3, ,   & Nt     and fixed values of parameters Nt = Nb = 0.1, Sc = 

10,  M = 0.1, Pr = 5, E = 0.1,  R = 0.1, 1 3,   y = 0.5, 0.5.   

    
2 3( ,  )    

 

Ec 

 

  

 

Nt 

(2, 2) (2, 3) (3,3)   

Nur  Shr  Nur  Shr  Nur  Shr  

 

 

 

0.3 

 

0.1 

0.1 0.4915 0.6922 0.5008 0.5995 0.3670 0.5142 

0.25     0.5431 1.1939 0.5522 1.1033 0.4055 0.8902 

0.4  0.5947 1.6953 0.6036 1.6068 0.4439 1.2661 

0.1  

0.1 

 

0.4915 0.6922 0.5008 0.5995 0.3670 0.5142 

0.25 0.4919 0.6927 0.5012 0.5999 0.3673 0.5145 

0.4 0.4922 0.6933 0.5016 0.6003 0.3675 0.5149 

 

 

 

0.5 

 

0.1 

0.1 0.4910 0.6919 0.5004 0.5992 0.3667 0.5140 

0.25 0.5426 1.1932 0.5518 1.1026 0.4051 0.8897 

0.4 0.5941 1.6942 0.6031 1.6057 0.4435 1.2653 

0.1  

0.1 

 

0.4910 0.6919 0.5004 0.5992 0.3667 0.5140 

0.25 0.4916 0.6925 0.5009 0.5997 0.3671 0.5144 

0.4 0.4920 0.6932 0.5014 0.6002 0.3674 0.5148 
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Fig.1 Physical structure of problem. 
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Fig.2 h-curve with ''(0, )G y , '(0, )y and '(0, )S y for different values of y on 8th order of 

approximations. 
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Fig.3 Effects of physical parameters on velocity '( , )G x y , temperature ( , )x y and concentration 

( , )S x y . 
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Fig.4 Combined effects of (E, M ), (s,  ) and ( 1,    ) on skin friction coefficient. 
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Fig. 5 Combined effect of s and  on Nusselt and Sherwood number. 

 

 

 

 

 

 

Fig.6 Combined effect of radiation parameter R and   on Nusselt and Sherwood number. 
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Fig. 7 Effect of chemical reaction parameter  on Nusselt and Sherwood number. 
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Fig. 8 Effect of physical parameters M, E, Re and  on entropy generation number Ns . 
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Fig.9 Combined effects of (Nt, Nb), (Re, R) and (E, M) on entropy generation number Ns.    
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