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Abstract In this paper, amodel for injection of a power-law shear-thinning fluid in amedium
with pressure-dependent properties is developed in a generalized geometry (plane, radial, and
spherical). Permeability and porosity are taken to be power functions of the pressure incre-
ment with respect to the ambient value. The model mimics the injection of non-Newtonian
fluids in fractured systems, in which fractures are already present and are enlarged and even-
tually extended and opened by the fluid pressure, as typical of fracing technology. Empiric
equations are combined with the fundamental mass balance equation. A reduced model is
adopted, where the medium permeability resides mainly in the fractures; the fluid and porous
medium compressibility coefficients are neglected with respect to the effects induced by
pressure variations. At early and intermediate time, the flow interests only the fractures. In
these conditions, the problem admits a self-similar solution, derived in closed form for an
instantaneous injection (or drop-off) of the fluid, and obtained numerically for a generic
monomial law of injection. At late times, the leak-off of the fluid towards the porous matrix
is taken into account via a sink term in the mass balance equation. In this case, the original set
of governing equations needs to be solved numerically; an approximate self-similar solution
valid for a special combination of parameters is developed by rescaling time. An example of
application in a radial geometry is provided without and with leak-off. The system behaviour
is analysed considering the speed of the pressure front and the variation of the pressure within
the domain over time, as influenced by the domain and fluid parameters.
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1 Introduction

The research on non-Newtonian fluid flow in porous and fractured media has encountered
a renewed interest since the development of new, economically advantageous technologies
for aquifer remediation and enhanced gas recovery. Extraction of crude oils, well drilling,
and soil remediation also involve the injection of a non-Newtonian fluid in the subsurface
environment. The rheology of the fluids utilized in these applications and technologies is
described by complex models with numerous parameters, like the Cross or Carreau–Yasuda
relations, able to interpret in detail the response of the fluid to a wide range of shear stress.
However, in many flows the shear rate (and the applied shear stress) varies in a limited range,
making it sufficient to adopt a simple two-parameter Ostwald–deWaele model. This simpli-
fication has the advantage of a simple macroscopic description of the relationship between
pressure gradient and flux at the Darcy scale, represented by a nonlinear modification of the
Darcy’s law (Cristopher and Middleman 1965; Kozicki et al. 1967; Teeuw and Hesselink
1980; Pascal and Pascal 1985; Pearson and Tardy 2002; Adler et al. 2013a).

The nonlinear Darcy’s law has been theoretically applied and experimentally verified
in numerous geometries for unconfined (Pascal and Pascal 1993; Bataller 2008; Longo
et al. 2013; Di Federico et al. 2014, 2012a, b; Longo et al. 2015a, b) and confined flow
of non-Newtonian power-law fluids. In the latter case, the (medium and fluid) compressibil-
ity becomes a key element: the disturbance created by a pulse injection of mass in a porous
medium of infinite extent and homogeneous properties was analysed by several authors (Pas-
cal 1991a, b;Di Federico andCiriello 2012) considering different geometries.A further exten-
sion for a time variable fluid injection and amonotonic spatial variation of permeability is due
toCiriello et al. (2013); joint variations of porosity can be easily incorporated into the scheme.

In other instances, changes of permeability and porosity are mainly due to pressure varia-
tionswithin the domain. Fracturedmedia, havingmacroscopic properties drasticallymodified
by the presence of fractures (Adler et al. 2013b), are a typical example. In these media, per-
meability is inherently coupled with the micromechanical behaviour of the porous rock and
evolves with the applied pressure (Yao et al. (2015) and references therein). The stress-
dependent nature of the permeability of mudrocks was demonstrated experimentally by
Bhandari et al. (2015). In fracing technology (Fjaer et al. 2008), fractures typically show
a permeability increasing with pressure as a consequence of an increment of their width;
they also show a porosity increasing with pressure as a consequence of an increment of both
width and length. This second phenomenon, i.e. the extension of existing fractures or the
generation of new branches, is directly linked to the hysteretic response of the domain to
cycles of increasing/decreasing pressure.With the stress increasing, the width of the fractures
may respond linearly in the elastic regime and return to the original width after the pressure
decrease; however, the generation of new fractures increases permanently the permeability. A
second cause of hysteresis is the presence of small particles added to the fracing fluid (Mader
1989)which inhibit the closure of the fractures after pressure reduction.While the complexity
of fracture generation and propagation cannot be easily implemented analytically, a simpli-
fied model of pressure diffusion in subsurface media incorporating a monotonic relationship
between the variation of medium properties (permeability and porosity) and pressure incre-
ments may shed light on the fundamental properties of non-Newtonian flow in such media
and help to estimate the sensitivity of the pressure diffusion to plausible ranges of variation
of the parameters.

The objective of this study is to derive such a model for unsteady state flow of a non-
Newtonian power-law fluid, analysing the influence of various geometries. Some empiric
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equations representing the fluid rheology and spatial variations of the porous medium prop-
erties are combined with the mass balance equation. The diffusion of pressure within the
medium can be due to fluid injection (e.g. in hydraulic fracturing), to a perturbation of seis-
mic origin, or to the breaking of a cap limiting a pressurized fluid reservoir. The reference
model is the crack-and-block medium described in Phillips (2009), with a clear distinction
between the permeability and the porosity due to the network of fractures and to the matrix.
We assume that the fracture network, already present within the medium or generated by
an external cause, is isotropic with a typical length scale much smaller than the scale of
the porous formation, with a permeability much greater and a porosity decidedly smaller
than the matrix. Hence, the storage of the fluid is essentially due to the matrix, whereas
the flow paths, and the overall permeability, are due to fractures. This ‘double porosity’, or
fractured-matrix model, has been developed and applied in several fields by Barenblatt (see
Barenblatt et al. 1990; Bai et al. 1993; De Smedt 2011). It entails a pressure diffusion much
faster than in a uniformmedium, as two phenomena take place with different time and length
scales. At short or intermediate timescales, the fluid flows in the fractures, and little or no
storage is present. At long timescales, the fluid is transferred from the fractures to the matrix,
having large storage (leak-off phase). In the present work, we adopt a simplified continuum
approach, geared at understanding the response of this type of system to significant pressure
variations. To this end, we analyse the pressure dynamics up to an intermediate timescale,
neglecting the leak-off towards the matrix and considering the fracture network to dominate
the dynamics of the flow; this allows deriving a closed-form solution in self-similar form,
extending the results of Di Federico and Ciriello (2012) to pressure-dependent properties.
Secondly, we refine the model by including the leak-off phenomenon, which becomes dom-
inant at late times and is used in hydraulic fracturing technology to monitor the efficiency
of the process. The leak-off is approximated via a sink term in the mass balance equation of
the fracture network, neglecting the details of the fluid flow within the matrix. The resulting
set of equations can be solved numerically; we show it is amenable to a similarity solution
under a special combination of parameters.

It is worth mentioning that we also simplify the geometry of the system under analysis:
real fractures have an elliptic shape (Rahim and Holditch 1995), open in the direction of
the least principal stress, and propagate in the plane of the two other principal stresses
(greatest and intermediate). Hence, different scenarios are observed depending on the depth
of the formation interested by the fractures. Near the surface, the vertical (parallel to gravity)
normal stress is limited and the confining stresses are dominant; hence, the fractures open
in horizontal planes. In deep formations, the normal stress parallel to gravity is dominant,
and fractures open and develop in vertical planes. This potential source of anisotropy adds
further complexity to the problem.

The exposition is organized as follows. Themathematical problem is formulated in Sect. 2
for a generalized geometry and is solved in Sect. 3 in self-similar form. Section 4 discusses the
limits existing on problem parameters by virtue of formulated assumptions. An application
involving the injection of shear-thinning fluid in a cylindrical geometry is presented in Sect. 5.
The effect of leak-off is treated in Sect. 6, while concluding remarks are formulated in Sect. 7.

2 Problem Formulation

We consider an infinite porous domain, initially at constant ambient pressure p0, and having
a plane (d = 1), cylindrical (d = 2), or spherical (d = 3) geometry (Fig. 1). A mass
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Fig. 1 Domain schematic for
plane (d = 1), cylindrical
(d = 2), and spherical geometry
(d = 3)
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of a non-Newtonian power-law fluid, increasing with time as m0tα (with m0 (dimensions
M T−α) and α being constants), is injected in the domain origin starting at time t = 0;
α = 0, 1 corresponds to the instantaneous release of a given mass and to a constant mass
flux, respectively. The fluid injection generates a pressure disturbance that propagates as an
one-dimensional transient process within the domain as a function of its shape, properties,
and rheology of the injected fluid.

For plane (d = 1) or cylindrical (d = 2) geometry, the domain has constant thickness h.
For d = 1, the injection zone is a plane of area δh2, with δ being the width/height ratio of
the domain; for d = 2, 3, the injection zone is a cylindrical or spherical well of radius rw,
and the area of the injection zone is 2πhrw or 4πr2w .

The permeability k and the porosity φ of the domain vary with the pressure p according
to

k(p) = k0

(
p − p0
p∗

)β

, φ(p) = φ0

(
p − p0
p∗

)γ−1

, (1)

where k0 and φ0 are the reference permeability and porosity for p = p0, p∗ is a pressure
scale to be defined later for convenience, and β ≥ 0 and γ ≥ 1 are real numbers governing
the degree of variation of the permeability and porosity with pressure. Physically, β is rep-
resentative of the permeability compliance, and γ , of the volumetric compliance. For β = 0
and γ = 1, the domain properties are independent of the pressure, while for β > 0 and
γ > 1 the permeability and the porosity increase with the pressure: the larger the values
of β and γ , the larger the increment of permeability and of porosity, respectively, for a unit
pressure increment. As permeability and porosity are strictly related (and depend on the local
stress tensor and on the mechanical properties of the medium), so are the two exponents β

and γ , depending on the nature of the medium and of the adopted model (Bai et al. 1993). In
particular, the adoption of the ‘cubic law’ for transmissivity in single-fracture flow (Wither-
spoon et al. 1980) implies a square dependence of permeability and a linear dependence of
porosity upon aperture, resulting in β = 2(γ − 1). Higher exponents for transmissivity [e.g.
the ‘quintic law’ in Klimczak et al. (2010), as a consequence of a correlated length–aperture
relationship in fractures] imply a ratio β/(γ − 1) > 2.

The rheological power-law model describing the injected fluid reads τ = −μ̃γ̇ |γ̇ |n−1

for simple shear flow, with τ , γ̇ , μ̃, and n being the shear stress, shear rate, fluid consistency
index, and behaviour index, respectively; n � 1 indicates shear-thinning/Newtonian/shear-
thickening behaviour. In the following, only the case n < 1 will be considered. Flow of
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such fluids in porous media is usually described macroscopically by a modified Darcy’s
law accounting for nonlinearity (e.g. Shenoy 1995), corroborated by experimental evidence
(Cristopher and Middleman 1965; Yilmaz et al. 2009). The one-dimensional version of the
flow law along the generalized spatial coordinate r reads (neglecting gravity effects for the
case d = 3)

v = −
(

k

μeff

)1/n
∂p

∂r

∣∣∣∣∂p∂r
∣∣∣∣
1/n−1

, (2)

where v and p are the fluid Darcy velocity and pressure, k the medium permeability, andμeff

the effective viscosity, given by

k

μeff
= 1

2μ̃Ct

(
nφ

3n + 1

)n (
50k

3φ

)(n+1)/2

, (3)

in which the tortuosity factor Ct = Ct (n) can take different expressions; the formulation
Ct = (25/12)(n+1)/2 by Pascal and Pascal (1985) will be adopted in the following.

The local mass balance equation for a generalized geometry described by d is

1

rd−1

∂

∂r

(
ρrd−1v

)
= −∂(ρφ)

∂t
, (4)

where t is the time, ρ the fluid mass density, and φ the porosity. Substituting Eq. (3) in (2),
then Eq. (2) in (4), and taking (1) into account, one obtains:

(
1

2μ̃Ct

)1/n nφ0

3n + 1

(
50k0
3φ0

)(n+1)/(2n) 1

p∗F1

×

⎡
⎢⎢⎢⎢⎣

1

rd−1

∂

∂r

(
rd−1(p − p0)

F1 ∂(p − p0)

∂r

∣∣∣∣∂(p − p0)

∂r

∣∣∣∣
1/n−1

)

︸ ︷︷ ︸
I

+ c f (p − p0)
F1 ∂(p − p0)

∂r

∣∣∣∣∂(p − p0)

∂r

∣∣∣∣
1/n

︸ ︷︷ ︸
II

⎤
⎥⎥⎥⎥⎦

= (p − p0)γ−2

p∗γ−1 φ0

⎡
⎣(γ − 1)︸ ︷︷ ︸

III

+ (p − p0)c0︸ ︷︷ ︸
IV

⎤
⎦ ∂(p − p0)

∂t
, (5)

where c0 = c f + cp ≡ (1/ρ)∂ρ/∂p is the total compressibility coefficient, c f and cp are
the compressibility coefficients of the fluid and of the porous medium, respectively, and
F1 = [β(n + 1) + (γ − 1)(n − 1)]/(2n) is a factor incorporating the fluid rheology and the
pressure–permeability and pressure–porosity relationships.

The initial condition is
p(r, t = 0) = p0, (6)

while the general expression for the conservation of mass
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∫
V

d[ρ(p(t))φ(p(t))]
dt

dV = ṁ(t) (7)

where ṁ(t) is the mass discharge entering the domain, and V is the volume of integration
becomes via Eq. (1)

ωh3−d

[∫ rN (t)

0
ρφ0

(
p − p0
p∗

)γ−1

rd−1dr

+
∫ rN (t)

0

ρφ0c0 p∗

γ

(
p − p0
p∗

)γ

rd−1dr

]
= m(t) ≡ m0t

α, (8)

where the geometrical factorω takes the values δ for plane, 2π for radial, and 4π for spherical
geometry (d = 1, 2, 3, respectively) and rN (t) denotes the position of the advancing pressure
front.

The full model outlined above, given by Eqs. (5) and (8) with (6), can be simplified using
order of magnitude considerations. First, term II in Eq. (5), representing the contribution
of fluid compressibility, is of a smaller order than term I, associated with permeability and
porosity variations with pressure (this assumption will be checked a posteriori, see Sect. 5).
Further, terms III and IV represent the effect of storage due to the opening of fractures and to
fluid–porousmedium compressibility, respectively. It is assumed that their ratio (γ −1)/[(p−
p0)c0] � 1; hence, only the contribution due to fracture opening (term III) is considered.
Considering now the global mass balance given by Eq. (8), the ratio between the first and
the second term on the l.h.s. is γ /[(p − p0)c0]. As γ ≥ 1, it follows that γ /[(p − p0)c0] >

(γ −1)/[(p−p0)c0] � 1, and consequently the second termwithin brackets can be neglected.
The reduced model, in which the fluid and porous medium compressibility coefficients are
negligible, then reads(

1

2μ̃Ct

)1/n nφ0

3n + 1

(
50k0
3φ0

)(n+1)/(2n) 1

p∗F1

× 1

rd−1

∂

∂r

(
rd−1(p − p0)

F1 ∂(p − p0)

∂r

∣∣∣∣∂(p − p0)

∂r

∣∣∣∣
1/n−1

)

= (p − p0)γ−2

p∗γ−1 φ0(γ − 1)
∂(p − p0)

∂t
, (9)

ωh3−d
∫ rN (t)

0
ρφ0

(
p − p0
p∗

)γ−1

rd−1dr = m0t
α. (10)

The mathematical statement of the problem is completed by the boundary conditions at
the pressure front rN (t), i.e.

p (rN (t), t) = p0, (11)
∂p

∂r

∣∣∣∣
rN (t)

= 0, (12)

rN (0) = 0, (13)

valid for a shear-thinning fluid with n < 1 (Pascal and Pascal 1985, 1990; Di Federico and
Ciriello 2012; Ciriello and Federico 2012). The velocity of the pressure front in this case is
finite and given by u(t) = φdrN /dt .

Dimensionless variables are defined as follows:

(R, H, RN , T, P, P0, V,U, M0) =
(

r

r∗ ,
h

r∗ ,
rN
r∗ ,

t

t∗
,
p

p∗ ,
p0
p∗ ,

v

v∗ ,
u

v∗ ,
m0t∗α

ρr∗3

)
, (14)
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where p∗ = 1/c0 is the pressure scale introduced in (1), t∗ is a timescale given by

t∗ = ρ(n+1)/2c(n−1)/2
0 k(n+1)/2

0

μ̃
, (15)

r∗ is a length scale defined as

r∗ = ρn/2c(n−2)/2
0 k(n+1)/2

0

μ̃
, (16)

and v∗ is the velocity scale given by

v∗ =
√

1

ρc0
. (17)

Equations (2–9–10) become, in non-dimensional form,

V = − (γ − 1)φ0

A
(P − P0)

F1

∣∣∣∣∂(P − P0)

∂R

∣∣∣∣
1/n−1

∂(P − P0)

∂R
, (18)

1

Rd−1

∂

∂R

(
Rd−1(P − P0)

F1

∣∣∣∣∂(P − P0)

∂R

∣∣∣∣
1/n−1

∂(P − P0)

∂R

)

= A(P − P0)
γ−2 ∂(P − P0)

∂T
, (19)

∫ RN (T )

0
(P − P0)

γ−1Rd−1dR = Λ0T
α, (20)

where the two parameters

A = (γ − 1)(2Ct )
1/n 3n + 1

n

(
3φ0

50

)(n+1)/(2n)

, Λ0 = M0

ωH3−dφ0
(21)

are proportional to the volumetric compliance coefficient and to the strength of the injection,
respectively. Equations (6) and (11–13) expressing initial and boundary conditions are for-
mally unchanged, except that dimensionless quantities (in capital letters) replace dimensional
ones.

3 Solution to the Problem

The mathematical problem is amenable to a self-similar solution, with the similarity variable
defined as

η = AF4 R/T F2 . (22)

The solution then takes the form

RN (T ) = ηN A−F4T F2 , (23)

P(R, T ) = P0 + AdF4/(γ−1)η
F5
N T F3Ψ (ζ ), (24)

F2 = α[(n + 1)(β − γ + 1) + 2] + 2n(γ − 1)

d[(n + 1)(β − γ + 1) + 2] + 2(n + 1)(γ − 1)
, (25)

F3 = 2α(n + 1) − 2nd

d[(n + 1)(β − γ + 1) + 2] + 2(n + 1)(γ − 1)
, (26)
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F4 = 2n(γ − 1)

d[(n + 1)(β − γ + 1) + 2] + 2(n + 1)(γ − 1)
, (27)

F5 = 2(n + 1)

(n + 1)(β − γ + 1) + 2
, (28)

where ζ = η/ηN and the coefficient ηN (α, β,Λ0) indicates the value of η at the pressure
front. Hence, (19) and (20) transform, respectively, into

d

dζ

(
ζ d−1Ψ F1 dΨ

dζ

∣∣∣∣dΨdζ
∣∣∣∣
1/n−1

)
= F3ζ

d−1Ψ γ−1 − F2ζ
dΨ γ−2 dΨ

dζ
, (29)

ηN =
(

1

Λ0

∫ 1

0
ζ d−1Ψ γ−1dζ

)−1/[d+F5(γ−1)]
, (30)

with boundary conditions

Ψ (1) = 0,
dΨ

dζ
(1) = 0. (31)

When the injection is instantaneous (α = 0), a closed-form solution is derived in the form

Ψ (ζ ) = D(1 − ζ n+1)F5/(n+1), ηN =
(

Λ0

Dγ−1E

)1/[d+F5(γ−1)]
, (32)

D =
[
1

F5

(
F2

γ − 1

)n]F5/(n+1)

, (33)

E = 1

n + 1
B

(
d

n + 1
, 1 + F5(γ − 1)

n + 1

)
, (34)

where B(·, ·) is the beta function.
For α �= 0, the integration is performed numerically; a second boundary condition on

the first derivative near the front end is computed by expanding the shape function in series,
obtaining

dΨ

dζ

∣∣∣∣
ζ→1

= a0(1 − ζ )a1 , (35)

a0 =
(

F2

a1/n1 F1 + (a1 − 1)/n

)na1

, a1 = 1

nF1 + 1 + n(1 − γ )
. (36)

The shape factor ψ(ζ ) obtained analytically or by numerical integration is depicted in
Fig. 2 for cylindrical geometry (d = 2), instantaneous and constant rate injection (α = 0
and 1), various values of n and β, and γ = 1.25. The shape factor is seen to increase with
rate of injection α and permeability compliance β, and to decrease with rheological index n.
The shape factor also decrease with permeability compliance γ and geometry parameter d
(not shown). The dependence on β is attenuated as α increases. The prefactor ηN is likewise
illustrated in Fig. 3 for d = 2, various values of n and β, and γ = 1.25, showing its
dependency on α for different values of the parameter Λ0 = 1.0, 0.1, 0.01. It is seen that
ηN consistently decreases with α and Λ0 for all cases, while it increases or decreases with
n and β depending on the α value. The dependence on Λ0 and n is more marked than that
on α and β except for values of α close to zero. The shape factor decreases for increasing γ

(not shown); it also decreases for increasing d but only for α = 0, and the opposite is true
for α = 1 (not shown).
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d , α n= 2 = 0, = 0.25

ζ

d , α n= 2 = 0, = 0.50

d , α n= 2 = 0, = 0.75
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Fig. 2 Shape factor Ψ as a function of dimensionless rescaled similarity variable ζ for cylindrical geometry,
d = 2; results are shown for n = 0.25, 0.50, 0.75 (upper, intermediate, and lower row) and α = 0, 1 (left and
right column), with β = 0.25, 0.50, 0.75 (dashed, solid, and dash-dotted line) and γ = 1.25

4 Limits of Validity

It is noted that for the solution to retain a physical meaning, the expression (23) of the
distance of propagation of the pressure front RN (T ) needs to increase with time, hence
F2 > 0. This leads to a set of limitations on the values of model parameters γ, β, α, n. Upon
setting (γ − 1)/(β + 2) < 3, or equivalently γ < γ0 ≡ 3β + 7 (a bound needed only for
the case of spherical geometry with d = 3, a plausible assumption since for a single fracture
β = 2(γ − 1)), these limitations simplify as follows: i) for γ ≤ γ1 ≡ (n + 3)/(n + 1),
F2 > 0 for any β, α, n; ii) for γ > γ1 and β ≥ β1 ≡ γ − γ1 = γ − (n + 3)/(n + 1), F2 > 0
for any α, n; iii) for γ > γ1 and β < β1, F2 > 0 for

α < α0 ≡ 2n(γ − 1)

(n + 1)(β − γ + 1) + 2
, (37)

i.e. the injection rate (α) must not exceed a critical limit value α0 depending on domain
properties (β and γ ) and fluid behaviour index (n) but not on geometry (d). In practice, a
threshold value is set to the strength of the injection only when the permeability–pressure
coefficient β and porosity–pressure coefficient γ − 1 are markedly different.

Under these assumptions, the pressure front accelerates, has constant speed, or deceler-
ates depending on whether F2 − 1 � 0. A detailed analysis, reported in “Appendix”, shows
that the critical parameters γ1(n), γ2(n, d), β1(n, γ ), β2(n, γ, d), α1(n, γ, β, d) govern this
dependency. For plane geometry (d = 1), only γ1(n), β1(n, γ ), and α1(n, γ, β, d) are rele-

123



S. Longo, V. Di Federico

Fig. 3 PrefactorηN as a function
of α for cylindrical geometry,
d = 2, for Λ0 = 1.0, 0.1, 0.01
(upper, intermediate, and lower
panel), with n = 0.25, 0.50, 0.75
(dashed, solid, and dash-dotted
line), β = 0.25, 0.50, 0.75 (thin,
medium, and thick line) and
γ = 1.25
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vant, while for cylindrical or spherical geometry (d = 2, 3) two additional critical parameters
β2(n, γ, d) and γ2(n, d) emerge. Some critical parameters are defined only beyond a thresh-
old value of (an)other critical parameter(s). β1(n, γ ) and γ1(n) coincide with the parameters
reported above discussing the positivity of the exponent F2.

Finally, the pressure field increases or decreases with time at a given location if F3 ≷ 0,
equivalent to α ≷ α2(n, d), with α2 = dn/(n + 1).

Figure 4 depicts the combinations of values leading to an accelerated current and to a time-
decreasing pressure field for a fluid with n = 0.5 and for different geometries (d = 1, 2, 3),
for different values of γ and highlighting the case γ = 4. We observe that increasing β (i.e.
increasing the efficiency of the overpressure in widening the fractures, with a consequent
increment of the permeability) or reducing γ (the compliance) requires lower α values to
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Fig. 4 Constraints on the parameters α and β for n = 0.5 and d = 1, 2, 3 (γc = 2.33). i) The combination
of parameters leading to an accelerated pressure front lies to the right of the curve for given γ (also to the
left for d = 3). The cross-hatched areas represent valid combinations for γ = 4; the corresponding critical
value β1 of β is shown with the vertical dotted line β = β1, which is an asymptote for α1; the asymptotes
for different values of γ are not shown for clarity. ii) The condition of decreasing pressure within the porous
domain is given by α < α2; the coloured area (yellow online), delimited by the dashed line α = α2, represents
these conditions

generate an accelerating pressure front. In conditions of large enough compliance (γ > γ1,
as shown in the figure), the critical value β1 is an asymptote for α1, and for β < β1 the
pressure front is decelerated for any strength of the injection (α). In conditions of lower
compliance (γ ≤ γ1), the permeability–pressure relationship (β) is not influential, and the
type of pressure front (decelerated/accelerated) is linked only to α.

An accelerating pressure front can appear for low β and α and high γ , see the right lower
corner of the lower panel for d = 3. This is the case of a ‘stiff’ systemwith strong increment of
storage capacitywith overpressure (e.g. a systemwhere a network ofmicrofractures develops,
with a limited increment of permeability but a strong increment of porosity), subject to inflow
withmoderate α. The figure also shows that the pressure field increases in time if α > α2; this
limit increases with dimensionality as expected. For d = 1, an accelerating pressure front
can only be coupled with a time-increasing pressure. For d = 2, 3, an accelerating pressure
front can be also coupled with time-decreasing pressure, provided that γ > γ2 and β < β2.

Focusing on the most common cases of injection, i.e. impulsive (α = 0), and constant
influx (α = 1), we conclude that: (i) impulsive injection generates a pressure field always
decreasing in time, with the pressure front never accelerating for d = 1, and possibly accel-
erating for a combination of sufficiently high values of γ , and sufficiently low values of
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Fig. 5 a Left panel pressure distribution after 30 min with a constant rate injection (α = 1) in cylindrical
geometry (d = 2). b Right panel front-end position against time. β = 0.25 (continuous line); β = 0.5
(dashed line); β = 0.75 (dashdot line). γ = 1.25 (thick lines), γ = 1.5 (thin lines). The mass flow rate is
m0 = 3.0 kg s−1. Shear-thinning fluid with n = 0.5, μ̃ = 1.5 Pa sn , ρ = 1000 kgm−3

β, for d = 2, 3. (ii) Constant influx injection generates a pressure field always increasing
in time, for d = 1; generally increasing in time (and stationary in the limit case n = 1),
for d = 2; decreasing/increasing in time for n ≷ 1/2, for d = 3. (iii) Constant influx
injection generates a pressure front always decelerating for d = 1, 2 and accelerating for
γ > γ3 ≡ [β(n + 1) + n + 2]/n, for d = 3.

5 An Example Application

We consider the injection of a power-law shear-thinning fluid following the procedures of
fracing for stimulating oil or gas production in existing wells. The fluid rheology during the
initial phase of the fracing procedure (no significant leak-off) is described by a power-law
model with behaviour index n = 0.5, consistency index μ̃ = 1.5 Pa sn , and mass density
ρ = 1000 kgm−3.We assume that a verticalwell allows a constant flow rate injection (α = 1)
equal to 3.0 kg s−1in a horizontal gas or oil-bearing formation with thickness h = 10m and
a nominal permeability and porosity of the fractures equal to k0 = 1.1 × 10−12 m2 and
φ0 = 0.01, respectively. The permeability of the matrix is taken to be kM = 1.1× 10−15 m2

(including the effect of the filter cake at the interface between fractures and matrix); its
porosity is equal to φM = 0.1. The ratio between the permeabilities of fractures and matrix is
1000, that between corresponding porosities is 0.1, rendering the simplified model described
in the previous section applicable for a radial geometry (d = 2). The pressure front is
decelerated (α = 1 < α1 = 2.25). Figure 5 shows the pressure distribution within the
domain at a given time, and the position of the pressure front versus time, for different values
of β and γ . It is seen that increasing β and γ implies higher pressures. The sensitivity to
variations of γ is higher than to variations of β, implying that the compliance parameter γ is a
key factor in determining system behaviour. The diffusion of pressure is faster for decreasing
β and increasing γ . Increasing the fluid behaviour index of the fluid, or the consistency,
reduces the mobility; hence, the speed of the pressure front is reduced and the pressure at the
injection well is enhanced (not shown).

Figure 6 shows the absolute value of the ratios I/II and III/IV between the terms in Eq. (5).
The left panel shows that term II is smaller than term I except near the origin for ζ � 0.1,
with a weak dependence on time. The right panel shows that term IV is smaller than term
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Fig. 6 a Left panel absolute value of the ratio between terms I and II in Eq. (5). b Right panel absolute value of
the ratio between terms III and IV in Eq. (5). Curves refer to 10−2Tmax (continuous line), 10−1Tmax (dashed
line), and Tmax (dashdot line)

III for ζ � 0.2 for T = Tmax. Hence, the assumptions in deriving the simplified model are
satisfied in most of the domain.

6 The Effect of Leak-Off

The much higher permeability of the fractures with respect to the matrix justifies a model
where the flow into the matrix is neglected at least during the early stage of injection. In
addition, fluid loss is also limited because the fracing fluids favour the building of a filter
cake on the fracture face. At larger times, the fluid seeps into the matrix and leak-off can be
very high. A further distinction can be made between matrix leak-off and fissure leak-off.
The former is controlled by the characteristics of the matrix, e.g. permeability, compress-
ibility, pore size, fluid rheology, and by the wall filter cake; the latter is controlled by the
characteristics of the fissured rock. A first approximation of the leak-off phenomenon can
be obtained by neglecting the details of the fluid flow within the matrix, considering only its
effects on mass balance. By assuming that the internal pressure in the matrix is equal to the
initial ambient value p0, the internal pressure gradient controlling the flow from the fractures
to the matrix is of order (p − p0)/ l, being l a characteristic size of the block. The velocity
of the leaking-off fluid hence can be expressed as

u ≈
(
kM
μeff

)1/n
(p − p0)1/n

l1/n
, (38)

and Eq. (9) becomes

(
1

2μ̃Ct

)1/n nφ0

3n + 1

(
50k0
3φ0

)(n+1)/(2n) 1

p∗F1

× 1

rd−1

∂

∂r

(
rd−1(p − p0)

F1 ∂(p − p0)

∂r

∣∣∣∣∂(p − p0)

∂r

∣∣∣∣
1/n−1

)

−
(

1

2μ̃CtM

)1/n nφM

3n + 1

(
50kM
3φM

)(n+1)/(2n)
(p − p0)1/n

l1+1/n

= (p − p0)γ−2

p∗γ−1 φ0(γ − 1)
∂(p − p0)

∂t
, (39)

where the subscript M indicates the variable or parameter is referred to the matrix.
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In dimensionless form, the previous equation becomes

1

Rd−1

∂

∂R

(
Rd−1(P − P0)

F1

∣∣∣∣∂(P − P0)

∂R

∣∣∣∣
1/n−1

∂(P − P0)

∂R

)

−λ (P − P0)
1/n = A(P − P0)

γ−2 ∂(P − P0)

∂T
, (40)

where the leak-off term is proportional to the parameter

λ =
(

Ct

CtM

)1/n (
kM
k0

)(n+1)/(2n) (
φ0

φM

)(1−n)/(2n) (
r∗

l

)1+1/n

. (41)

The modified integral mass balance reads in dimensionless form as

∫ RN (T )

0
(P − P0)

1/n Rd−1dR

+ F
∫ T

0

∫ RN (T )

0
(P − P0)

1/n Rd−1dR dT = Λ0T
α, (42)

with

F =
(
r∗

l

)(n+1)/n (
kM
k0

)(n+1)/(2n)

× n

3n + 1

1

φ0φ
(1−n)/(2n)
M

(
50

3

)(n+1)/(2n) (
1

2CtM

)1/n

, (43)

and where the second term on the left-hand side in Eq. (42) is the mass leak-off.
The initial and the boundary condition are still coincident with Eqs. (6) and (11–13) with

dimensionless quantities replacing dimensional ones.
The differential problem outlined above, including mass leak-off, does not have a general

self-similar solution and needs to be solved numerically.However, for the special case γ −1 =
1/n (implying 2 < γ < 6 for 0.2 < n < 1), the following transform

⎧⎨
⎩

f = (P − P0) exp(λT )

τ = 1 − exp(−λF1l T )

λF1l
,

(44)

with F1l ≡ F1(γ − 1 = 1/n), reduces Eq. (40) to

1

Rd−1

∂

∂R

(
Rd−1 f F1l

∣∣∣∣ ∂ f

∂R

∣∣∣∣
1/n−1

∂ f

∂R

)
= A f 1/n−1 ∂ f

∂τ
. (45)

The transform was suggested by Gurtin and MacCamy (1977) and later on used by King
and Woods (2003) in a similar context.

By assuming the further constraint

∫ RN (T )

0
f 1/n Rd−1dR = Λ0τ

α, (46)

coincident with Eq. (20) for T → 0, a self-similar solution formally identical to Eqs.
(22–23–24) can be obtained upon defining
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ηl = AF4l
l R/τ F2l . (47)

The similarity solution then takes the form

RNl(τ ) = ηlN A−F4l
l τ F2l , (48)

f (R, τ ) = AndF4l
l η

F5l
l N τ F3lΨ (ζl), (49)

where ζl = ηl/ηlN and the subscript l indicates the leak-off solution for the special case
considered, i.e. γ − 1 = 1/n. The new similarity solution is an approximation of the real
solution under certain hypotheses. In terms of the original variables P and T , the constraint
represented by Eq. (46) reads

∫ RN (T )

0
(P − P0)

1/n Rd−1dR = Λ0

[
1 − exp(−λF1l T )

λF1l

]α

exp

(
−λ

n
T

)
, (50)

and implies an injection of mass with a different law with respect to the monomial expression
Λ0T α adopted in Eq. (42). Moreover, the leak-off mass is not included in the balance.
However, at short times the contribution of the leak-off to the integral mass balance can be
neglected since the value of F is usually very low, being kM/k0 ≈ 10−1 − 10−3 and being
the other coefficients in Eq. (43) of O(1). In addition, a small correction of the exponent α

renders

[
1 − exp(−λF1l T )

λF1l

]αcorr

exp

(
−λ

n
T

)
≈ T α, (51)

where αcorr is the corrected value of α, at least for a time interval 0 < T < Tmax, with αcorr

and Tmax depending on λ, F1l , n. Figure 7 shows the mass injection function for the original
problem and for the problem with leak-off for n = 0.5, F1l = 0.5, and λ = 0.001, 0.01. The
values αcorr = 1.008, 1.084 are computed imposing the mass injected in the system to be
identical at time T = 10.

Figure 8 shows the pressure distribution within the domain and the position of the pres-
sure front versus time, comparing results obtained with and without leak-off. We note that
the inclusion of the leak-off phenomenon entails a reduced speed of the pressure front and
reduced values of pressure at each section. A more intense leak-off (larger values of para-
meter F) increases the discrepancy with respect to the ‘sealed’ fracture model not including
leak-off.

Fig. 7 Mass injection function
for the original problem,
M(T ) ∝ T α with α = 1 (bold
line), and for the problem with
leak-off for F1l = 0.5 and
λ = 0.001 (dashed line) and 0.01
(dashdot line). The corrected
exponents are
αcorr = 1.008, 1.084,
respectively
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Fig. 8 Comparison between results without leak-off (continuous lines) and with leak-off (dashed lines) for a
constant injection rate (α = 1) in cylindrical geometry (d = 2). The mass flow rate is m0 = 1.0 kg s−1. Fluid
parameters are n = 0.75, μ̃ = 1.0 Pa sn , ρ = 1000 kgm−3. Domain parameters are β = 1.0, γ = 1+ 1/n =
2.33, λ = 0.00021. The mass leak-off factor is F = 0.048, and the corrected value of the injection exponent
for the approximated self-similar solution is αcorr = 0.999. a Left panel pressure distribution after 10–30min.
b Right panel front-end position against time

7 Conclusion

We have presented a novel model describing the one-dimensional diffusion of a pressure
front in generalized geometry (plane, radial, and spherical) due to the injection of a shear-
thinning fluid in a fractured medium, when the fractures widen proportionally to the pressure
level with a monotonic law. Upon starting the injection, the fluid widens the fractures and
flows at a progressively larger rate due to the increased permeability of the fractures and,
at a second stage, also filtrates into the porous matrix surrounding the fractures (leak-off
phenomenon).

The properties of the fractured medium controlling the process are the nominal storage
capacity φ0 and permeability k0, with the two exponents β > 0 and γ > 1 expressing the
permeability and compliance variation with pressure, respectively.

When the leak-off towards the porous matrix is negligible, a self-similar solution is
obtained when the injected mass increases with time according to m ∝ tα . A closed-form
expression is derived for an instantaneous injection (α = 0), while numerical integra-
tion is warranted for the general case α �= 0. When mass leak-off is included, the more
realistic case including mass leak-off can be solved via numerical integration of the dif-
ferential problem; an approximate self-similar solution can be obtained in the special case
γ = 1 + 1/n.

The self-similar solutions allow deriving the time behaviour of the pressure within the
domain, and the rate of advancement of the pressure front, as a function of model parameters.
An analysis of their effect on the solution suggests some combinations of parameters yield
unphysical results; hence, the possible ranges of variation of the parameters are defined with
the help of some critical values of the inflow rate α. In most cases of practical interest, a
constant injection rate (α = 1) entails a decelerated pressure front and a decay over time of the
pressure within the domain. The pressure diffusion is faster for high volumetric compliance
(γ ) and low permeability compliance (β). Very shear-thinning (n � 1) fluids propagate
faster than shear-thinning or quasi-Newtonian fluids. The effect of leak-off is the reduced
speed of the pressure front and lower pressure within the domain. In general, the pressure
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at the origin decays quite fast and is highly sensitive to the fluid rheological characteristics
and to the mass discharge. In a linear or cylindrical geometry (d = 1, 2), a constant influx
(α = 1) always generates a time-increasing pressure and a decelerated pressure front. In
radial geometry (d = 3), the same behaviour is obtained provided n < 1/2; otherwise, the
pressure is time-decreasing.

Appendix

The purpose of this Appendix is to illustrate the combinations of model parameters γ, β, α

associated with a decelerated (F2 − 1 < 0), constant-speed (F2 − 1 = 0), or accelerated
pressure front (F2 − 1 > 0), respectively; the fluid rheology (n) and the domain geometry
(d) are not subject to constraints. First of all, the critical parameters listed in Table 1 are
derived; the parameters γ1 and β1 are those reported in Sect. 4 discussing the positivity of
the exponent F2. The combinations of parameters leading to F2 − 1 � 0 are reported in
Table 2 for plane geometry and in Table 3 for cylindrical and spherical geometry. Tables 2
and 3 include the conditions derived in Sect. 4 for the positivity of F2. Note that when
the conditions γ > γi , i = 1, 2 appear, it is also implied that γ < γ0 for d = 3, as the
latter condition is required for the validity of the solution in spherical geometry; there is no
contradiction since for d = 3, γi < γ0 for all combinations of parameters.

Table 1 Critical parameters γ1(n), γ2(n, d), β1(n, γ ), β2(n, γ, d), α1(n, γ, β, d) for plane geometry (d = 1,
first column) and cylindrical or spherical geometry (d = 2, 3, third column). Parameters in the second column
hold for d = 1, 2, 3

d = 1 d = 1, 2, 3 d = 2, 3

γ1
n + 3

n + 1

γ2 − d(n + 3) − 2

d(n + 1) − 2

β1
(γ − 1)(n + 1) − 2

n + 1

β2 − (γ − 1)[d(n + 1) − 2] − 2d

d(n + 1)

α1
d[(n + 1)(β − γ + 1) + 2] + 2(γ − 1)

(n + 1)(β − γ + 1) + 2

Some critical parameters are defined only beyond a threshold value of (an)other critical parameter(s): β1 for
γ > γ1, β2 for γ > γ2, α1 for γ ≤ γ1 ∨ (γ > γ1 ∧ β > β1) ∨ (d > 1 ∧ γ > γ2 ∧ β < β2)

Table 2 Conditions for decelerated (F2 < 1), constant-speed (F2 = 1), and accelerated (F2 > 1) pressure
front for plane geometry (d = 1)

F2 < 1 (∀γ ∧ ∀β ∧ α = 0) ∨ (γ > γ1 ∧ β < β1 ∧ α < α0)∨
(γ ≤ γ1 ∧ ∀β ∧ α < α1) ∨ (γ > γ1 ∧ β > β1 ∧ α < α1)

F2 = 1 (γ > γ1 ∧ β = β1 ∧ ∀α) ∨ (γ ≤ γ1 ∧ ∀β ∧ α = α1) ∨ (γ > γ1 ∧ β > β1 ∧ α = α1)

F2 > 1 (γ ≤ γ1 ∧ ∀β ∧ α > α1) ∨ (γ > γ1 ∧ β > β1 ∧ α > α1)
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Table 3 Conditions for decelerated (F2 < 1), constant-speed (F2 = 1), and accelerated (F2 > 1) pressure
front for cylindrical and spherical geometry (d = 2, 3)

F2 < 1 (γ1 < γ ≤ γ2 ∧ β ≤ β1 ∧ α < α0) ∨ (γ > γ2 ∧ β2 < β ≤ β1 ∧ α < α0)∨
(γ ≤ γ2 ∧ ∀β ∧ α = 0) ∨ (γ > γ2 ∧ β > β2 ∧ α = 0) ∨ (γ > γ2 ∧ β = β2 ∧ 0 < α < α0)∨
(γ ≤ γ1 ∧ ∀β ∧ α < α1) ∨ (γ > γ1 ∧ β > β1 ∧ α < α1) ∨ (γ > γ2 ∧ β > β2 ∧ α1 < α < α0)

F2 = 1 (γ > γ2 ∧ β = β2 ∧ α = 0) ∨ (γ ≤ γ1 ∧ ∀β ∧ α = α1)∨
(γ > γ1 ∧ β > β1 ∧ α = α1) ∨ (γ > γ2 ∧ β < β2 ∧ α = α1)

F2 > 1 (γ ≤ γ1 ∧ ∀β ∧ α > α1) ∨ (γ > γ1 ∧ β > β1 ∧ α > α1) ∨ (γ > γ2 ∧ β < β2 ∧ α < α1)
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