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We investigate the unsteady hydrodynamic force of solid objects vertically entering water with 
an air cavity behind the falling body. Physical models are proposed to represent the force 
components corresponding to the body acceleration, the gravity and the velocity of the body and 
the fluid particles. The theoretical or numerical solutions of the physical models are presented to 
understand the evolution of the force components. The body-acceleration force component is 
expressed as the high-frequency added mass times the body acceleration. Near the undisturbed 
free surface, the added mass grows strongly with increasing the submerged depth. It tends to be 
steady after the submerged depth is greater than a few characteristic lengths. The gravity force 
component consists of an upward hydrostatic term and a downward dynamic term. Generally, 
the hydrostatic term, which is obtained by integrating the gravity term in the Bernoulli’s equation 
over the wetted body surface, is much larger than the gravity force component. For the three-
dimensional bodies, the gravity force component is found to vary as a power of the submerged 
depth, where the exponent is about 0.83. The velocity force component is represented as the drag 
coefficient defined by the V-squared law, which is characterized by the body geometry. The drag 
coefficient may experience three successive stages with increasing the submerged depth. 

 
I. INTRODUCTION 

Solid objects entering a water (liquid) surface often involves large unsteady hydrodynamic loads 
and rapid deformation of free surface. The phenomena are of great interest to the study of seaplane 
landing,1 ship slamming,2 planning vessels,3 air-to-sea projectiles,4-7 and the impacting of waves on solid 
structures.8-9 Even the relevant hydrodynamics play an important role in biological creatures walking on 
water.10-11 The initial stage of water entry, characterized by the jet flow on the body surface, has been 
widely studied.12-23 During this period, the hydrodynamic force on the body is dominated by the change 
rate of momentum of the added fluid mass, which can be related to the change rate of area of the wetted 
body surface.1, 2, 24 If the water-entry speed is sufficiently large, an air cavity will be formed behind the 
falling body.7 The cavity expands at the beginning and the gravity effect resists the expansion of the 
cavity causing its contraction and pinch-off (closure).25 This stage involves two important aspects: (i) the 
evolution of the air cavity behind the falling body; and (ii) the hydrodynamic force on the body. The 
cavity dynamics of solid objects vertically entering the water surface have been extensively 
investigated,4-6, 11, 24-32 since Worthington & Cole’s work26. The hydrodynamic force on the body is 
essentially transient and it plays key role in modeling the projectile dynamics. Very few literatures can 
be found on the deep investigation of the transient hydrodynamic force, which is the focus of the present 
work. 
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Plesset & Shaffer studied the drag force of the steady cavity flow past symmetrical wedges.33 A 
cavitation number of zero results in an infinite cavity, which corresponds to the limiting state of a wedge 
vertically entering the water surface with constant speed in a gravity-free environment. It was reported 
that the predicted drag coefficients of zero cavitation number agree well with experimental data.34 May 
& Woodhull investigated the drag coefficients of steel spheres entering water vertically.35 The drag 
coefficient was defined by the relation 𝐶஽ = drag/(0.5𝜌𝑉ଶ𝜋𝑅ଶ), where 𝜌 is the density of the water, 𝑉 is the velocity of the sphere, and R is the radius of the sphere. For the evaluation of the drag coefficient 
defined by the V-squared law, they suggested excluding all forces having a different independence on V. 
Then the equation of motion of the body was expressed as 𝑀 ௗ௏ௗ௧ = 𝑀𝑔 − 𝐶஽ ଵଶ 𝜌𝑉ଶ𝜋𝑅ଶ − 𝜌𝑔ℎ𝑆 + (𝑝௖ − 𝑝௔)𝑆,                  (1)            

where M is the mass of the sphere, 𝑔 is the acceleration of gravity, ℎ is the submerged depth of the 
sphere, 𝑆 is the projected wetted area, 𝑝௖ is the cavity pressure and 𝑝௔ is the atmospheric pressure. 
Their analysis used 𝑆 = 0.45𝜋𝑅ଶ instead of the measured value 0.8𝜋𝑅ଶ for the evaluation of the term, 𝜌𝑔ℎ𝑆, giving satisfactory results. It implies that the force obtained by directly integrating the hydrostatic 
term in the Bernoulli’s equation over the wetted body surface strongly overestimates the force due to the 
gravity effect, which is confirmed by Yan et al.31. The reason for this will be explained by the present 
work and the proper method for the evaluation of the force due to the gravity effect will be proposed. 
The force due to the body acceleration, i.e. the added mass force, was neglected. It is safe because in 
their study the mass ratio defined by 𝐷 = 𝑀/𝐴ଷଷ (𝐴ଷଷ is the vertical added mass of the sphere and is 
estimated as 𝜌𝜋𝑅ଷ/3) is as large as about 31 and the Froude number, 𝐹𝑛 = 𝑉/ඥ𝑔𝑅, is sufficiently high. 
The added mass force should appear as an independent term at relatively small mass ratios and Froude 
numbers.32 Furthermore, the last term in Eq. (1) is due to the air flow and can be neglected at relatively 
small entry velocities.32, 36-37 
 In this work, the unsteady hydrodynamic force of solid objects vertically entering water with an air 
cavity behind the falling body is deeply investigated within the framework of potential flow. By 
neglecting the surface tension and the air flow, the hydrodynamic force is decomposed into the 
components corresponding to the following physics: i) the body acceleration; ii) the gravity; and iii) the 
velocity of the body and the fluid particles. Exact physical models are proposed to represent the force 
components. The physical models for the force components dependent on the body acceleration and the 
gravity are simplified by assuming a uniform air cavity, which gives good results. The 
numerical/analytical solutions of the physical models are presented for understanding the evolution of 
the force components. The key physical parameters of affecting the force components are explored and 
discussed in details.  
 
II. DECOMPOSITION OF UNSTEADY FORCE 

Consider a solid object with mass M and breadth 2c0 vertically impacting the still water surface 
with initial entry speed V0. The surface tension 𝜎 can be neglected provided that the Weber number 𝑊 = 𝜌𝑉଴ଶ𝑐଴/𝜎 ≫ 1. Viscous effects may be excluded within the short duration of the impact and for 
high Reynolds number 𝑅𝑒 = 𝜌𝑉଴𝑐଴/𝜇. Further, we neglect the influence of the air flow. Then the impact 
is characterized by the body geometry, the Froude number 𝐹𝑛 = 𝑉଴/ඥ𝑔𝑐଴ , and the mass ratio 𝐷 =𝑀/𝐴ଷଷ . Here, the vertical added mass 𝐴ଷଷ  of the body can be estimated as 0.5𝜌𝜋𝑐଴ଶ  for two-
dimensional cases and 4𝜌𝑐଴ଷ/3 for three-dimensional cases. 
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Fig. 1. Sketch of a symmetrical body vertically entering the water surface. V denotes the instantaneous 
speed of the body. 
 

Fig. 1 illustrates a symmetrical body vertically entering the water surface with an open cavity behind 
the falling body. Ω denotes the water domain, 𝑆ி the free-surface boundary and 𝑆஻ the wetted body 
boundary. In the two-dimensional space, a Cartesian coordinate system is adopted: the 𝑥-axis is along 
the horizontal direction and coincides with the still water surface; the 𝑧 -axis is along the vertical 
direction in the center plane of the body and is positive upwards. In the three-dimensional space, a 
cylindrical coordinate system is adopted: the radial axis, r-axis, is parallel to the still water surface; the 𝑧-axis coincides with the symmetrical axis of the body and is positive upwards. These notations and 
coordinate systems are used throughout the paper. 

Assuming that the flow is irrotational and the water is incompressible, the water flow can be well 
represented by the potential-flow model.30, 37 The velocity potential satisfying Laplace’s equation  ∇ଶ𝜑 = 0                                         (2)        
is introduced. The local velocity is given by 𝐮 = ∇𝜑. On the wetted body surface, 𝑆஻, the impermeability 
boundary condition holds 

                     డఝడ௡ = 𝐕 ∙ 𝐧 ,                                       (3)                                                                                           

where 𝐧 is the interior normal to the boundary surface. The water velocity far away from the body 
should vanish   ∇𝜑 = 0.                                       (4)                                                               
On the free surface, 𝑆ி, fully nonlinear kinematic and dynamic boundary conditions are satisfied ஽𝑿஽௧ = ∇𝜑,                    (5) 

 ஽ఝ஽௧ = ଵଶ |∇𝜑|ଶ − 𝑔𝑧.                                  (6)                                                                                                

Here, 𝑿 is the position vector of the water particle and the operator, ஽஽௧ : = డడ௧ + ∇𝜑 ∙ ∇, is the substantial 
derivative following the water particle on the free surface. Based on the Bernoulli’s equation, the vertical 
force acting on the body is expressed as  𝐹௭ = 𝜌 ∫ ቀ𝑔𝑧 + డఝడ௧ + ଵଶ |∇𝜑|ଶቁ 𝑛௭ௌಳ 𝑑𝑠 .                         (7) 
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The 𝜕𝜑 𝜕𝑡⁄  term can be evaluated by solving the boundary value problem for the auxiliary function 𝜓 = 𝜕𝜑 𝜕𝑡⁄ + 𝐕 ∙ ∇𝜑. It can be proved that the auxiliary function 𝜓 satisfies the Laplace equation38 ∇ଶ𝜓 = 0.                                   (8)                                                                    
The Bernoulli’s equation gives the Dirichlet boundary condition for 𝜓 on the free surface 𝜓 = 𝐕 ∙ ∇𝜑 − ଵଶ |∇𝜑|ଶ − 𝑔𝑧 .                             (9)                                                                        

On the body surface, the boundary condition for 𝜓 can be derived as  డటడ௡ = 𝐕̇ ∙ 𝐧 .                                 (10) 

Far away from the body, 𝜓 should vanish  𝜓 = 0.                     (11) 
The solution of the function 𝜓 can be divided into three parts 𝜓 = 𝜓ଵ + 𝜓ଶ + 𝜓ଷ. 𝜓ଵ corresponds to 
the body acceleration and satisfies ∇ଶ𝜓ଵ = 0 in Ω,                (12.a) 𝜓ଵ = 0 on 𝑆ி,           (12.b) డటభడ௡ = 𝐕̇ ∙ 𝐧 on 𝑆஻,          (12.c) 𝜓ଵ → 0 at |𝑿| → ∞.          (12.d) 𝜓ଶ corresponds to the gravity effect and satisfies ∇ଶ𝜓ଶ = 0 in Ω,            (13.a) 𝜓ଶ = −𝑔𝑧 on 𝑆ி,          (13.b) డటమడ௡ = 0 on 𝑆஻,           (13.c)   𝜓ଶ → 0 at |𝑿| → ∞.          (13.d) 𝜓ଷ corresponds to the effect of the velocity of the body and the fluid particles and satisfies ∇ଶ𝜓ଷ = 0 in Ω,                                 (14.a) 𝜓ଷ = 𝐕 ∙ ∇𝜑 − ଵଶ |∇𝜑|ଶ on 𝑆ி,         (14.b) 

డటయడ௡ = 0 on 𝑆஻,            (14.c) 𝜓ଷ → 0 at |𝑿| → ∞.          (14.d) 
 
Then the vertical force can be rewritten as 𝐹௭ = 𝜌 ∫ 𝜓ଵ𝑛௭ௌಳ 𝑑𝑠ᇣᇧᇧᇧᇤᇧᇧᇧᇥ௧௛௘ ௔௖௖௘௟௘௥௔௧௜௢௡ ௧௘௥௠ + 𝜌 ∫ (𝑔𝑧 + 𝜓ଶ)𝑛௭ௌಳ 𝑑𝑠ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ௧௛௘ ௚௥௔௩௜௧௬ ௧௘௥௠  +𝜌 ∫ (𝜓ଷ − 𝐕 ∙ ∇𝜑 + ଵଶ |∇𝜑|ଶ)𝑛௭ௌಳ 𝑑𝑠ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ௧௛௘ ௩௘௟௢௖௜௧௬ ௧௘௥௠  .       (15)                                                                                                                  

The acceleration term, denoted as 𝐹௭(௔), is proportional to the body acceleration and can be written as 𝐹௭(௔) = −𝐴ଷଷ𝑉̇, where 𝐴ଷଷ is the high-frequency added mass of the solid object in the vertical direction. 

The gravity term, denoted as 𝐹௭(௚), consists of the ‘hydrostatic’ term 𝜌 ∫ 𝑔𝑧𝑛௭ௌಳ 𝑑𝑠 and an additional 

term 𝜌 ∫ 𝜓ଶ𝑛௭ௌಳ 𝑑𝑠 . The latter is called gravity-induced dynamic term, since the dynamic pressure 

component 𝜓ଶ is induced by the gravity. The velocity term, denoted as 𝐹௭(௩), is related to the body 
velocity and the velocity field of the water on the deformed free surface and on the body. So far, the 
unsteady hydrodynamic force has been exactly decomposed into three parts corresponding to different 
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physics. In the following section, these components of the unsteady force will be analyzed in details.  
 

III. INVESTIGATION OF FORCE COMPONENT 
The acceleration term 𝐹௭(௔), gravity term 𝐹௭(௚) and velocity term 𝐹௭(௩)are denoted as the a-term, g-

term and v-term force respectively, which are investigated by the numerical and analytical methods. 
A. Numerical model 

The water-entry problem represented by Eqs. (2)-(6) can be solved by the single-fluid boundary 
integral method. 37, 40 Here, we outline the key steps of the two-dimensional numerical model and then 
generalize it for three-dimensional axisymmetric water-entry flows.  

Using Green’s second identity, the two-dimensional velocity potential can be represented in the 
boundary integral equation (BIE): 𝜃 ∙ 𝜑(𝑥, 𝑧) = ∫ [log 𝑟  𝐧 ∙ ∇𝜑 − 𝜑 𝐧 ∙ ∇ log 𝑟]பஐ 𝑑𝑠(𝜉, 𝜂).                  (16)                                                                                         

Here, (𝑥, 𝑧) are the field point coordinates, (𝜉, 𝜂)  are the integration coordinates, 𝑟 =ඥ(𝜉 − 𝑥)ଶ + (𝜂 − 𝑧)ଶ, and n denotes the interior normal to the boundary ∂Ω of the water domain Ω. 
In the water, 𝜃 is equal to 2𝜋. On ∂Ω, 𝜃 is the local interior angle of the boundary. The boundary 
integral equation is solved by the linear element method: the boundary of the fluid domain is represented 
by straight line segments; 𝜑 and 𝜕𝜑 𝜕⁄ 𝑛 are assumed to vary linearly along each segment; the boundary 
integral equation is satisfied at the nodal points of segments, which results in the linear equation system 
for the solution of 𝜑 and 𝜕𝜑 𝜕⁄ 𝑛. It notes that other potential functions, such as 𝜓, can be also solved 
by the boundary integral method. The body motion and the water flow are solved in a decoupled manner, 
where the evolution of the free surface is tracked by a second-order Lagrangian method and the motion 
of the body by a first-order method. The position and velocity potential of the fluid particles on the free 
surface and the submergence depth, velocity and acceleration of the body, denoted as  𝑿௡, 𝜑௡ ℎ௡, 𝑉௡, 𝑉̇௡ respectively, are assumed known at time step n. To predict these parameters at step n+1, the following 
time-advancing schemes are adopted: i) solve the velocity potential represented in Eq. (16), based on 𝑿௡, 𝜑௡ ℎ௡ and 𝑉௡; ii) evaluate the potential gradient ∇𝜑௡ , solve 𝜓 for the vertical force 𝐹௭ based on ∇𝜑௡ and 𝑉̇௡, and use 𝐹௭ to compute 𝑉̇௡ାଵ by the Newton’s second law; iii) transport the body and the 
fluid particles on the free surface to the intermediate position based on 𝑉௡ and ∇𝜑௡, resulting in 𝑿∗, 𝜑∗ and ℎ∗ as the first prediction of 𝑿௡ାଵ, 𝜑௡ାଵ and ℎ௡ାଵ; iv) solve the velocity potential once more, 
based on 𝑿∗, 𝜑∗ ℎ∗ and 𝑉∗ = 𝑉௡ + 𝑉̇௡ାଵ∆𝑡, to obtain ∇𝜑∗; v) finally, we set 𝑿௡ାଵ = 𝑿௡ + ∆𝑡[∇𝜑௡ +∇𝜑∗]/2, 𝜑௡ାଵ = 𝜑௡ + ∆𝑡[( 𝐷𝜑/𝐷𝑡)௡ + ( 𝐷𝜑/𝐷𝑡)∗]/2, ℎ௡ାଵ = ℎ∗ and 𝑉௡ାଵ = 𝑉∗. To avoid the fluid 
particles becoming too close to each other or too far away from each other, the boundary is re-gridded 
every time step. 

The numerical model can be generalized to three-dimensional axisymmetric flows by just changing 
the boundary integral equation (16) to that for the three-dimensional axisymmetric flows,39 i.e. 𝜃 ∙ 𝜑(𝑟, 𝑧) = ∫ [𝜑 𝐧 ∙ ∇𝐺 − 𝐺 𝐧 ∙ ∇𝜑]பஐ 𝑟𝑑𝑠(𝜉, 𝜂).                      (17) 

Here,  𝑧 is the axial coordinate, r is the radial distance, and (𝜉, 𝜂) are the integration coordinates. The 

function G is defined as 𝐺 = 2𝐾(𝑚)/𝐴 , where 𝐾(𝑚) = ∫ ௗఏඥଵି௠మ ୱ୧୬మ ఏగ/ଶ଴   is the complete elliptic 

integral of the first kind, 𝐴 = ඥ(𝜉 + 𝑟)ଶ + (𝜂 − 𝑧)ଶ and 𝑚 = 2ඥ𝜉𝑟/𝐴. 
At each time step, the force components 𝐹௭(௔), 𝐹௭(௚) and 𝐹௭(௩)can be evaluated through solving Eqs. 

(12)-(14) by the boundary integral method. Fig. 2 illustrates the evolution of the vertical unsteady force 
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for the water entry of the wedge corresponding to Wang et al. ’s experiment.37 The wedge with a deadrise 
angle of 30o falls vertically into the calm water with an initial entry speed of 2.5m/s. The half breadth of 
the wedge is 0.083m and the mass 32.3kg/m. These parameters correspond to 𝐹𝑛 = 2.77 and the mass 
ratio of 3. The v-term force is dominant at the beginning and is decreasing with increasing the submerged 
depth, which is consistent with the deceleration of the wedge. The g-term force increases with the growth 
of the submerged depth and cannot be neglected when the wedge is deeply submerged. The ‘hydrostatic’ 
component strongly overestimates the g-term since the ‘dynamic’ component results in a significant 
downward force. The a-term force, i.e. the added mass force, seems negligible compared to the sum of 
the v-term force and the g-term force. After the closure of the cavity, the air compressibility matters 
resulting in the oscillation of the hydrodynamic force, which is beyond the scope of this work. 

 

Fig. 2. Evolution of the unsteady force for the vertical water entry of the wedge with deadrise angle 30o, 
initial entry speed 2.5m/s, half breadth 0.083m and mass 32.3kg/m. The numerical simulation ends at the 
closure of the cavity; h is the distance between the top of the wedge and the still water surface; c0 is the 
half breadth of the wedge. The experimental total hydrodynamic force in the z-direction is computed 
from the measured body acceleration through the Newton’s second law, i.e. 𝐹௭ = 𝑀(𝑔 − 𝑉̇). 
 

Fig. 3 illustrates the evolution of the vertical unsteady force for the water entry of the cone with the 
same parameters. We note that the mass ratio for the cone is defined by 𝐷 = 𝑀/(4𝜌𝑐03/3) and is 3. 
The evolution of the unsteady force for the cone is similar to that for the wedge. It has a higher percentage 
of g-term force with increasing the submerged depth. 
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Fig. 3. Evolution of the unsteady force for the vertical water entry of the cone with deadrise angle 30o, 
initial entry speed 2.5m/s, half breadth 0.083m and mass 2.29 kg. The numerical simulation ends at the 
closure of the cavity; h is the distance between the top of the cone and the still water surface; c0 is the 
half breadth of the cone. 
 

B. g-term force 
Wedge. First, we investigate the g-term force for the water entry of the wedges with the deadrise angle 
of 𝛽 and the half breadth of 𝑐଴. A simplified model is introduced: a uniform open cavity behind the 
body is assumed; the free-surface boundary above the still water surface is transferred to the still water 
surface; the body boundary keep unchanged; and all corresponding boundary conditions are the same as 
the fully nonlinear case, i.e. follow Eqs. (13.b)-(13.d). The model is illustrated in Fig. 4. We will show 
that the g-term force is not sensitive to the cavity configuration and is well approximated by the simplified 
model. It should be noted that similar simplified models will be used for the g-term force of different 
body geometries and also for a-term forces. 

 
Fig. 4. Simplified model for estimating the g-term force of a wedge vertically entering the water surface. 
The real free-surface boundaries are represented by the dashed lines, which are replaced by the solid 
lines FAB and DEF in the simplified model. 
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Let 𝜙 = 𝜓ଶ + 𝑔𝑧. Obviously, 𝜓ଶ corresponds to the ‘dynamic’ component and 𝑔𝑧 the ‘hydrostatic’ 
component. Integrating 𝜙  over the wetted body surface results in the g-term force. 𝜙  satisfies the 
Laplace equation and the following boundary conditions 𝜙 = 0, on the free surface,                                (18.a)  డథడ௡ = −𝑔 cos 𝛽, on the body boundary,                 (18.b) ∇𝜙 = 𝑔𝐤 at 𝑟 = √𝑥ଶ + 𝑧ଶ → ∞.         (18.c) 
Here, 𝐤  denotes the unit vector in the z direction. It notes that ℎ = 0  results in a zero ‘dynamic’ 
component and a ‘hydrostatic’ component equal to the weight of the displaced water by the body. By the 
Schwarz-Christoffel transformation, the upper-half plane of 𝜁 can be mapped into the fluid domain, 𝑤 = 𝑥 + 𝑧i, as presented in Fig. 5: 𝑤(𝜁)=𝐶ଵ + 𝐶ଶ ∫ (௧మିଵ)భమషഏഁ௧మഁ/ഏ(௧మି௔మ)భ/మ఍ 𝑑𝑡 .                    (19) 

 

Fig. 5. The upper 𝜁-plane, mapped by the Schwarz-Christoffel transformation. 
 

Here, the parameters a, C1, and C2 are determined by 𝑤(0) = −i(𝑐଴ tan 𝛽 + ℎ) , 𝑤(−1) = −𝑐଴ −iℎ, 𝑤(1) = 𝑐଴ − iℎ, 𝑤(−𝑎) = −𝑐଴, and 𝑤(𝑎) = 𝑐଴. Then, we have |𝐶ଶ| = ௖బ/ ୡ୭ୱ ఉ
∫ (భష೟మ)భమషഏഁ೟మഁ/ഏ(ೌమష೟మ)భ/మభబ ௗ௧,                             (20)   

ℎ/𝑐଴ = ଵୡ୭ୱ ఉ ∫ (೟మషభ)భమషഏഁ೟మഁ/ഏ(ೌమష೟మ)భ/మభೌ ௗ௧
∫ (భష೟మ)భమషഏഁ೟మഁ/ഏ(ೌమష೟మ)భ/మభబ ௗ௧.        (21) 

On the 𝜁-plane, 𝜙 satisfies the Laplace equation and the following boundary conditions 𝜙 = 0, on (|𝜉| > 1, 0),           (22.a) డథడఎ = −𝑔 cos 𝛽  |𝐶ଶ| (ଵିకమ)భమషഏഁ(௔మିకమ)భమ 𝜉మഏഁ , on (|𝜉| < 1, +0),     (22.b) ∇𝜙 = −|𝐶ଶ|𝑔𝐤, 𝑎𝑡 𝜁 → ∞.          (22.c) 𝜙 can be split into 𝜙 = −|𝐶ଶ|𝑔𝜂 + Φ. Since 𝜂 = 0  on the body surface, the term, −|𝐶ଶ|𝑔𝜂, has no 
contribution to the g-term force. The function Φ satisfies the following boundary conditions Φ = 0, on (|𝜉| > 1, 0),          (23.a) 

డ஍డఎ = 𝑔|𝐶ଶ| ൭1 − cos 𝛽  ൫ଵିకమ൯భమషഏഁ(௔మିకమ)భమ 𝜉మഏഁ ൱, on (|𝜉| < 1, +0),      (23.b) 

∇Φ = 0, 𝑎𝑡 𝜁 → ∞.               (23.c) 
Let Φ = Φଵ + Φଶ, we have 
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Φଵ = 0, on (|𝜉| > 1, 0),           (24.a) డ஍భడఎ = 𝑔|𝐶ଶ|, on (|𝜉| < 1, + 0),        (24.b) ∇Φଵ = 0, 𝑎𝑡 𝜁 → ∞ ,              (24.c) 
and Φଶ = 0, on (|𝜉| > 1, 0),                                (24.d) డ஍మడఎ = −𝑔 cos 𝛽 |𝐶ଶ|  ൫ଵିకమ൯భమషഏഁ(௔మିకమ)భమ 𝜉మഏഁ , on (|𝜉| < 1, + 0)         (24.e) ∇Φଶ = 0, 𝑎𝑡 𝜁 → ∞.                                    (24.f) 
On the body, i.e. (|𝜉| < 1, +0), Φଵ = −𝑔|𝐶ଶ|ඥ1 − 𝜉ଶ.                     (25) Φଶ can be represented as  Φଶ(𝜉, 𝜂) = ଵଶగ 𝑃𝑉 ∫ 𝛾(𝑡) tanିଵ ఎకି௧ 𝑑𝑡ଵିଵ ,                      (26) 

i.e. the vorticities on the line segment of (|𝜉| < 1, 0). The vortex strength 𝛾(𝑡) is obtained by solving 
the following integral equation ଵଶగ 𝑃𝑉 ∫ ఊ(௧)కି௧ 𝑑𝑡ଵିଵ = −𝑔 cos 𝛽 |𝐶ଶ| ൫ଵିకమ൯భమషഏഁ(௔మିకమ)భమ 𝜉మഏഁ   𝑓𝑜𝑟 |𝜉| < 1     (27) 

The solution for the homogeneous problem, corresponding to the right-hand-side of the above equation 
equal to zero, is 𝐶/ඥ1 − 𝜉ଶ. Here C is a constant and should be determined by some condition. Note 
that the distribution of the vortex strength is antisymmetric. It results in C=0. Let’s change the variables 
as follows: 𝜉 = − cos 𝜒, 𝑡 = − cos 𝜃, and 𝛼(𝜃) = 𝛾(𝜉) sin 𝜃. Then, we have an integral equation ଵଶగ 𝑃𝑉 ∫ ఈ(ఏ)ୡ୭ୱ ఏିୡ୭ୱ ఞ 𝑑𝜃గ଴ = −𝑔 cos 𝛽  |𝐶ଶ| ൫ଵି(ୡ୭ୱ ఞ)మ൯భమషഏഁ(௔మି(ୡ୭ୱ ఞ)మ)భమ (cos 𝜒)మഏഁ .      (28) 

Inserting the Fourier expansion, 𝛼(𝜃) = −2𝑔 cos 𝛽 |𝐶ଶ| ∑ 𝑎௡ cos(2𝑛 − 1)𝜃ஶ௡ୀଵ ,               (29)                   
  

into Eq. (28), we obtain ଵగ 𝑃𝑉 ∫ ∑ ௔೙ ୡ୭ୱ(ଶ௡ିଵ)ఏಮ೙సభୡ୭ୱ ఏିୡ୭ୱ ఞ 𝑑𝜃గ଴ = ൫ଵି(ୡ୭ୱ ఞ)మ൯భమషഏഁ(௔మି(ୡ୭ୱ ఞ)మ)భమ (cos 𝜒)మഏഁ .             (30) 

This will require the evaluation of the Glauert integrals ∫ ୡ୭ୱ(ଶ௡ିଵ)ఏୡ୭ୱ ఏିୡ୭ୱ ఞ 𝑑𝜃 = 𝜋 ୱ୧୬(ଶ௡ିଵ)ఞୱ୧୬ ఞగ଴ .                        (31) 

Then the integral equation (30) becomes ∑ 𝑎௡ sin(2𝑛 − 1)𝜒 =ஶ௡ୀଵ (ୱ୧୬ ఞ)మ(భషഏഁ)(௔మି(ୡ୭ୱ ఞ)మ)భమ (cos 𝜒)మഏഁ . 

The coefficients of the above Fourier series can be expressed as 𝑎௡ = ଶగ ∫ (ୱ୧୬  ఞ)మ(భషഏഁ)(௔మି(ୡ୭ୱ ఞ)మ)భమ (𝑐𝑜𝑠ଶ𝜒)ഏഁ sin(2𝑛 − 1)𝜒 𝑑𝜒గ଴ .           (32) 

So far, we have the vortex distribution 𝛾(𝜉) = 𝛾(− cos 𝜃) = −2𝑔 cos 𝛽 |𝐶ଶ| ଵୱ୧୬ ఏ ∑ 𝑎௡ cos(2𝑛 − 1)𝜃ஶ௡ୀଵ .         (33) 

The velocity potential on the body can be obtained:  
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                                             Φଶ(𝜉, +0) = න 𝜕Φଶ𝜕𝑡క
ିଵ (𝑡, +0)𝑑𝑡 = න − 12క

ିଵ 𝛾(𝑡)𝑑𝑡 

                       = න 𝑔 cos 𝛽 |𝐶ଶ| ෍ 𝑎௡ cos(2𝑛 − 1)𝜃ஶ
௡ୀଵ

ఞ
଴ 𝑑𝜃 

= 𝑔 cos 𝛽 |𝐶ଶ| ∑ ௔೙(ଶ௡ିଵ) sin(2𝑛 − 1)𝜒ஶ௡ୀଵ .         (34)

   
The total velocity potential becomes Φ(𝜉, +0) = −𝑔 |𝐶ଶ|sin χ + 𝑔 cos 𝛽 |𝐶ଶ| ∑ ௔೙(ଶ௡ିଵ) sin(2𝑛 − 1)𝜒ஶ௡ୀଵ .       (35) 

Thus, the vertical hydrodynamic force due to the gravity effect is written as  𝐹௚ = −𝜌cos 𝛽  ∫ 𝜙௖బି௖బ 𝑑𝑠  

     = −𝜌cos 𝛽  ∫ Φ(𝑡, +0)ଵିଵ |𝐶ଶ| ൫ଵି௧మ൯భమషഏഁ(௔మି௧మ)భమ 𝑡మഏഁ 𝑑𝑡  

     =  𝜌𝑔|𝐶ଶ|ଶ cos 𝛽 ∫ ቄsin θ − cos 𝛽 ∑ ௔೙(ଶ௡ିଵ) sin(2𝑛 − 1)𝜃ஶ௡ୀଵ ቅ (ୱ୧୬ ఏ)మ(భషഏഁ)(௔మି(ୡ୭ୱ ఏ)మ)భమ (cos 𝜃)మഏഁగ଴ 𝑑𝜃  

 = గଶ 𝜌𝑔|𝐶ଶ|ଶ cos 𝛽 ቄ𝑎ଵ − cos 𝛽 ∑ ௔೙మ(ଶ௡ିଵ)ஶ௡ୀଵ ቅ.             (36) 

The series in the above equation converge very fast. The approximation, 𝐹௚ ≈ 𝜌𝑔|𝐶ଶ|ଶ cos 𝛽 గଶ (𝑎ଵ − 𝑎ଵଶcos 𝛽),                       (37) 

is very close to the exact solution. Fig. 6 presents the solutions of the g-term forces at different deadrise 
angles. A larger deadrise angle results in a higher g-term force for a given submerged depth.  

 

Fig. 6. Evolution of the g-term force of wedges vertically entering the water surface. It is predicted by 
the simplified model; h is the distance between the top of the wedge and the still water surface; c0 is the 
half breadth of the wedge; the exact analytic solutions and the approximate analytic solutions are given 
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by Eq. (36) and Eq. (37) respectively. 
 

Asymptotically (𝑎 → ∞, corresponding to an infinite cavity), we have ℎ ≈ 𝑎ଶ ௖బୡ୭ୱ ఉ 𝐴(𝛽),                (38) 

|𝐶ଶ| ≈ 𝑎 ௖బୡ୭ୱ ఉ 𝐴(𝛽),         (39) 

𝑎௡ ≈ ଶగ௔ ∫ (sin 𝜒)ଶ(ଵିഏഁ) (cosଶ𝜒)ഏഁ sin(2𝑛 − 1)𝜒 𝑑𝜒గ଴  ,      (40) 

ி೒ఘ௚ బమ ≈ [𝐴యమ(𝛽)𝐵(𝛽) (cos 𝛽)ିభమ]ට ௛௖బ,           (41) 

where, 𝐴(𝛽) = 1/ ∫ (cos 𝜒)ଶ(ଵିഏഁ) (sin ଶ𝜒)ഏഁ 𝑑𝜒గ/ଶ଴   and 𝐵(𝛽) = ∫ (sin 𝜒)ଶ(ଵିഏഁ) (𝑐𝑜𝑠ଶ𝜒)ഏഁ sin 𝜒 𝑑𝜒గ଴  . 

Eq. (41) indicates that for deeply submerged wedges the theoretical g-term force is linearly dependent 
on the square root of the submerged depth. This may be applied to other two-dimensional solid objects. 
 Numerical experiments are conducted to verify the simplified model of assuming a uniform cavity 
behind the falling body. The water-entry problem is solved in the time domain by the fully-nonlinear 
model presented in Section A. At each time step, the corresponding g-term force is evaluated after solving 𝜓ଶ, governed by (13.a)-(13.d), based on the exact free-surface boundary. The numerical solutions of the 
fully-nonlinear model are compared with the analytical solutions of the simplified model at the relatively 
small deadrise angle of 𝛽 = 30୭ and at the relatively large deadrise angle of 𝛽 = 60୭ , as shown in Fig. 
7. The agreement between the simplified model and the fully-nonlinear model confirms that the g-term 
force is not sensitive to the cavity shape. The key physical parameters of affecting the g-term are the 

projected wetted area, the submerged depth and the body geometry. It notes that 𝐹௭(௚)(ℎ = 0) is equal 
to the weight of the water displaced by the body. Excluding this, the g-term force is not sensitive to the 
body geometry near the still water surface. The body geometry has a significant influence on the g-term 
force when the body is deeply submerged.  

 
(a) 𝛽 = 30୭ 
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(b) 𝛽 = 60୭ 
Fig. 7. Comparison of the g-term force of wedges vertically entering the water surface. The solid lines 
represent the analytic solutions, of the simplified model, given by Eq. (36). The colored markers represent 
the numerical solutions of the fully-nonlinear model: the blue color denotes the mass ratio, 𝑀/(0.5𝜌𝜋𝑐଴ଶ), of 1, the green color denotes the mass ratio of 3, and the red color denotes the mass ratio 
of 9; the ‘square’ marker denotes the Froude number, 𝑉଴/ඥ𝑔𝑐଴, of 2, the ‘circle’ marker denotes the 
Froude number of 4, the ‘+’ marker denotes the Froude number of 8.  

 
Flat plate. The flat plate corresponds the wedge with zero deadrise angle, i.e. 𝛽 = 0. The Schwarz-
Christoffel transformation is expressed as 𝑤(𝜁)=−𝑖ℎ + 𝐶ଶ ∫ ට ଵି௧మ௔మି௧మ఍଴ 𝑑𝑡.            (42) 

The parameters a and C2 are determined by 𝑤(1) = 𝑐଴ − iℎ and 𝑤(𝑎) = 𝑐଴, which results in  𝑐଴ = |𝐶ଶ| ቂ𝑎𝐸 ቀଵ௔ቁ − ௔మିଵ௔ 𝐾 ቀଵ௔ቁቃ,                            (43) 

ℎ = |𝐶ଶ| ൤𝑎𝐸 ൬ඥ௔మିଵ௔ ൰ − ଵ௔ 𝐾 ൬ඥ௔మିଵ௔ ൰൨.         (44) 

K is the complete elliptic integral of the first kind and E is the complete elliptic integral of the second 
kind. a is the root of the following equation 

ℎ/𝑐଴ = ாቆඥೌమషభೌ ቇି భೌమ௄ቆඥೌమషభೌ ቇாቀభೌቁିೌమషభೌమ ௄ቀభೌቁ .                               (45) 

The coefficient 𝑎௡ becomes 𝑎௡ = ଶగ ∫ (ୱ୧୬ ఞ)మ(௔మି(ୡ୭ୱ ఞ)మ)భమ sin(2𝑛 − 1)𝜒 𝑑𝜒గ଴ .                     (46) 

The velocity potential on the body is Φ(𝜉, +0) = −𝑔|𝐶ଶ| sin χ + 𝑔 |𝐶ଶ| ∑ ௔೙(ଶ௡ିଵ) sin(2𝑛 − 1)𝜒ஶ௡ୀଵ .             (47) 

Further, the vertical force due to gravity can be expressed as 
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𝐹௚ = −𝜌 ∫ Φ(𝑡, +0)ଵିଵ |𝐶ଶ|ට ଵି௧మ௔మି௧మ 𝑑𝑡  

    =  𝜌𝑔|𝐶ଶ|ଶ ∫ ቄsin θ − ∑ ௔೙(ଶ௡ିଵ) sin(2𝑛 − 1)𝜃ஶ௡ୀଵ ቅ (sin θ)ଶ/(𝑎ଶ − (cos 𝜃)ଶ)భమగ଴ 𝑑𝜃  

    = 𝜌𝑔|𝐶ଶ|ଶ గଶ ቄ𝑎ଵ − ∑ ௔೙మ(ଶ௡ିଵ)ஶ௡ୀଵ ቅ.            (48) 

 
For small ℎ/𝑐଴, we have the following approximation 𝐹௚ ≈ 𝑔|𝐶2|2 𝜋2 (𝑎ଵ − 𝑎12) with 𝑎ଵ = ଶగ ቄ√𝑎ଶ − 1 + (2 − 𝑎ଶ) sinିଵ(ଵ௔)ቅ.      (49) 

 
Cone. The above simplified model is generalized to the three-dimensional space for estimating the g-
term force of the vertical water entry of cones. It is difficult to solve the three-dimensional model 
analytically but easy by the proposed boundary integral method. To avoid the infinite still water surface, 
an image flow above the undisturbed free surface is introduced as shown in Fig. 8, where, 𝑧̅ = 𝑧/𝑐଴ is 
the dimensionless coordinate vertically upwards, 𝑟̅ = 𝑟/𝑐଴ is the dimensionless radial coordinate and 𝜓തଶ = 𝜓2/𝑔𝑐0. 

 

Fig. 8. Simplified model for estimating the dynamic component of the g-term force of a cone vertically 
entering the water surface. 
 

Integrating 𝜓ଶ over the wetted body surface will result in the ‘dynamic’ component in the g-term 
force. By including the ‘hydrostatic’ component, the g-term force is expressed as 

ி೒(೥)గఘ௚௖೚య = ቀ୲ୟ୬ ఉଷ + ℎതቁᇣᇧᇧᇤᇧᇧᇥ ௛௬ௗ௥௢௦௧௔௧௜௖   ௧௘௥௠ + ଵగ ∫ 𝜓ഥ2ௌಳ 𝑛௭𝑑𝑠̅ᇣᇧᇧᇧᇤᇧᇧᇧᇥௗ௬௡௔௠௜௖ ௧௘௥௠ .        (50) 

Excluding the weight of the water displaced by the body, i.e. tan 𝛽 /3, the g-term force is assumed to be 𝐹ത௚(௭) = 𝛼ℎതఊ.                                    (51) 
The numerical solutions, of the simplified model for the g-term force of the cones, at 1 < ℎത < 10, are 
presented in Fig. 9, where 𝐹ത௚(௭) = [𝐹௚(௭) − 𝐹௚(௭)(ℎ = 0)]/𝜋𝜌𝑔𝑐௢ଷ. It can be seen that the g-term force 
indeed follows Eq. (51) and the coefficient, 𝛾, corresponding to the slope of the solid line, is nearly 
independent on the deadrise angles. The coefficients, 𝛼 and 𝛾, at different deadrise angles are presented 
in Table 1. Similar to wedges, a larger deadrise angle results in a higher g-term force at a given 
submerged depth. 
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Fig. 9. The log-log plot of the g-term force, by the simplified model for cones vertically entering the 

water surface, over the submerged depth. 𝐹ത௚(௭) = ி೒(೥)గఘ௚௖೚య − ୲ୟ୬ ఉଷ   is the g-term force excluding the 

buoyance of the cone, i.e. the weight of the water displaced by the cone. The solid lines from bottom to 
top correspond to the deadrise angle 0୭, 10୭,  20୭,  30୭,  40୭,  50୭,  60୭, and 70୭ respectively.  
 

Table 1. Coefficients of the g-term force, represented as 𝐹ത௚(௭) = 𝛼ℎതఊ, for cones at the deadrise angle of 𝛽. 𝛽(o) 0 10 20 30 40 50 60 70 𝛼 0.4860 0.5054 0.5274 0.5531 0.5838 0.6220 0.6714 0.7387 𝛾 0.8204 0.8216 0.8233 0.8257 0.8292 0.8345 0.8429 0.8575 

 

 

 

Fig. 10. Evolution of the g-term force of cones vertically entering the water surface. The solid lines 
denote the numerical solutions of the simplified model. The ‘circle’ markers denote the approximation 
of the numerical solutions by Eq. (51). 𝛽 denotes the deadrise angle of the cone. 
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Numerical experiments, similar to those for wedges, are conducted to verify the simplified model. 
Fig. 11 presents the solutions of the fully-nonlinear model and the simplified model at the deadrise angle 
of 30୭ and 60୭. Again, the simplified model gives the good approximation of the g-term force. 
 

 

(a) 𝛽 = 30୭ 

 
(b) 𝛽 = 60୭ 

Fig. 11. Comparison of the g-term force of cones vertically entering the water surface. The solid lines 
represent the numerical solutions of the simplified model. The colored markers represent the numerical 
solutions of the fully-nonlinear model: the blue color denotes the mass ratio, 𝑀/(4𝜌𝜋𝑐଴ଷ/3), of 1, the 
green color denotes the mass ratio of 3, and the red color denotes the mass ratio of 9; the ‘square’ marker 
denotes the Froude number, 𝑉଴/ඥ𝑔𝑐଴, of 2, the ‘circle’ marker denotes the Froude number of 4, the ‘+’ 
marker denotes the Froude number of 8.  
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Circular cylinder. Fig. 12 illustrates the water entry of circular cylinders. The flow separates from the 
body at the angle of 𝛽௦. The steady cavity flow, past the circular cylinder, at zero cavitation number, 
results in the separation angle of about 55୭ and an infinite cavity.34 It corresponds to the limiting state 
of a circular cylinder vertically entering the water surface with constant speed in a gravity-free 
environment. This section studies the g-term force at the flow separation angle from 55୭ to 90୭, based 
on the simplified model assuming a uniform cavity behind the falling body. Fig. 13 shows the half of the 
simplified model, where the reference length 𝑐଴  is the half of the maximum wetted length equal to 𝑅 sin 𝛽𝑠 .  

 
Fig. 12. Sketch of the water entry of a circular cylinder. 𝑅 is the radius of the circular cylinder. 𝛽𝑠 is 
the separation angle.  
 

 
Fig. 13. Simplified model for estimating the dynamic component of the g-term force of a circular 
cylinder/sphere vertically entering the water surface. 𝛽௦ is the flow separation angle. 
 

Fig. 14 compares the g-term force between circular cylinders and wedges. It is observed that, for a 
given flow separation angle of the circular cylinder, there is a wedge with some deadrise angle resulting 
in the good approximation of the g-term force. Table 2 suggests using the g-term force of the wedge of 
the deadrise angle of 𝛽 to approximate that of the circular cylinder with the flow separation angle of 𝛽௦. 
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Fig. 14. Comparison of the g-term force between wedges and circular cylinders. 

Table 2. Approximating the g-term force of the circular cylinder with the flow separation angle 𝛽௦ by 
that of the wedge with the deadrise angle 𝛽. 𝛽௦(deg) 55 60 65 70 75 80 85 90 𝛽(deg) 41 45 48 51 54 57 60 63 

 
Sphere. The g-term force of spheres is estimated by the simplified model presented in Fig. 13. The 
solutions of the simplified model may also follow Eq. (51), which is confirmed by the log-log plot of 
the g-term force over ℎത as shown in Fig. 15. The coefficients, 𝛼 and 𝛾, at the flow separation angle 
from 55୭  to 90୭  are presented in Table 3. It is observed that 𝛾  is weekly dependent on the flow 
separation angle and is close to that of cones.  

 
Fig. 15. The log-log plot of the g-term force, by the simplified model for spheres vertically entering the 
water surface, over the submerged depth. 𝐹ത௚(௭) = [𝐹௚(௭) − 𝐹௚(௭)(ℎ = 0)]/𝜋𝜌𝑔𝑐௢ଷ is the dimensionless g-
term force excluding the weight of the water displaced by the sphere. The solid lines from bottom to top 
correspond to the flow separation angle 55୭,  70୭, and 90୭ respectively.  
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Table 3. Coefficients of the g-term force, represented as 𝐹ത௚(௭) = 𝛼ℎതఊ , for spheres with the flow 
separation angle of 𝛽௦. 𝛽௦(o) 55 60 65 70 75 80 85 90 𝛼 0.6214 0.6383 0.6567 0.6768 0.6990 0.7234 0.7505 0.7806 𝛾 0.8298 0.8317 0.8338 0.8362 0.8390 0.8423 0.8460 0.8503 

 

 

Fig. 16. Comparison between May & Woodhull’s approximation35 and the present model for the g-term 
force.  
 

May & Woodhull investigated the drag coefficients of steel spheres entering water vertically.35 For 
the evaluation of the drag coefficient defined by the V-squared law, they excluded all forces having a 
different independence on V and expressed the equation of motion of the body as Eq. (1). It notes that 
the term 𝜌𝑔ℎ𝑆  in Eq. (1) corresponds to the hydrostatic force obtained by directly integrating the 
hydrostatic term in the Bernoulli’s equation over the wetted body surface (here, the weight of the water 
displaced by the sphere is excluded). Their analysis used 𝑆 = 0.45𝜋𝑅ଶ instead of the measured value 0.8𝜋𝑅ଶ  (R is the radius of the sphere) for the evaluation of 𝜌𝑔ℎ𝑆 , giving satisfactory results. The 
projected wetted area of 0.8𝜋𝑅ଶ corresponds to the flow separation angle 𝛽௦ of about 65୭. Fig. 16 
shows that the hydrostatic force strongly overestimates the force due to the gravity effect. May & 
Woodhull’s approximation is close to the present solution throughout the early part of the sphere’s 
trajectory, where the drag coefficient is reasonably constant and was studied.35  
 
C. a-term force 

The a-term force is proportional to the body acceleration and can be written as 𝐹௭(௔) = −𝐴ଷଷ𝑉̇. 𝐴ଷଷ represents the high-frequency add mass of the body in the vertical direction and is expressed as  𝐴ଷଷ = 𝜌 ∫ 𝜓ഥ1𝑛௭ௌಳ 𝑑𝑠, where 𝜓തଵ is the solution of the following equations ∇ଶ𝜓ഥ1 = 0 in Ω,         (52.a) 
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𝜓തଵ = 0 on 𝑆ி,         (52.b) డ𝜓ഥ1డ௡ = −𝑛௭ on 𝑆஻,         (52.c) 𝜓തଵ → 0 at |𝑿| → ∞.        (52.d) 
 
Wedge. By assuming a uniform open cavity behind the body and following the procedure presented in 
the previous analysis, we can express the added mass for wedges as 𝐴ଷଷ/(గଶ 𝜌𝑐଴ଶ) = ଵ௖బమ |𝐶ଶ|ଶcosଶ𝛽 ∑ ௔೙మ(ଶ௡ିଵ)ஶ௡ୀଵ .                    (53) 

 
Fig. 17. Evolution of the added mass predicted by the simplified model for wedges vertically entering 
the water surface. 𝛽 is the deadrise angle of the wedges. 
 
Fig. 17 presents the evolution of the vertical added mass predicted by the simplified model. With 
increasing the submerged depth, the added mass grows strongly near the undisturbed free surface and 
quickly approaches the value of ℎ = ∞. At ℎ = 0 (corresponding to 𝑎 = 1), 𝐴ଷଷ is expressed as  

𝐴ଷଷ(ℎ = 0)/(గଶ 𝜌𝑐଴ଶ) = (ଶగ)ଶ ∑ ଵଶ௡ିଵ ൥∫ (ୱ୧୬ ఞ)൬భషమഏഁ ൰൫௖௢௦మఞ൯ഏഁ ୱ୧୬(ଶ௡ିଵ)ఞௗഏబ ∫ (ୡ୭ୱ ఞ)൬భషమഏഁ ൰(௦௜௡మఞ)ഏഁ ௗఞഏ/మబ ൩ଶஶ௡ୀଵ .          (54) 

It is easy to verify 𝐴ଷଷ(ℎ = 0) = 𝜋𝜌𝑐଴ଶ/2 for 𝛽 = 0୭, which is exactly the high-frequency added mass 
of the flat plate. Letting ℎ → ∞, we have 𝑎 → ∞ and (𝑎ଶ − (cos 𝜒)ଶ)ଵ/ଶ ≈ 𝑎. Then, the added mass 
becomes 

𝐴ଷଷ(ℎ = ∞)/(గଶ 𝜌𝑐଴ଶ) = (ଶగ)ଶ ∑ ଵଶ௡ିଵ ൥∫ (ୱ୧୬ ఞ)మ൬భషഏഁ൰൫௖௢௦మఞ൯ഏഁ ୱ୧୬(ଶ௡ିଵ)ఞௗఞഏబ ∫ (ୡ୭ୱ ఞ)మ൬భషഏഁ൰(௦௜௡మఞ)ഏഁ ௗఞഏ/మబ ൩ଶஶ௡ୀଵ .      (55) 

The added mass of ℎ = 0 and ℎ = ∞ from 𝛽 = 0୭ to 𝛽 = 80୭ is presented in Fig. 18. 
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Fig. 18. Added mass, at ℎ = 0 and ℎ = ∞, for wedges vertically entering the water surface. 𝛽 is the 
deadrise angle of the wedges. 
 

Numerical experiments are conducted to verify the added mass predicted by the simplified model 
of assuming a uniform cavity behind the falling body. The water-entry problem is solved in the time 
domain by the fully-nonlinear model presented in Section A. At each time step, the corresponding added 
mass is evaluated after solving 𝜓തଵ, governed by (52.a)-(52.d), based on the exact free-surface boundary. 
The numerical solutions of the fully-nonlinear model are compared with the analytical solutions of the 
simplified model at the deadrise angle of 𝛽 = 30୭ and 𝛽 = 60୭ , as shown in Fig. 19. It confirms that 
the added mass grows strongly near the undisturbed free surface with increasing the submerged depth. 
The simplified model accurately predicts the added mass of the wedges near the still water surface and 
may overestimate that of the deeply submerged wedge (about 6%). The key physical parameters of 
affecting the added mass are the body geometry and the submerged depth.  

 
(a) 𝛽 = 30୭ 

 
(b) 𝛽 = 60୭ 
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Fig. 19. Comparison of the added mass of wedges vertically entering the water surface. The solid lines 
represent the analytic solutions, of the simplified model, given by Eq. (53). The colored markers represent 
the numerical solutions of the fully-nonlinear model: the blue color denotes the mass ratio, 𝑀/(0.5𝜌𝜋𝑐଴ଶ), of 1, the green color denotes the mass ratio of 3, and the red color denotes the mass ratio 
of 9; the ‘square’ marker denotes the Froude number, 𝑉଴/ඥ𝑔𝑐଴, of 2, the ‘circle’ marker denotes the 
Froude number of 4, the ‘+’ marker denotes the Froude number of 8.  
 
Cone. The simplified model is generalized to the three-dimensional space for estimating the added mass 
of the vertical water entry of cones. Again, an image flow above the undisturbed free surface is introduced 
as shown in Fig. 20, where, 𝑧̅ = 𝑧/𝑐଴ is the dimensionless coordinate vertically upwards and 𝑟̅ = 𝑟/𝑐଴ 
is the dimensionless radial coordinate. 𝜑 can be solved by the boundary integral method and then the 

added mass is evaluated by 𝐴ଷଷ/(ସଷ 𝜌𝑐଴ଷ) = ଷସ ∫ 𝜓ഥ1𝑛௭ௌಳ 𝑑𝑠. 

 
Fig. 20. Simplified model for estimating the added mass of a cone vertically entering the water surface. 
 
The evolution of the vertical added mass of cones, presented in Fig. 21, is similar to that of wedges. It is 
noticed that the added mass of cones approaches the value of ℎ = ∞ more quickly with increasing the 
submerged depth. The added mass of ℎ = 0 and ℎ/𝑐଴ = 20 from 𝛽 = 0୭ to 𝛽 = 80୭ is presented in 
Fig. 22. For a given deadrise angle, the difference between the added mass of ℎ = 0 and the added mass 
of ℎ/𝑐଴ = 20 is smaller than that of wedges. The added mass of cones is more sensitive to the deadrise 
angle, comparing to wedges. 

 

Fig. 21. Evolution of the added mass predicted by the simplified model for cones vertically entering the 
water surface. 𝛽 is the deadrise angle of the cones. 
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Fig. 22. Added mass, at ℎ = 0 and ℎ/𝑐଴ = 20, for cones vertically entering the water surface. 𝛽 is the 
deadrise angle of the cones. 
 

Numerical experiments are conducted to verify the added mass predicted by the simplified model 
of assuming a uniform cavity behind the falling body. The fully-nonlinear model is solved in the time 
domain by the numerical method presented in Section A, which results in the exact cavity configuration 
and added mass. The numerical solutions of the fully-nonlinear model are compared with the analytical 
solutions of the simplified model at the deadrise angle of 𝛽 = 30୭ and 𝛽 = 60୭ , as shown in Fig. 23. 
It confirms that the added mass grows strongly near the undisturbed free surface with increasing the 
submerged depth. The simplified model accurately predicts the added mass of the cones near the still 
water surface and may slightly (less than 5%) overestimate that of the deeply submerged cone. It notes 
that the predicted added mass of the disk on the free surface, i.e. 𝐴ଷଷ(ℎ = 0) at 𝛽 = 0୭, agrees with 
Glasheen & McMahon ’s experiments.11 The key physical parameters of affecting the added mass are the 
body geometry and the submerged depth. [𝐴ଷଷ(ℎ = 0) + 𝐴ଷଷ(ℎ = ∞)]/2  can be used as the first 
approximation of the added mass of the cone at any submerged depth. 
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(a) 𝛽 = 30୭ 

 

(b) 𝛽 = 60୭ 
Fig. 23. Comparison of the added mass of cones vertically entering the water surface. 𝛽 is the deadrise 
angle of the cones. The solid lines represent the numerical solutions of the simplified model. The colored 
markers represent the numerical solutions of the fully-nonlinear model: the blue color denotes the mass 
ratio, 𝑀/(4𝜌𝑐଴ଷ/3), of 1, the green color denotes the mass ratio of 3, and the red color denotes the mass 
ratio of 9; the ‘square’ marker denotes the Froude number, 𝑉଴/ඥ𝑔𝑐଴, of 2, the ‘circle’ marker denotes 
the Froude number of 4, the ‘+’ marker denotes the Froude number of 8.  
 
Circular cylinder and sphere. The simplified model for estimating the added mass is presented in Fig. 
24, where the reference length 𝑐଴ is the half of the maximum wetted length equal to 𝑅 sin 𝛽௦ . The flow 
separates from the body at S resulting in the flow separation angle of 𝛽௦. A uniform cavity is assumed 
behind the body. An image flow above the undisturbed free surface is introduced. 

 

 
Fig. 24. Simplified model for estimating the added mass of a circular cylinder/sphere vertically entering 
the water surface.  
 

The evolution of the vertical added mass of circular cylinders/spheres can be shown being similar 
to that of wedges/cones: with increasing the submerged depth, the added mass grows strongly near the 
undisturbed free surface and quickly approaches the value of ℎ = ∞. Table 4 presents the dimensionless 
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added mass of circular cylinders and spheres on the still water surface, i.e. ℎത = 0  and at a deeply-
submerged depth of ℎത = 20. 𝐴̅ଷଷ = 1, i.e. 𝐴ଷଷ = 𝜋𝜌𝑐଴ଶ/2 for circular cylinder and 𝐴ଷଷ = 𝜋𝜌𝑐଴ଷ/3 for 
spheres, can be used as the first approximation of the added mass at any submerged depth. 
 

Table 4. Dimensionless added mass of circular cylinders and spheres. 𝛽௦ is the flow separation angle. 

The dimensionless added mass is defined as 𝐴̅ଷଷ = 𝐴ଷଷ/(గଶ 𝜌𝑐଴ଶ) for cylinders and 𝐴̅ଷଷ = 𝐴ଷଷ/(గଷ 𝜌𝑐଴ଷ) 

for spheres. 
 

Circular cylinder 𝛽௦(o) 55 60 65 70 75 80 85 90 𝐴̅ଷଷ(ℎത = 0) 0.891 0.894 0.901 0.910 0.924 0.942 0.967 1.000 𝐴̅ଷଷ(ℎത = 20) 1.104 1.110 1.119 1.132 1.149 1.173 1.203 1.241 
Sphere 𝛽௦(o) 55 60 65 70 75 80 85 90 𝐴̅ଷଷ(ℎത = 0) 0.975 0.963 0.954 0.949 0.950 0.958 0.974 1.000 𝐴̅ଷଷ(ℎത = 20) 1.113 1.100 1.090 1.085 1.084 1.090 1.103 1.126 

 
D. v-term force 

Through the definition of the v-term force, i.e. 𝐹௭(௩) = 𝜌 ∫ (𝜓ଷ − 𝐕 ∙ ∇𝜑 + ଵଶ |∇𝜑|ଶ)𝑛௭ௌಳ 𝑑𝑠 and the 

governing equations of 𝜓ଷ , it is natural to express the dimensionless v-term force as 𝐶௩ =𝐹௭(௩)/(0.5𝜌𝑉ଶ𝑆). Here, 𝑆 is the area of the maximum cross section of the falling body. 𝐶௩ may be called 
as the ‘velocity-drag coefficient’. Fig. 25 illustrates the typical evolution of the velocity-drag coefficient 
of wedges vertically entering the water surface until the cavity pinch-off. At the early stage, 𝐶௩  is 
decreasing strongly with increasing the submerged depth. At the very early stage, i.e. near the still water 
surface, 𝐶௩ is independent of the mass ratio and Froude number. After the submerged depth is greater 
than a few characteristic lengths, 𝐶௩ evolves gently. During this stage, 𝐶௩  is reasonably constant and 
overestimates the steady-state value, corresponding to an infinite open cavity and a constant drag 
coefficient.33 It notes that the steady state is the limiting state of a wedge entering the water surface 
vertically with a constant speed in a zero-gravity environment (equivalent to the infinite Froude number). 
Therefore, 𝐶௩  is closer to the steady-state value for the larger Froude number. The duration of this stage 
becomes longer for the larger mass ratio. Close to the pinch-off of the open cavity, 𝐶௩ is growing strongly 
especially for small mass ratios. These physical phenomena will be discussed qualitatively.  
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(a) 𝛽 = 30୭ 

 
(b) 𝛽 = 60୭ 

 
Fig. 25. Evolution of the velocity-drag coefficient of the wedge with the deadrise angle of 𝛽 vertically 
entering the water surface until the cavity pinch-off. 𝐷 = 𝑀/0.5𝜌𝜋𝑐଴ଶ is the mass ratio. 𝐹𝑛 = 𝑉଴/ඥ𝑔𝑐଴ 
is the Froude number. The blue and green lines indicate the numerical solutions of the fully nonlinearly 
model. 

 
Instead of solving 𝜓ଷ , we consider an equivalent problem, 𝜓෨ଷ = 𝜓ଷ − 𝐕 ∙ ∇𝜑 . Based on Eqs. 

(14.a)-(14.d), 𝜓෨ଷ can be decomposed into 𝜓෨ଷ = 𝜓ଷ(ଵ) + 𝜓ଷ(ଶ), which satisfies the following equations ∇ଶ𝜓ଷ(ଵ) = 0 in Ω,                                (56.a) 𝜓ଷ(ଵ) = − ଵଶ |∇𝜑|ଶ on 𝑆ி,             (56.b) 

డటయ(భ)డ௡ = 0 on 𝑆஻,           (56.c) 𝜓ଷ(ଵ) → 0 at |𝑿| → ∞,                (56.d) 
and ∇ଶ𝜓ଷ(ଶ) = 0 in Ω,                                (57.a) 𝜓ଷ(ଶ) = 0 on 𝑆ி,                 (57.b) డటయ(మ)డ௡ = − డడ௡ (𝐕 ∙ ∇𝜑) on 𝑆஻,         (57.c) 𝜓ଷ(ଶ) → 0 at |𝑿| → ∞.            (57.d) 
Then, we have 𝐹௭(௩) = 𝜌 ∫ (𝜓ଷ(ଵ) + ଵଶ |∇𝜑|ଶ)𝑛௭ௌಳ 𝑑𝑠ᇣᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇥி(భ) + 𝜌 ∫ 𝜓ଷ(ଶ)𝑛௭ௌಳ 𝑑𝑠ᇣᇧᇧᇧᇤᇧᇧᇧᇥி(మ)  .                (58) 

When the water-entry problem is solved in the time domain by the fully-nonlinear model presented in 
Section A, 𝜓ଷ(ଵ) and 𝜓ଷ(ଶ) can be evaluated by the boundary integral method based on the exact free-
surface boundary at each time step, resulting in the numerical evolution of 𝐹(ଵ), 𝐹(ଶ) and 𝐹௭(௩).  
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Fig. 26. Numerical evolution of 𝐹(ଵ) , 𝐹(ଶ)  and 𝐹௭(௩)  for the wedge with 𝐹𝑛 = 4 , 𝐷 = 9  and 𝛽 =30o vertically entering the water surface until the cavity pinch-off. 𝐷 = 𝑀/0.5𝜌𝜋𝑐଴ଶ is the mass ratio; 𝐹𝑛 = 𝑉଴/ඥ𝑔𝑐଴ is the Froude number; 𝛽 is the deadrise angle. 
 

Fig. 26 illustrates the evolution of 𝐹(ଵ) , 𝐹(ଶ)  and 𝐹௭(௩)  for a wedge vertically entering the water 
surface. It can be seen that 𝐹(ଶ) is the dominant component of 𝐹௭(௩). This fact tends to be confirmed by 
our numerical results of other combinations of Froude number, mass ratio and deadrise angle for the 
wedge/cone vertically entering the water surface.  

Eq. (57.c) is the unique non-trivial boundary condition for 𝜓ଷ(ଶ). Therefore, the solution of 𝜓ଷ(ଶ) and 
the corresponding 𝐶௩ strongly depend on Eq. (57.c), which is related to the velocity field near the wetted 
body and characterized by the body shape and the shape of the attached open cavity. The cavity dynamics 
of solid objects vertically entering the water surface have been extensively investigated,4-6, 11, 24-32 since 
Worthington & Cole’s work26. Here, we only outline several aspects for the further discussion. If the 
water-entry speed is sufficiently large, an air cavity will be created behind the falling body.7 The cavity 
expands at the beginning and the gravity effect resists the expansion of the cavity causing its contraction 
and pinch-off (closure).25 This procedure is illustrated by Fig. 27. The slenderness of the closed cavity is 
characterized by the ratio, 2𝑐଴/𝑙. In general, larger mass ratios of the falling body result in slenderer 
closed cavities.32,40  

 
Fig. 27. Illustration of the evolution of the air cavity for a wedge vertically entering the water surface 
until the cavity pinch-off. The slenderness of the closed cavity is characterized by the ratio, 2𝑐଴/𝑙. 
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For the velocity-drag coefficient defined by the V-squared law, the non-dimensional boundary 

condition, i.e. [−𝜕(𝐕 ∙ ∇𝜑)/𝜕𝑛]/𝑉ଶ, should be considered. It can be shown that, − డ(𝐕∙∇ఝ)/డ௡௏మ =𝑐𝑜𝑠𝛽 డడ௦ [డఝ/డ௦௏ ]                           (59) 

for wedges. Here 𝑠 refers to the tangential direction. The right-hand side of Eq. (59) is 𝑐𝑜𝑠𝛽 times the 
variation of the dimensionless tangential velocity along the wetted body surface. At the apex of the wedge, 
the dimensionless tangential velocity is fixed to be − sin 𝛽 throughout the water-entry process. Near 
the still water surface, the water particle leaves the knuckle point somehow ‘freely’. For smaller deadrise 
angles, both 𝑐𝑜𝑠𝛽  and the detaching speed are larger, resulting in the stronger variation of the 
dimensionless tangential velocity and therefore greater 𝐶௩. At the very early stage, the gravity effect is 
commonly negligible. So, the flow is not sensitive to the mass ratio and Froude number and 𝐶௩(ℎ = 0) 
can be regarded to be a constant for a given body. With increasing the submerged depth, the effect of the 
surrounding water constraining the detaching speed becomes stronger, which leads to the weaker 
variation of the dimensionless tangential velocity and therefore the decreasing of 𝐶௩. This effect tends 
to be steady after the submerged depth is greater than a few characteristic lengths. Then 𝐶௩  is not 
sensitive to the increment of the submerged depth. The evolution of 𝐶௩ goes to the second stage. During 
that 𝐶௩ is reasonably constant. If the air cavity continues the expansion, the second stage is lasting and 𝐶௩ will slowly approach the limiting value presented by Plasset & Shaffer33. The expansion of the air 
cavity is of relevance to the strong transferring of the energy from the falling body to the water. This 
process becomes longer for the falling body with higher energy, i.e. larger mass ratio and/or higher 
Froude number, which results in the longer second stage of the evolution of 𝐶௩. Fig. 25 has shown that 
the second stage is very short or even obscure for the wedge with relatively small mass ratio/ Froude 
number. The gravity resists the expansion of the cavity causing its contraction and pinch-off.24, 30 The 
contraction of the open cavity influences the evolution of 𝐶௩ through modifying the velocity field near 
the wetted body. The numerical experiments show that the contraction of the air cavity strengthens the 
variation of the tangential velocity along the wetted wedge surface. Closer to the pinch-off, this effect 
becomes stronger. Further, smaller mass ratios result in blunter closed cavities32,40 and therefore the 
stronger variation of the velocity field near the wetted body. So, 𝐶௩ for the objects with small mass ratios 
evolves dramatically close to the pinch-off of the open cavity. These analyses are confirmed by Fig. 28, 
which plots the variation of the tangential velocity along the wetted body surface of the wedge, predicted 
by the fully nonlinear numerical method. At ℎ = 0, the good agreement of the tangential velocity is 
consistent with the good agreement of 𝐶௩ as shown in Fig. 25. At ℎ = ℎ௣௜௡௖௛/2(within the second stage), 
the variation of the tangential velocity becomes closer to the theoretical value,33 corresponding to 𝐶௩ closer to the theoretical value. At the pinch-off of the cavity, the variation of the tangential velocity is 
strong especially for the small mass ratio, which results in the large value of 𝐶௩.  
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Fig. 28. Variation of the tangential velocity along the wetted body surface of the wedge. 𝐷 = 𝑀/0.5𝜌𝜋𝑐଴ଶ 
is the mass ratio. 𝐹𝑛 = 𝑉଴/ඥ𝑔𝑐଴ is the Froude number. ℎ௣௜௡௖௛ is the submerged depth at pinch-off. 
The blue and green lines indicate the numerical solutions of the fully nonlinearly model. 
 

Fig. 29 illustrates the typical evolution of the velocity-drag coefficient of cones vertically entering 
the water surface, which is similar to that of wedges. The evolution of 𝐶௩ of the cone goes to the second 
stage more quickly compared to the wedge. During this stage, 𝐶௩ is very close to the theoretical value 
for the relatively large deadrise angle.  
  

 
(a) 𝛽 = 30୭ 

 
(b) 𝛽 = 60୭ 

 
Fig. 29. Evolution of the velocity-drag coefficient of the cone with the deadrise angle of 𝛽 vertically 
entering the water surface until the cavity pinch-off. 𝐷 = 𝑀/(4𝜌𝑐଴ଷ/3) is the mass ratio. 𝐹𝑛 = 𝑉଴/ඥ𝑔𝑐଴ 
is the Froude number. The blue and green lines indicate the numerical solutions of the fully nonlinearly 
model. 
 

For the water entry of spheres, the flow separation point is unnecessarily fixed and its position may 
move along the body surface. May & Woodhull’ experiments showed that the corresponding flow 
separation angle, for the steel spheres, at large Froude numbers (21 < 𝑉଴/ඥ𝑔𝑅 < 180), is about 65୭.35  
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The experiments by Aristoff et al.32 showed: the flow separation angle, for the steel spheres, at the Froude 
numbers 1 < 𝑉଴/ඥ𝑔𝑅 < 10 , is about 70୭  before the pinch-off; the flow separation angle, for the 
spheres made of polypropylene or nylon (corresponding to relatively small mass ratios), is also about 70୭ at the early stage but can become larger than 90୭ close to the pinch-off. Here, we only discuss the 
evolution of the velocity-drag coefficient of steel spheres, of which the flow separation angle can be 
regarded to be constant. The mass ratio of steel spheres, 𝑀/(𝜌𝜋𝑅ଷ/3), is as large as about 31. Further, 
the flow separation angle of 65୭ or larger make the steel sphere behave like the cone with a relatively 
large deadrise angle. Based on the previous study, we expect the following: 𝐶௩ decays quickly at the 
early stage and it goes to the second after the submerged depth is larger than a few characteristic lengths ; 𝐶௩ is very close to the limiting value of 0.30-0.3134 at the second stage; the duration of the second stage 
is longer for the higher Froude number; the contraction of the air cavity results in the growth of 𝐶௩. 
These are confirmed by the numerical solutions of the fully nonlinear model presented in Fig. 30. 

 
 

Fig. 30. Evolution of the velocity-drag coefficient of the steel sphere vertically entering the water surface 
until the cavity pinch-off. 𝐹𝑛 = 𝑉଴/ඥ𝑔𝑐଴ is the Froude number; 𝛽௦ is the flow separation angle; 𝑅 is 
the sphere radius;  𝐶௩ = 𝐹௭(௩)/(0.5𝜌𝑉ଶ𝜋𝑅ଶ). 

 
IV. CONCLUSIONS 

This work investigated the unsteady hydrodynamic force of solid objects vertically entering water 
with an air cavity behind the falling body within the framework of potential flow. The unsteady 
hydrodynamic force is exactly decomposed into three components, i.e. the acceleration term 𝐹௭(௔), the 
gravity term 𝐹௭(௚)  and the velocity term 𝐹௭(௩) . The acceleration term is equal to the high-frequency 
added mass times the body acceleration, i.e. 𝐹௭(௔) = −𝐴ଷଷ𝑉̇. The gravity term consists of a hydrostatic 
term and a dynamic term. The hydrostatic term is obtained by integrating the term, −𝜌𝑔𝑧 , in the 
Bernoulli’s equation over the wetted body surface, is upwards, and strongly overestimates 𝐹௭(௚). The 
dynamic term is downwards. The added mass and the gravity term can be well estimated by the proposed 
simplified models, which assume a uniform cavity behind the falling body. Near the undisturbed free 
surface, the added mass grows strongly with increasing the submerged depth. It tends to be steady after 
the submerged depth is greater than a few characteristic lengths (the characteristic length, 𝑐଴, is defined 
as half of the wetted breadth). The solution of the added mass of different geometries, at the still water 
surface and deeply submerged, is presented. The added mass can be approximated as 𝐴ଷଷ = 𝜋𝜌𝑐଴ଶ/2 for 
the circular cylinder and the wedge with small deadrise angles, 𝐴ଷଷ = 4𝜌𝑐଴ଷ/3 for the cone with small 
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deadrise angles, and 𝐴ଷଷ = 𝜋𝜌𝑐଴ଷ/3 for spheres. The key physical parameters of affecting the gravity 
term are the projected wetted area, the submerged depth and the body geometry. The gravity term is 
proportional to the projected wetted area. Excluding the buoyance, i.e. the weight of the water with the 
volume of the wetted body, the gravity term is not sensitive to the body geometry at small submerged 
depth, but it is strongly influenced by the body geometry at large submerged depth. The analytical 
solution of 𝐹௭(௚) of the wedge with any deadrise angle is presented. Asymptotically (ℎ → ∞), 𝐹௭(௚) is 
proportional to the square root of the submerged depth. For the three-dimensional bodies, the 
dimensionless gravity term follows 𝐹ത௚(௭) = 𝛼ℎതఊ, where ℎത = ℎ/𝑐଴ and 𝛾 is about 0.83. The velocity 
term is represented as the drag coefficient, 𝐶௩ = 𝐹௭(௩)/(0.5𝜌𝑉ଶ𝑆), which is characterized by the body 
geometry. The submerged depth and the cavity shape influence the drag coefficient through modifying 
the velocity field near the wetted body. The evolution of the drag coefficient can be divided into three 
stages: i) near the still water surface, 𝐶௩ decays strongly with increasing the submerged depth; ii) after 
the submerged depth is greater than a few characteristic lengths, 𝐶௩ evolves gently and is reasonably 
constant; and (iii) 𝐶௩ grows due to the contraction of the air cavity. 𝐶௩ at the second stage becomes 
closer to the limiting value, which corresponds to the steady cavity flow at zero cavitation number. Larger 
mass ratios and/or higher Froude numbers result in the longer period of the second stage. Smaller mass 
ratios can lead to the dramatical growth of 𝐶௩ close to the pinch-off of the open cavity. 
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