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Effects of Reynolds number on the heat transfer characteristics of a long (heated) equilateral triangular cylinder are investigated
for the range of conditions Re = 50–150 (in the steps of 10) and Prandtl number = 0.71 (air) in the unconfined unsteady cross-
flow regime. In order to simulate the present situation, the computational grid is created by using commercial grid generator
GAMBIT and the numerical computations are carried out by using FLUENT (6.3). The SIMPLE method is used to solve continuity,
Navier-Stokes and energy equations along with the appropriate boundary conditions. The second order upwind scheme is used
to discretize the convective terms, while the central difference scheme is used to discretize the diffusive terms in the governing
equations. The present results are in an excellent agreement with the literature values. The temperature isotherms and temporal
history of Nusselt number are presented in detail. The local as well as time-averaged Nusselt numbers are calculated. The time-
averaged Nusselt number increases with increasing Reynolds number for the fixed value of the Prandtl number. Finally, the present
numerical results are used to develop the simple heat transfer correlation for the range of conditions covered here.

1. Introduction

The fluid flow over bluff bodies (e.g., cylinders) has been
the topic of intense research for a century or so because of
its importance in various engineering applications, such as
electronic cooling, heat exchange systems, cooling towers,
design of vortex flow meters and flow dividers, probes
and sensors, and so forth. On the other hand, in spite of
such wide applications, limited information is available in
the open literature as far as forced convection flow and/or
heat transfer from noncircular obstacles such as triangular,
trapezoidal, and rectangular cylinders are concerned [1–17].
This has motivated us to examine the heat transfer around
an obstacle of triangular cross-section in the unsteady flow
regime. For instance, as far as known to us, the fluid
flow and/or heat transfer across a triangular cylinder are
investigated only by a few researchers in both unbounded
[6–10] and bounded [11–13] configurations. The numerical
investigations dealing with the heat transfer from a long
unconfined square cylinder can be found in [18–22]. Further,
a healthy literature on the heat transfer from the unconfined
obstacle of circular cross-section can be found elsewhere

[23–35]. This study is concerned with the heat transfer
from a long equilateral triangular obstacle in the unsteady
unconfined flow regime.

Jackson [6] examined the onset of periodic behavior
over variously shaped bodies, such as circular and elliptical
cylinders, triangular prisms, and flat plates, by using finite
element method in the two-dimensional unbounded flow

regime. Zielinska and Wesfreid [7] performed 2-D numerical

simulation of the flow through a triangular cylinder to obtain
global modes of wake flow for the range of conditions:
Reynolds number = 34–50 and blockage ratios = 1/5 and

1/15 in the bounded configuration. Wesfreid et al. [8] carried

out 2-D numerical simulations for the fluid flow over an
equilateral triangular bluff body for a blockage ratio of
1/15. They reported the critical Reynolds number of 36.2

for the onset of the oscillations. De and Dalal [9] carried

out 2-D numerical investigations of the fluid flow across an
equilateral triangular cylinder in the unconfined space in
the Reynolds number range 10 ≤ Re ≤ 250. They studied
global modes in wake flow, and the value of critical Reynolds
number for triangular cylinder is reported to be 39.9.
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As far as heat transfer from a long triangular obstacle is
concerned, Chattopadhyay [11] has done a 2-D numerical
study on the augmentation of heat transfer in a channel due
to triangular prism at very high Reynolds numbers in the
order of 10,000. Abbassi et al. [12] carried out the 2-D forced
convection in a channel with a built-in triangular prism for
the Reynolds number = 20–250 and Prandtl number of 0.71
for a fixed blockage ratio of 1/4. They found an enhancement
of about 85% in the heat transfer at a Reynolds number of
250. Recently, De and Dalal [13] investigated the flow and
heat transfer across an equilateral triangular cylinder placed
in a 2-D confined space with blockage ratios of 1/12≤ β ≤1/3
for the range 80≤ Re≤ 200 and Pr = 0.71. They reported the
variation of drag coefficient, Strouhal number, lift coefficient,
and Nusselt number with respect to Reynolds number. More
recently, Dalal et al. [10] proposed a novel finite-volume
formulation for unsteady solutions on complex geometries.
They presented a computational study of 2-D laminar flow
and heat transfer past a triangular cylinder in free stream for
the range 10 ≤ Re ≤ 200 and Pr = 0.71. The time-averaged
Nusselt number increases quasilinearly with increasing value
of the Reynolds number. However, very limited information
is available on the variation of the local Nusselt number, and
no information is available on the temporal variation of the
Nusselt number with Reynolds number.

Thus, as far as known to us, it can be summarized that
there is only one limited study due to Dalal et al. [10]. The
work in [10] is available in the open literature on the heat
transfer from an unconfined equilateral triangular cylinder
in the 2-D unsteady flow regime. Therefore, the aim of
this work is to provide the detailed systematic study on the
heat transfer from a cylinder of triangular cross-section in
the unconfined (periodic) flow regime. In particular, the
heat transfer from a long equilateral triangular cylinder is
investigated for the Reynolds number range Re = 50–150 (in
the steps of 10) for air (Pr = 0.71). The heat transfer char-
acteristics around the triangular obstacle are presented by
instantaneous isotherm profiles and by temporal history of
the Nusselt number at various values of the Reynolds number
for the fixed value of the Prandtl number. The variation of the
local Nusselt number on the surfaces of the triangular cylin-
der is shown. Finally, the simple heat transfer correlation
is obtained in order to calculate the time-averaged Nusselt
number for the range of conditions covered here.

2. Problem Statement and Mathematical
Formulation

In the present study, the two-dimensional and unsteady
(periodic) flow of an incompressible fluid (with a uniform
velocity, U∞, and uniform temperature, T∞, at the inlet)
across a long equilateral triangular cylinder (of side d)
is considered, as shown in Figure 1. The surface of the
triangular obstacle is maintained at a constant temperature,
T∗w (> T∞). The thermophysical properties of the streaming
fluid are assumed to be independent of the temperature, and
the viscous dissipation effects are also neglected. Here, the
unconfined flow condition is simulated by creating an arti-
ficial long channel; however, as the computational domain
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cylinder, Vx = 0,Vy = 0,Tw

Figure 1: Schematics of the unconfined flow across an equilateral
triangular cylinder.

has to be finite, the nondimensional upstream distance,
Xu/d, is taken as 12, and the nondimensional downstream
distance between the rear surface of the triangular cylinder
and the exit plane (Xd/d) is taken as 20, with the total
nondimensional length of the computational domain (L1/d)
of 32 in the axial direction. The height of the computational
domain (L2/d) is used as 30 in the lateral direction.

The dimensionless equations of the continuity, x-, and
y-momentums, and energy balances are given by (1)–(4).
Here, the Reynolds and Prandtl numbers are defined as Re =
dU∞ρ/µ and Pr = µcp/k, respectively.

Continuity Equation:
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Energy Equation:
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The following boundary conditions in their dimensionless
forms are used (Figure 1).

(i) At the inlet boundary: isothermal fluid is flowing
uniformly from left to right, that is, Vx = 1, Vy = 0,
and θ = 0.
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(ii) On the surface of the triangular obstacle: No-slip
condition is used, that is, Vx = 0, Vy = 0 and θ = 1.

(iii) At the exit boundary: the default outflow boundary
condition in FLUENT, which assumes a zero diffu-
sion flux for all flow variables, is used. This is similar
to Neumann boundary condition as ∂Vx/∂x =

0, ∂Vy/∂x = 0, and ∂θ/∂x = 0.

(iv) On the top and bottom boundaries: the symmetric
boundary condition used by FLUENT is used.

The above continuity, x- and y-momentum, and thermal
energy equations (1)–(4) along with the above-noted bound-
ary conditions are solved for the fluid flow and heat transfer
over a long equilateral triangular obstacle to obtain velocity,
pressure, and temperature fields. However, the present study
is concerned with the heat transfer from an equilateral
triangular cylinder in the unconfined unsteady flow regime.

3. Numerical Details

In the present work, the grid structure consists of
nonuniform orthogonal cells having 116500 cells with
200 grid points on each side of the triangular cylinder
and a very fine grid of cell size, δ = 0.0015 d, is used
near the triangular cylinder, and larger size grids are used
away from the triangular cylinder (details are given in
Section 3.1), as shown in Figure 2. The number of grid
points and their distribution are an important matter in
such unsteady laminar flow over cylinders, because of the
complex phenomena existing in this type of flow due to
separation and vortex shedding, and so forth.

The fluid flow and heat transfer over a long unconfined
equilateral triangular obstacle are solved by using commer-
cial CFD solver FLUENT (6.3). FLUENT uses finite volume
method, according to which, it is assumed that volume
is made up of a large number of small control volumes,
which are regular parallelepiped. The governing equations
are valid over all such control volumes. Hence, equations
can be discretized to be written in algebraic form to be
solved. The values at the finite volumes can be summed up
to get the value over entire domain. The grid is generated
by using GAMBIT. The second-order upwind scheme is
used to discretize convective terms while the diffusive terms
are discretized by central difference scheme. The resulting
algebraic equations are solved by Gauss-Siedel iterative
scheme. A convergence criterion of 10−20 is found to be
adequate for continuity, x- and y-components of Navier-
Stokes, and energy equations to determine the flow and
heat transfer parameters here. Also, the solution is assumed
to have converged, when it shows more than 10 constant
periodic cycles in the time history profiles.

3.1. Choice of Numerical Parameters. In this subsection, heat
transfer calculations are carried out in order to fix the grid
size, upstream and downstream distances, and the height of
the computational domain for the heat transfer parameters
in the unconfined unsteady regime.

For the grid resolution study, several nonuniform
orthogonal grids (with 100 and 200 grid points on each side
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Figure 2: Nonuniform computational grid structure.

of the triangular obstacle and having a first grid point at
distances of 0.004d, 0.0015d, and 0.001d) are examined
for Xu = 12d, Xd = 20d, and L2 = 30d (Table 1). The
computational grid structure used in this work is presented
in Figure 2. Table 1 also presents the grid independence
results for the value of the Reynolds number of 100 and
Prandtl number of 0.71. The percentage relative differences
in the values of the time-averaged Nusselt number are found
to be less than 0.4% for the grid with 200 grid points on
the each side of the triangular cylinder and having a first
grid point at a distance of 0.004 d with respect to the finest
grid size (δ = 0.001d) for the Reynolds number of 100 and
Prandtl number of 0.71. However, the percentage relative
differences in the values of the time-averaged Nusselt number
are found to be only less than 0.2% for the grid with 200 grid
points on the each side of the triangular cylinder and having
a first grid point at a distance of 0.0015 d with respect to the
finest grid size of 0.001d. Thus, the grid with 200 grid points
on the surface of the triangular cylinder and δ = 0.0015d are
used in all the computations reported in this work.

The domain independence study is carried out for two
values of the height of the computational domain, that
is, L2 = 20d and 30d for δ = 0.0015d with 200 grid
points prescribed on each surface of the triangular cylinder.
The percentage differences in the values of time-averaged
Nusselt number are found to be less than 0.3% for the value
of Reynolds number of 100 and Prandtl number of 0.71.
Therefore, in this work, the computational domain height
of 30d is used with δ = 0.0015d and 200 grid points on
each surface of the triangular cylinder for Xu = 12d and
Xd = 20d.

In order to determine the effect of the upstream distance
on the heat transfer parameters, two values of the upstream
distance are used, that is, Xu = 9d and 12 d with δ = 0.0015d
and 200 grid points on the surface of the cylinder for Xd =

20d, for Re = 100, and Pr = 0.71. The percentage differences
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Table 1: Grid independence study for the value of the Reynolds
number of 100 and Prandtl number of 0.71.

Re
Total number of
cells in the domain

Spacing of the first
grid point from the
cylinder

Time-averaged
Nusselt number

100

116500 0.004 d 5.5961

116500 0.0015 d 5.5843

116500 0.001 d 5.5741

Table 2: Validation of present flow results with literature values for
Re = 50, 100 and 150.

Re
Present work De and Dalal [9]

St CD St CD

50 0.1455 1.5257 0.1505 1.5420

100 0.1916 1.7316 0.1966 1.7607

150 0.2041 1.8937 0.2015 1.8750

Table 3: Validation of time-averaged Nusselt number with the
results of Dalal et al. [10] for Re = 80, 100, and 150 for Pr = 0.71.

Source Re = 80 Re = 100 Re = 150

Present work 4.8711 5.5843 7.0447

Dalal et al. [10] 4.954 5.67 7.31

in the values of time-averaged Nusselt number are found to
be less than 0.25%. Thus, the upstream distance of 12 d is
used here.

In summary, the following parameters have been used
for the generation of results presented here as Xd = 20d,
Xu = 12d, L2 = 30d for the grid size of 116500 with 200
grid points on the each surface of the triangular cylinder, and
δ = 0.0015d.

4. Results and Discussion

In this study, the two-dimensional numerical simulations are
carried out in the full computational domain for the range of
conditions: Reynolds number = 50–150 (in the steps of 10)
and Prandtl number = 0.71 (air).

4.1. Validation of Results. The comparison of present flow
results and that of De and Dalal [9] of time-averaged drag
coefficient and Strouhal number for the Reynolds number
of 50, 100, and 150 are shown in Table 2. An excellent
agreement between the two studies can be seen in this table.
For instance, the percentage deviations in the values of the
time-averaged drag coefficient are found to be less than 3.5%,
less than 2.6%, and less than 1.3% for the values of the
Reynolds number of 50, 100, and 150, respectively. However,
the corresponding deviations in the values of the Strouhal
number are found to be less than 1.1%, less than 1.7%, and
less than 1.0% for the values of the Reynolds number of 50,
100, and 150, respectively.

For the validity of the heat transfer results, the present
heat transfer results are compared with Dalal et al. [10] in
Table 3. Again, the excellent agreement can be seen here
between the two studies. The percentage deviations in the
values of the time-averaged Nusselt number are found to
be less than 1.7%, less than 1.55%, and less than 3.65%
for the values of the Reynolds number of 80, 100, and 150,
respectively. This validates the present numerical solution
procedure.

The following subsections present the details about the
temperature fields around the triangular obstacle, variation
of the Nusselt number with time (i.e., temporal history of the
Nusselt number), the variation of local and time-averaged
Nusselt number with Reynolds number, and so forth.

4.2. Isotherm Patterns. The effects of Reynolds number on
the heat transfer around the long equilateral triangular
obstacle are presented via instantaneous isotherm profiles for
the fixed value of the Prandtl number of 0.71. Figures 3–
5(a–d) present the representative instantaneous temperature
profiles around the triangular cylinder for the Reynolds
numbers of 50, 100, and 150 for the four successive moments
of time, which span over the whole period (i.e., t = 0,
T/4, 2T/4, and 3T/4, for instance). Note that in Figures 3,
4, and 5, (a) will be repeated after (d) for the next cycle.
However, the magnified views of isotherms in the vicinity
of the triangular cylinder can be seen in Figures 3–5(e–h).
It is clear from these figures that a temperature street is
formed behind the triangular obstacle, which is very similar
to Karman vortex street for all the values of the Reynolds
number covered in this work. It can also be seen in these
figures that the top and bottom surfaces of the triangular
obstacle have the maximum clustering of isotherms, which
result in high temperature gradients as compared to the
rear surface of the triangular cylinder. Also, as the Reynolds
number increases, the distribution of isotherms on the rear
surface of the triangular cylinder affects more than that of the
top and bottom surfaces of the triangular cylinder with time
due to vortex shedding for the range of conditions covered
here (Figures 3, 4, and 5).

4.3. Local Nusselt Number. In this study, the local Nusselt
number (Nu) is defined as −∂θ/∂n, where n is the cylinder
surface normal direction. Due to the singularity at the
corner of the triangular obstacle, special attention is paid
to the role of the grid size on the value of the local Nusselt
number at each corner of the long triangular cylinder.
It is found that the grid with 200 cells on each side of
the triangular obstacle is sufficiently fine to obtain results
that are essentially grid independent. The variation of the
instantaneous local Nusselt number for the four successive
moments of time, which span over the whole period, for
Reynolds numbers of 50, 100, and 150 is shown in Figures
6(a–c). The corresponding enlarged views are presented in
Figures 6(d–f). The local Nusselt number at each corner
of the triangular cylinder increases with increasing value
of the Reynolds number. It can be seen from these figures
that there exists a local minimum in the value of the local
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Figure 3: Instantaneous isotherm profiles at the Reynolds number of 50: complete views (a–d) along with the magnified views of isotherms
in the vicinity of the triangular cylinder (e–h).
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Figure 8: Variation of (a) time-averaged Nusselt number and (b) rms value of Nusselt number with Reynolds number.

Nusselt number on the top surface (i.e., near the top-rear
corner) of the triangular cylinder (Figure 6) for all the four
successive moments of time considered here at different
values of the Reynolds number. Similar to the top surface, the
local minimum in the Nusselt number on the bottom surface
exists near the bottom-rear corner of the triangular cylinder.
On the other hand, a local maximum in the value of the local
Nusselt number on the rear surface of the triangular cylinder
can also be seen, especially at higher values of Reynolds
number in Figure 6 and is increasing with increasing value
of the Reynolds number. Also, this maximum in the value of
the local Nusselt number on the rear surface of the triangular
obstacle fluctuates from the top-rear corner to bottom-rear
corner and vice versa for the four successive moments of

time, which span over the whole period. This is due the
symmetrically shedding of vortices from the top-rear and
bottom-rear corners of the triangular obstacle. It is also
clear from these figures that the distribution of local Nusselt
number on the rear surface affects more than that of the top
and bottom surfaces of the triangular obstacle with time due
to vortex shedding in the unconfined unsteady regime.

4.4. Time History of Nusselt Number. The temporal varia-
tions of the Nusselt number for the values of the Reynolds
number of 50, 80, 100, 120, and 150 are shown in Figures
7(a–e). However, the corresponding magnified views of the
time history of the Nusselt number at different values of the
Reynolds number are presented in Figures 7(f–j). Here, the
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Figure 9: Variation of the Colburn heat transfer factor ( jh) with
Reynolds number for the fixed value of the Prandtl number.

instantaneous values of the Nusselt number are calculated
at each time step and plotted versus time. Initially, the
value of the Nusselt number fluctuates (Figures 7(a–e)) and
finally stabilizes (Figures 7(f–j)) with time for all the cases
considered. It is also clear from these figures that Nusselt
number increases with increasing value of the Reynolds
number.

4.5. Average Nusselt Number. In this study, the average
Nusselt number is calculated by averaging the local Nusselt
number over the surfaces of the long equilateral triangular
obstacle. The time-averaged Nusselt number is calculated
by averaging 10 cycles beyond the time the asymptotic
shedding frequency of the Karman vortex is attained. The
time-averaged values of the Nusselt number are presented
in Figure 8(a). The time-averaged Nusselt number increases
monotonically with increasing value of the Reynolds number
for the Prandtl number of 0.71. Further, these time-averaged
values of the Nusselt number are utilized to obtain the simple
heat transfer correlation for the range of physical parameters
covered here;

−

Nu= 0.3638× Re0.5924. (5)

The above correlation has the maximum deviation of less
than 0.5% with the present computed results for the range
of conditions as 50 ≤ Re ≤ 150 and Pr = 0.71.

The rms values of the Nusselt number are also calculated
here, as presented in Figure 8(b). The rms value of the Nus-
selt number increases with increasing value of the Reynolds
number. In order to give further insights, the present results
are also presented in terms of the usual Colburn heat transfer
factor ( jh) to show the functional dependency of the flow
and heat transfer parameters [20–22, 35]. Figure 9 shows the

variation of the jh-factor with Reynolds number. The jh-
factor varies approximately linearly with Reynolds number
for the fixed value of the Prandtl number for the range of
conditions covered here.

5. Conclusions

In the present study, the unsteady heat transfer across a
long equilateral triangular cylinder is simulated for the
range of conditions: Reynolds number = 50–150 (in the
steps of 10) and Prandtl number = 0.71 (air) in the
unbounded unsteady flow regime. The detailed heat transfer
characteristics around the triangular obstacle are presented
by instantaneous temperature profiles and by the temporal
variation of the Nusselt number with Reynolds number. The
local Nusselt number at each corner of the triangular cylinder
increases with increasing value of the Reynolds number.
The time-averaged Nusselt number increases monotonically
with increasing value of the Reynolds number for the fixed
value of the Prandtl number. Finally, simple heat transfer
correlation is obtained for the above range of conditions.

Nomenclature

d: side of an equilateral triangular cylinder, m
−

CD: time-averaged drag coefficient
cp: specific heat of the fluid, J/kg K
h: local convective heat transfer coefficient, W/m2 K

h: average convective heat transfer coefficient, W/m2 K

jh: Colburn factor for heat transfer [=
−

Nu /(Re×Pr1/3)]
k: thermal conductivity of the fluid, W/m K
L1: length of the computational domain, m
L2: height of the computational domain, m
n: cylinder surface normal direction
Nu: local Nusselt number (=hd/k)

Nu: time-averaged Nusselt number (=
−

h d/k)
Nurms: root mean square (rms) value of Nusselt number
p: pressure [=p∗/(ρU2

∞
)]

Pr: Prandtl number [=µcp/k]
Re: Reynolds number [=dU∞ρ/µ]
St: Strouhal number
t: time [=t∗/(d/U∞)]
T : time period
T∗w : constant wall temperature at the surface of the

cylinder, K
T∞: temperature of the fluid at the inlet, K
U∞: uniform velocity of the fluid at the inlet, m/s
Vx: component of velocity in the x-direction [=V∗

x /U∞]
Vy : component of velocity in the y-direction

[=V∗

y /U∞]

x: stream-wise coordinate (= x∗/d)
Xd: downstream distance of the cylinder, m
Xu: upstream distance of the cylinder, m
y: transverse coordinate (= y∗/d).

Greek Symbols

θ: temperature [=(T∗ − T∞)/(T∗w − T∞)]
µ: dynamic viscosity of the fluid, Pa s
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ρ: density of the fluid, kg/m3

δ: smallest cell size, m.

Subscripts

b: bottom surface of the triangular cylinder
r: rear surface of the triangular cylinder
t: top surface of the triangular cylinder
w: surface of the triangular cylinder
∞: inlet condition.

Superscript

∗: dimensional variable.
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