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Abstract: A method is presented to model the incompressible, attached, unsteady lift and pitching

moment acting on a thin three-dimensional wing in the time domain. The model is based on

the combination of Wagner theory and lifting line theory through the unsteady Kutta–Joukowski

theorem. The results are a set of closed-form linear ordinary differential equations that can be solved

analytically or using a Runge–Kutta–Fehlberg algorithm. The method is validated against numerical

predictions from an unsteady vortex lattice method for rectangular and tapered wings undergoing

step or oscillatory changes in plunge or pitch. Further validation is demonstrated on an aeroelastic

test case of a rigid rectangular finite wing with pitch and plunge degrees of freedom.

Keywords: unsteady aerodynamics; finite wings; Wagner theory; lifting line theory; aeroelasticity

1. Introduction

Closed-form solutions for the attached incompressible unsteady flow problem around a

two-Dimensional (2D) airfoil exist in both the frequency domain [1] and in the time domain:

• Wagner theory [2,3]

• Finite state flow model [4]

• Leishman unsteady state space representation [5]

For three-Dimensional (3D) wings, there exists one closed-form solution for the unsteady

aerodynamics of elliptical wings [2]. For general geometries, closed-form solutions are usually obtained

either from strip theory (see for example Dowell [6]) or from panel methods, such as the Doublet Lattice

Method (DLM) [7] or the Vortex Lattice Method (VLM) [8]. Strip theory is based on estimating the 3D

unsteady loads by integrating 2D loads along the span. It therefore ignores the downwash induced by

the trailing vortices and overestimates the lift; it is mostly used on lifting surfaces with very high aspect

ratios, such as helicopter or wind turbine blades. The DLM can be used to estimate modal, frequency

domain aerodynamic loads in the form of the generalized aerodynamic force matrix. This matrix is

evaluated numerically at discrete reduced frequency values and is interpolated in order to estimate the

aerodynamic loads at intermediate frequencies. The generalized force matrix can be transformed to the

time domain using the rational function, the Chebyshev polynomial or indicial function representations,

again based on a set of discrete frequency estimations. Several efficient transformation methodologies

have been developed, notably the minimum state approach [9], but they remain approximations.

The Vortex Lattice Method can also be used to derive a generalized aerodynamic force matrix [10,11],

which can then be transformed to the time domain.
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Alternative closed-form solutions of the 3D attached flow problem include Reissner’s method [12],

which combined the Theodorsen and lifting line theories and was formulated in the frequency domain.

Chopra [13] developed expressions for the lift, thrust and moment of lunate tails oscillating in pitch

and plunge, based on the lifting line assumption that the flow is locally 2D around cross-sections of

the wing’s span, but that the local angle of attack is influenced by the vorticity in the wake. The work

was limited to rectangular wings, and frequency domain solutions for the aerodynamic loads were

obtained. Furthermore, Chopra and Kambe [14] formulated an unsteady lifting surface theory and

applied it to wings with non-rectangular planforms, but the aerodynamic load calculations were

still calculated in the frequency domain. James [15] developed an unsteady lifting line theory for

wings of a large aspect ratio with smooth tip geometries (such as elliptical planforms). He used a

matched asymptotic expansion approach to obtain solutions for impulsively-started motion, constant

acceleration and sinusoidal oscillations in pitch, plunge or flap. Nevertheless, the method failed to

yield total aerodynamic loads for wings with chords that jump abruptly to zero at the tip (such as

rectangular or trapezoidal wings). Furthermore, Ahmadi and Widnall [16] argued that James’s theory is

only valid for low reduced frequencies and that its 3D results are incorrect. Van Holten [17] also used

a matched asymptotic expansion to develop an unsteady lifting line theory for pitching wings and

rotating blades, but Ahmadi and Widnall [16] again claimed that the work is only valid for low

reduced frequencies. Phlips et al. [18] derived a time domain unsteady lifting line theory for flapping

(but not pitching) wings.

Other frequency domain unsteady lifting line approaches were proposed by Dragos [19],

Sclavounos [20] and, more recently, Drela [21]. State-space time domain models are usually

quasi-steady, such as the models by Nabawy and Crowther [22,23]. The present paper details a robust,

closed-form, time domain, 3D unsteady aerodynamic model that does not involve a transformation

from the frequency domain. The approach is based on Wagner’s 2D unsteady lift theory and Prandtl’s

lifting line theory and will be referred to as the Wagner Lifting Line (WLL) method. It was first

proposed by Boutet and Dimitriadis [24], but is presented here in much more detail, including an

aeroelastic extension. A similar approach was proposed slightly later by Izraelevitz et al. [25], but this

technique was not extended to aeroelastic applications.

2. Method

As mentioned in the Introduction, one of the main characteristics of lifting line theories is that the

flow is two-dimensional around spanwise cross-sections, but the local angle of attack is affected by

the downwash induced by the wake. In the classical version of the theory, the wing and wake

are modeled using a superposition of horseshoe vortices, the strength of which is constant in time.

In this way, the wake is straight and semi-infinite, and its strength varies in the spanwise, but not in

the chordwise direction.

In Wagner’s and Theodorsen’s 2D unsteady aerodynamic theories, the wake is still straight and

semi-infinite, but its strength varies in the chordwise direction since it is calculated from the unsteady

Kutta condition. The wake is assumed to propagate with the free stream velocity, U, so that chordwise

displacement and time are directly related by the equation x = Ut. A change in vorticity at the trailing

edge that occurs at time t0 will be reflected in the wake at a downstream distance U(t − t0) at time t.

Lifting line and Wagner theories are not directly compatible because in the former, the chordwise

strength of the trailing vortices is constant, while in the latter, it varies. In the present work,

Wagner theory is applied to spanwise cross-sections, so that the strength of the wake varies in both

the spanwise and chordwise direction. A quasi-steady version of lifting line theory is used in order to

approximate the downwash velocity caused by the wake and to add it to the other sources of downwash

used in Wagner theory.

There are three sources of downwash on finite wings in unsteady flow:

• Geometric downwash due to camber and twist.

• Downwash due to the motion of the wing (including the free stream and angle of attack).
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• Downwash due to the three-dimensionality of the flow (wing tip vortex effect).

The 3D downwash will be calculated using Prandtl’s lifting line theory, as detailed in Kuethe

and Chow [26]. The other two downwash contributions will be modeled from Wagner’s unsteady

aerodynamic theory, as presented by Fung [3].

2.1. Lifting Line Theory

A truncated Fourier series is used to represent an arbitrary time-varying circulation distribution

along the span of a flat plate wing:

Γ(t, y) =
1

2
a0 c0 U

m

∑
n=1

an(t) sin(nθ) (1)

where a0 is the lift curve slope at the wing’s axis of symmetry, c0 is the chord length at the wing’s

axis of symmetry, U is the free stream airspeed, an(t) are the time varying Fourier coefficients,

m is the number of terms kept in the series, θ comes from the substitution y = (s/2) cos(θ),

y represents the location along the span and s represents the span of the wing. In the classical lifting

line theory, the wing is split into m spanwise strips, and the order of the Fourier series is also m,

so that the number of unknowns (Fourier coefficients an) is equal to the number of equations

(spanwise strips). Izraelevitz et al. [25] proposed an alternative approach, whereby a horseshoe

vortex representation was used to model the 3D wing circulation.

Using Prandtl’s lifting line theory, it is possible to compute the downwash wy caused by the 3D

circulation distribution at a location y along the wing span:

wy = −
1

4π

∫ s/2

−s/2

dΓ/dy0

y − y0
d y0

= −
a0c0U

4πs

m

∑
n=1

nan(t)
∫ π

0

cos(nθ0)

cos(θ0)− cos(θ)
dθ0 (2)

Glauert [27] evaluated the integral in this latest expression, so that the downwash wy can be

computed as a function of the Fourier coefficients and the location y(θ) along the span:

wy(t) = −
a0c0U

4s

m

∑
n=1

nan(t)
sin(nθ)

sin θ
(3)

Note that this is a quasi-steady version of lifting line theory, since any instantaneous changes in

vorticity over the wing affect the entire wake simultaneously.

2.2. Unsteady Kutta–Joukowski

It is possible to express the unsteady sectional lift coefficient as a function of an(t) and location

along the span y, using the unsteady Kutta–Joukowski theorem and considering a lumped spanwise

vortex element, as explained by Katz and Plotkin [8] on page 439. The circulatory sectional lift

coefficient becomes:

cc
l (t, y) =

2Γ

Uc(y)
+

2Γ̇

U2
(4)

where Γ is the vortex strength, c(y) is the chord at span section y and the unsteady term Γ̇ comes

from the unsteady Bernoulli equation. The vortex strength can be replaced by its Fourier series

representation from Equation (1), to obtain:

cc
l (t, y) = a0

m

∑
n=1

( c0

c
an +

c0

U
ȧn

)

sin(nθ) (5)



Aerospace 2018, 5, 92 4 of 24

Furthermore, the circulatory lift coefficient for the entire wing can be computed from:

Cc
l (t) =

∫ s/2

−s/2

1
2 ρ U2 c(y) cc

l (t, y)dy
1
2 ρ U2 S

(6)

where S is the wing’s surface area.

The lift will cause a pitching moment around the pitch axis of each wing section, i.e., the axis

around which the wing section can pitch. One can compute the circulatory moment distribution

from the lift distribution, assuming that the sectional lift acts on the quarter chord. Refer to Figure 1,

which shows a wing section with chord c and half-chord b at pitch angle α to a free stream U.

The position of the pitch axis, xe, is defined with respect to the half-chord point. The circulatory

sectional moment equation is simply:

cc
m(t, y) =

c(y)/4 + xe(y)

c(y)
cc

l (t, y) (7)

where xe and c are allowed to vary in the spanwise direction y. Note that the pitch axis is measured

from the mid-chord point and is defined as positive if it lies downstream of that point as chosen by

Theodorsen [1]. The total circulatory moment coefficient is:

Cc
m(t) =

∫ s/2

−s/2

1
2 ρ U2 c(y)2 cc

m(t, y)dy
1
2 ρ U2 Sc̄

(8)

where c̄ = S/s is the mean chord.

ḣ

α̇

α

b

x
e

c = 2b

U

Figure 1. Rigid thin plate airfoil scheme.

2.3. Wagner’s Sectional Circulatory Lift

The computation of the unsteady circulatory aerodynamic loads is based on the circulatory

sectional lift cc
l (t, y) response of an airfoil undergoing a step change in downwash ∆w(y) << U at

span location y. The resulting step change in the lift coefficient can be expressed in terms of the Wagner

function, Φ(t), as follows:

cc
l (t, y) = a0(y)Φ(t)

∆w(y)

U
(9)

where a0(y) is the lift curve slope of the local airfoil section, which is approximated by 2π for thin

airfoils, and Φ(t) is Jones’ [28] approximation of the Wagner function:

Φ(t) = 1 − Ψ1e−
ǫ1U

b t
− Ψ2e−

ǫ2U
b t

with Ψ1 = 0.165, Ψ2 = 0.335, ǫ1 = 0.0455 and ǫ2 = 0.3.
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Duhamel’s principle can be applied to Equation (9) in order to express a continuous lift response

as the time integral of infinitesimal step responses:

cc
l (t, y) = a0(y)

(
w(0, y)

U
Φ(t) +

∫ t

0

1

U

∂w(τ, y)

∂τ
Φ(t − τ)dτ

)

(10)

The troublesome
∂w(τ,y)

∂τ term inside the integral can be removed by applying integration by parts,

such that:

cc
l (t, y) = a0(y)

(
w(t, y)

U
Φ(0)−

∫ t

0

1

U

∂Φ(t − τ)

∂τ
w(τ, y)dτ

)

(11)

The downwash w(t, y) must now be computed; it will depend on the kinematics of the wing.

In this work, the wing is assumed to be rigid with pitch and plunge degrees of freedom, but flexible

wings with bending and torsion modes can also be considered. Figure 1 defines the local plunge and

pitch degrees of freedom, h(t, y) and α(t, y), respectively. A local downwash wy is added in order to

represent the 3D downwash effects, so that w(t, y) becomes:

w(t, y) = Uα(t, y) + ḣ(t, y) + α̇(t, y)d + wy(t) (12)

d =

(
1

2
− a

)

b

a =
xe

b

where d is the non-dimensional distance between the mid-chord and the pitch axis, as defined by

Theodorsen [1]. After combining Equations (11) and (12),

cc
l (t, y)

a0(y)
=

(

α +
ḣ

U
+

α̇d

U
+

wy

U

)

Φ(0)

+
∫ t

0
Ψ1ǫ1

U

b
e
−ǫ1U

b (t−τ)

(

α(τ) +
ḣ(τ)

U
+

α̇(τ)d

U
+

wy(τ)

U

)

dτ

+
∫ t

0
Ψ2ǫ2

U

b
e
−ǫ2U

b (t−τ)

(

α(τ) +
ḣ(τ)

U
+

α̇(τ)d

U
+

wy(τ)

U

)

dτ

(13)

The following changes of variables are performed in order to eliminate the integrals from

Equation (13), where the variables zk(t) are called aerodynamics states.

z1(t, y) =
∫ t

0
e
−ǫ1U

b (t−τ)h(τ, y)dτ z4(t, y) =
∫ t

0
e
−ǫ2U

b (t−τ)α(τ, y)dτ

z2(t, y) =
∫ t

0
e
−ǫ2U

b (t−τ)h(τ, y)dτ z5(t, y) =
∫ t

0
e
−ǫ1U

b (t−τ) wy(τ)

U
dτ

z3(t, y) =
∫ t

0
e
−ǫ1U

b (t−τ)α(τ, y)dτ z6(t, y) =
∫ t

0
e
−ǫ2U

b (t−τ) wy(τ)

U
dτ

(14)
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Working through the integrals, we obtain:

cc
l (t, y)

a0(y)
=

(

α +
ḣ

U
+

α̇d

U
+

wy

U

)

Φ(0)− Φ̇(t)

(
h(0)

U
+

α(0)d

U

)

+ Φ̇(0)

(
h

U
+

αd

U

)

− Ψ1ǫ2
1

U

b2
z1 − Ψ2ǫ2

2
U

b2
z2

+ Ψ1ǫ1
U

b

(

1 −
ǫ1d

b

)

z3 + Ψ2ǫ2
U

b

(

1 −
ǫ2d

b

)

z4 + Ψ1ǫ1
U

b
z5 + Ψ2ǫ2

U

b
z6

(15)

First order differential equations for the aerodynamic state variables can be derived using Leibniz’s

integral rule. As an example, the equation for z1(t, y) is:

ż1(t, y) = e
−ǫ1U(t−t)

b h(t, y)
∂t

∂t
− e

−ǫ1Uτ
b h(0, y)

∂0

∂t
−

ǫ1U

b

∫ t

0
e
−ǫ1U

b (t−τ)h(τ, y)dτ

= h −
ǫ1U

b
z1(t, y) (16)

The equations for all the aerodynamic states are given by:

ż1(t, y) = h −
ǫ1U

b
z1(t, y) ż4(t, y) = α −

ǫ2U

b
z4(t, y)

ż2(t, y) = h −
ǫ2U

b
z2(t, y) ż5(t, y) =

wy

U
−

ǫ1U

b
z5(t, y)

ż3(t, y) = α −
ǫ1U

b
z3(t, y) ż6(t, y) =

wy

U
−

ǫ2U

b
z6(t, y)

(17)

Finally, the continuous unsteady circulatory lift coefficient can be written as follows:

cc
l (t, y) = Cq̇ + Dq + Ez + rΦ̇(t) + a0(y)Φ(0)

wy

U
(18)

ż = Wz + Fq + G
wy

U
(19)

where:

q =
[

h(t, y) α(t, y)
]T

z =
[

z1(t, y) z2(t, y) z3(t, y) z4(t, y) z5(t, y) z6(t, y)
]T

D =
a0(y)

U

[

Φ̇(0) UΦ(0) + dΦ̇(0)
]

E =
a0(y)U

b

[

−
Ψ1ǫ2

1
b −

Ψ2ǫ2
2

b Ψ1ǫ1

(

1 − ǫ1
d
b

)

Ψ2ǫ2

(

1 − ǫ2
d
b

)

Ψ1ǫ1 Ψ2ǫ2

]

G =
[

0 0 0 0 1 1
]T

C =
a0(y)

U
Φ(0)

[

1 d
]

r = −
a0(y)

U
(h(0, y) + dα(0, y))

W = −
U

b
diag (ǫ1 , ǫ2 , ǫ1 , ǫ2 , ǫ1 , ǫ2)

F =

[

1 1 0 0 0 0

0 0 1 1 0 0

]T
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2.4. Added Mass Effect

The non-circulatory sectional lift and moment coefficients, also known as the added mass effect,

can be computed from the non-circulatory terms derived by Theodorsen [1]:

ci
l(t, y) =

πb

U2

(
ḧ − a b α̈

)
+

πb

U
α̇ (20)

ci
m(t, y) =

πb

2U2

[

aḧ −

(

a2 +
1

8

)

bα̈

]

−

(
1

2
− a

)
πb

2U
α̇ (21)

The computation of the total non-circulatory lift Ci
l and moment Ci

m coefficients follows the same

principle as Equations (6) and (8), and the final result is given in Equations (A26) and (A27) for a

rectangular wing.

2.5. Assembling the Pieces Together

In order to compute the m Fourier coefficients an, m spanwise wing strips are considered,

as shown in Figure 2, which represents m strips along the wing span, their respective local

aerodynamics variables zi, 3D downwash effects wy,i and chord section ci. For an arbitrary strip i,

Equations (1), (18) and (19) can be combined to obtain the following system:

cc
l (t,yi)

︷ ︸︸ ︷

a0(yi)
m

∑
n=1

(
c0

ci
an +

c0

U
ȧn

)

sin(nθi) = Ciq̇ + Diq + Eizi + a0(yi)Φ(0)
wyi

U

żi = Wizi + Fq + G
wyi

U
(22)

1
st, z1, wy,1, y1, c1

ith, zi, wy,i, yi, ci

mth, zm, wy,m, ym, cm

y

Figure 2. Representation of m strips along the wing span and their respective local variables.

The variables zi represent the local aerodynamic state variables for the i-th strip. Matrices Ci, Di,

Ei and Wi are the matrices computed in Section 2.3 where the chord c is replaced with its local value ci.

Variable wyi
represents the 3D downwash effect on the i-th strip; its value is given by Equation (3).

Substituting for wyi
and re-arranging, Equation (22) become:

a0(yi)
m

∑
n=1

((
c0

ci
+ Φ(0)

a0c0n

4s sin(θi)

)

an +
c0

U
ȧn

)

sin(nθi) = Ciq̇ + Diq + Eizi

żi = Wizi + Fq − G
a0c0

4s

m

∑
n=1

nan(t)
sin(nθi)

sin θi
(23)
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Applying Equation (23) to all m strips, a set of 7m ordinary linear differential equations for 7m

unknowns (m for the Fourier coefficients an and 6m for the aerodynamic states z1, . . . zm) is obtained.

Once this system of ODEs is solved and the coefficients an(t) are evaluated, the lift distribution

acting on the wing can be computed from Relation (5), the total lift from (6) and the total pitching

moment from (8). As an example, the computation of the aerodynamic loads for a rectangular wing is

fully detailed in the Appendix, Equations (A1)–(A29).

2.6. Asymptotic Behavior for a Rectangular Wing (c = c0)

By imposing stationarity, all derivatives in time vanish and the system of Equation (23) should

reduce to the classical lifting line theory. After imposing stationarity on Equation (17), the aerodynamic

states variables become:

z1(y) =
b

ǫ1U
h(y) z4(y) =

b

ǫ2U
α(y)

z2(y) =
b

ǫ2U
h(y) z5(y) =

b

ǫ1U2
wy

z3(y) =
b

ǫ1U
α(y) z6(y) =

b

ǫ2U2
wy

(24)

Injecting these expressions in Equation (23) and applying the necessary simplifications,

the system becomes:

a0(y)
m

∑
n=1

(

1 + Φ(0)
a0(y)nc

4s sin(θi)

)

an sin(nθi) = a0(y)α(y) + a0(y)Φ(0)
wy

U

or:
m

∑
n=1

(

1 +
a0(y)nc

4s sin(θi)

)

an sin(nθi) = α(y)

which is the equation derived by Kuethe and Chow [26] for a rectangular wing, using Prandtl’s lifting

line theory for a constant pitch angle α(y) = α.

If the span of the wing is infinite, s = ∞, all 3D effects vanish and System (23) should reduce to

the 2D Wagner solution. Looking at Equation (3), it is obvious that lim
s→∞

wy = 0. It can then be shown

from Equation (14) that z5 = 0 and z6 = 0. The system of Equation (23) is now reduced to:

cc
l (t) = a0(y)

m

∑
n=1

(

an +
c

U
ȧn

)

sin(nθi) = Cq̇ + Dq + Ezi

żi = Wzi + Fq

zi =
[

z1,i z2,i z3,i z4,i 0 0
]T

(25)

which is the classical 2D Wagner formulation, as given by Fung [3] for all arbitrary strips i.

3. Test Cases

The Wagner lifting line method is applied here to a rectangular and a tapered wing.

The rectangular wing, shown in Figure 3, has constant chord c = 1 m, span s, surface S = cs

and aspect ratio AR = s2/S. It has two degrees of freedom, a pure plunge h(t, y) = h(t) and a pure

pitch angle α(t, y) = α(t) around its pitch axis. Two positions of the pitch axis are considered: one at

the leading edge and one at the quarter chord.
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s

α

c

h

L s

α

c

h

L
M

MU

Leading edge axis Quarter chord axis

Figure 3. Rectangular wing with pitch axis at the leading edge and quarter chord.

The tapered wing, shown in Figure 4, has root chord c0 = 1 m, tip chord ct = 0.5 m, span s, surface

S = (c0 + ct)
s
2 and aspect ratio AR = s2/S. It has the same degrees of freedom as the rectangular

wing. The pitch axis is defined with respect to the root chord, as shown in Figure 4. Again, leading

edge and quarter chord pitch axis locations are considered.

s

α

ct
h

L s

α

h

L
M

M

U

Leading edge axis Quarter chord axis

c0

ct

c0

Figure 4. Tapered wing with pitch axis at the leading edge and quarter chord.

3.1. Types of Motion

The degrees of freedom of the wings are subjected to two kinds of motion: step changes and

sinusoidal oscillations. The step is expressed as the function f = A
(
1 − e−10t

)
where t is the time and

A is the position of the degree of freedom after the step. Steps ∆h = 0.1 m and ∆α = 5◦ are separately

applied to the plunge and pitch degrees of freedom.

Sinusoidal oscillations with ten distinct frequencies are tested separately for each degree of

freedom, in order to assess the WLL model’s frequency response. The oscillations are expressed as

f = A cos
(

2Uk
c0

t
)

where t is the time, A the amplitude of the oscillation and k = [0.1, 0.2, 0.3 . . . 1] is

the reduced frequency. The pitch and plunge amplitudes are respectively set to A = 5◦ and A = 0.1 m.



Aerospace 2018, 5, 92 10 of 24

3.2. Validation

The unsteady Vortex Lattice Method (VLM) is used as a reference solution to which the results

obtained by the Wagner lifting line approach are to be compared. The particular implementation of

the VLM used here is more thoroughly described by Dimitriadis et al. [29]. The difference between

the solutions obtained from WLL and VLM is quantified using the Normalized Root-Mean-Square

Deviation (NRMSD).

RMSD =

√

∑
N
t=1 (yw,r − yv,r)

2

N
(26)

NRMSD = 100 ×
RMSD

max(yv)− min(yv)
[%] (27)

where N is the number of time instances, yv,r represents the lift or moment coefficient computed by

the VLM at the r-th time instance and yw,r represents the lift or moment coefficient computed by the

WLL approach at the r-th time instance.

4. Convergence

The differential Equation (23) are solved by means of a Runge–Kutta–Fehlberg fourth and fifth

order numerical time integration technique. A time convergence analysis is therefore needed in

order to minimize numerical integration errors without increasing the computation time too much.

A convergence analysis is also performed for the vortex lattice method.

As shown in Equation (1), the WLL uses a truncated Fourier series with m coefficients,

which correspond to the m spanwise strips shown in Figure 2. A spatial convergence study must

also be carried out in order to determine the effect of the number of strips on the aerodynamic load

predictions. Note that the number of states in the system is 7m; therefore, keeping m as low as possible

is important. The NRMSD is used in order to determine if convergence has been achieved, such that:

RMSD(i) =

√
√
√
√∑

N
t=1

(

yi,t − yre f ,t

)2

N
(28)

NRMSD(i) = e(i) = 100 ×
RMSD

max(yre f )− min(yre f )
[%] (29)

where yi,t represents the lift coefficient response at the t-th time instance for the i-th value of the

convergence parameter. The latter can be either the time step tolerance of the Runge–Kutta–Fehlberg

scheme or the number of strips; yre f represents the reference lift coefficient against which the

convergence is assessed. This reference is computed for an appropriately high value of the

convergence parameter.

4.1. Runge-Kutta Convergence

The time step tolerance controls the error of the Runge-Kutta time integration scheme. Given the

solution arrays r4 and r5 of the respective fourth and fifth order Runge-Kutta estimates for a current

time ti and time step ∆t, the Runge–Kutta–Fehlberg algorithm used in this work is given by:

• if Tol < (r5 − r4)(r5 − r4)
T , reduce the time step to ∆t/2

• otherwise, go to the next time instance ti+1 = ti + ∆t and reset ∆t to its default value

Figure 5 plots the variation of the error of Equation (29) with the tolerance Tol used in the

Runge–Kutta–Fehlberg algorithm with respect to a reference Tol = 10−9. The solid line represents

the convergence for a step case and the dashed line the convergence for a sinusoidal oscillation case

with a reduced frequency k = 0.3. Assuming that e < 0.01% is good accuracy, the figure shows that a

tolerance value of 10−7 is sufficient to achieve convergence for both the step and sinusoidal motion.



Aerospace 2018, 5, 92 11 of 24

10
−8

10
−6

10
−4

10
−2

10
0

10
−6

10
−4

10
−2

10
0

10
2

Tolerance 

e
(%

)

Step AR 6

Step AR 12

Step AR 18

Oscillation AR 6
Oscillation AR 12
Oscillation AR 18

(a)

0 5 10 15 20 25
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Number span pannel

e
(%
)

Step AR 6

Step AR 12

Step AR 18

Oscillation AR 6
Oscillation AR 12
Oscillation AR 18

(b)

Figure 5. Wagner Lifting Line (WLL) convergence with the tolerance parameter and number of

spanwise strips for a rectangular wing. (a) Tolerance parameter; (b) Number of spanwise strips.

Figure 5b plots the variation of the error of Equation (29) with the number of strips for different

aspect ratios and kinematics with respect to a reference number of strips m = 26. The time step

tolerance is fixed to 10−7. It can be seen that, for all cases, a value of m = 20 is sufficient to achieve

errors e < 0.01%. A still acceptable error of e < 0.1% can be achieved with m = 10 strips. The figure

also shows that the higher the AR, the greater the number of strips necessary to reach the same

level of convergence. As the aspect ratio increases, the spanwise lift distribution becomes flatter

and decreases more quickly at the wingtips; the Fourier series of Equation (1) requires more terms

in order to represent such lift distributions accurately. In the asymptotic case, a rectangular wing with

infinite span can only be modeled if an infinite number of terms is used in the series; we have already

shown in Equation (25) that the WLL model then reduces to the classical 2D Wagner formulation.

4.2. Vortex Lattice Convergence

The quality of the solutions obtained from the vortex lattice method is based on the the number of

panels used to represent the wing in the spanwise and chordwise directions. The VLM is more

sensitive to the chordwise than the spanwise number of panels [30], so a convergence for the number of

chordwise panels is performed.

Figure 6 plots the variation of the error of Equation (29) with the number of chordwise panels

for a rectangular wing (AR = 6) oscillating around its leading edge with a reduced frequency k = 0.3.

The reference number of chordwise panels is j = 100. The number of spanwise panels is set to 15.

It can be seen that j = 75 is sufficient to achieve errors e < 10−1% for the rectangular wing case with a

leading edge pitch axis. The figure also shows that the convergence is independent of the aspect ratio.

This is logical since the convergence parameter is the number of chordwise panels.

All other test cases used in this work converge for j = 75, as long as the pitch axis does not lie at

c0/4. A larger number of chordwise panels j = 100 is necessary for convergence when the pitch axis

lies on the quarter chord because the moment loads need to converge to values very close to zero for

the oscillating case with low reduced frequency. Convergence is therefore harder to achieve.
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Figure 6. Vortex Lattice Method (VLM) convergence with the number of chordwise panels.

5. Lift and Moment Results for a Rectangular Wing

In this section, the WLL method is applied to the rectangular wing under different kinematic

conditions. The lift and moment estimates are compared to predictions obtained by the VLM

technique and by strip theory. In all cases, the VLM estimates were obtained from time-converged and

spatially-converged simulations.

For the first comparison, the pitch axis is located at the leading edge and the wing undergoes a

step change in pitch or plunge, as explained in Section 3.1. The resulting lift and moment responses

are shown in Figure 7; the WLL estimates are in good agreement with the VLM results for both pitch

and plunge motions. In contrast, the strip theory result is significantly overestimated in the pitch

step case and underestimated in the plunge step case. Note that the agreement in pitching moment

for the step pitch case is not as good as in the other results; small differences between the VLM and

WLL predictions persist at steady-state conditions. This is due to modeling differences between the

two approaches. WLL calculates the total stripwise lift and places it at the quarter chord. In contrast,

the VLM calculates a lift force on the 3/4 chord point of each chordwise panel, and the total stripwise

lift is the sum of all the lift forces on the same strip. The point of application of the VLM’s total

stripwise lift is exactly the quarter chord only for an infinite number of chordwise panels.
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Figure 7. Cont.
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Figure 7. Comparison between VLM, WLL and strip theory for a rectangular wing undergoing a step

motion. (a) Lift coefficient, pitch step A = 5◦; (b) Lift coefficient, plunge step A = 0.1 m; (c) Moment

coefficient, pitch step A = 5◦; (d) Moment coefficient, plunge step A = 0.1 m.

Simulations where repeated for other positions of the pitch axis, but the results are not shown

here for conciseness. All of these simulations resulted in WLL predictions that were in good agreement

with the VLM estimates.

For the second comparison, the WLL, VLM and strip theory techniques are applied to a rectangular

wing with an aspect ratio of six undergoing sinusoidal oscillations in pitch or plunge, as detailed in

Section 3.1. Several reduced frequency values were tested, but only the results for k = 0.1 and k = 0.3

are presented here. The lift results are plotted in Figure 8 and the moment results in Figure 9. There is

very good agreement between the WLL and VLM predictions for all frequencies, while the strip theory

estimates are quite inaccurate at both values of k.
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Figure 8. Cont.
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Figure 8. Lift comparison between VLM, WLL and strip theory for a rectangular wing undergoing

an oscillation motion. (a) Oscillation in pitch with A = 5◦ and k = 0.1; (b) Oscillation in plunge with

A = 0.1 m and k = 0.1; (c) Oscillation in pitch with A = 5◦ and k = 0.3; (d) Oscillation in plunge with

A = 0.1 m and k = 0.3.
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Figure 9. Moment comparison between VLM, WLL and strip theory for a rectangular wing undergoing

an oscillation motion. (a) Oscillation in pitch with A = 5◦ and k = 0.1; (b) Oscillation in plunge with

A = 0.1 m and k = 0.1; (c) Oscillation in pitch with A = 5◦ and k = 0.3; (d) Oscillation in plunge with

A = 0.1 m and k = 0.3.
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Figure 10a plots the NRMSD values calculated from Equation (27), for all the tested values of k.

The difference between the WLL and VLM predictions increases with reduced frequency, but stays

lower than 3% for all kinematics and aerodynamic loads. This level of difference is considered

good for such frequencies. Repeating the simulations after moving the pitch axis to the quarter chord,

as shown in Figure 10b, results in equally good agreement between the WLL and VLM aerodynamic

load predictions.
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Figure 10. NRMSD between VLM and WLL aerodynamic responses for a rectangular wing AR = 6

undergoing oscillations motion. (a) Pitch axis on leading edge; (b) Pitch axis on quarter chord.

6. Lift and Moment Results for a Tapered Wing

In this section, step and sinusoidal numerical tests are applied to the tapered wing with an aspect

ratio of six described in Section 3. Initially, the pitch axis is located at the leading edge of the root chord,

and the wing undergoes step changes in pitch or in plunge, as detailed in Section 3.1. The resulting

lift and moment responses are shown in Figure 11. In all cases, the WLL and VLM predictions are in

very good agreement, while the strip theory results are highly overestimated in the pitch step case.

Moving the pitch axis to the quarter chord results in equally good agreement between the WLL and

VLM aerodynamic load responses.
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Figure 11. Cont.



Aerospace 2018, 5, 92 16 of 24

0 0.1 0.2 0.3 0.4 0.5 0.6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(s)

(-
)

(c)

0 0.2 0.4 0.6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

(s)

(-)

(d)

Figure 11. Comparison between VLM, WLL and strip theory for a tapered wing, AR = 6, undergoing

a step motion. (a) Lift coefficient, pitch step A = 5◦; (b) Lift coefficient, plunge step A = 0.1 m;

(c) Moment coefficient, pitch step A = 5◦; (d) Moment coefficient, plunge step A = 0.1 m.

Finally, the WLL and VLM are compared for the case of pitch or plunge sinusoidal oscillations at

different reduced frequencies for the tapered wing. The pitch axis is located at the leading edge of the

root chord. Figure 12a plots the variation of the NRMSD values between the two sets of predictions,

for increasing k values. It can be seen that in all cases the maximum NRMSD stays below 5%.

It is concluded that the WLL approach can predict accurately the aerodynamic load responses for

oscillating tapered wings. Moving the pitch axis to the quarter chord results in equally good predictions,

as seen in Figure 12b.
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Figure 12. NRMSD between VLM and WLL aerodynamic responses for a tapered wing AR = 6

undergoing oscillations motion. (a) Pitch axis on root leading edge; (b) Pitch axis on root quarter chord.

7. Computational Cost

The computation times of the WLL and VLM approaches are compared for a step and three

sinusoidal oscillations in pitch, with reduced frequencies k = [0.1, 0.5, 1] and a total simulation time

Tf = 1.3 s. The following parameters have been used for each method :
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VLM: There are 15 spanwise and 20 chordwise panels, and the time step is ∆t = 10−3. The wake

shape is prescribed in order to reduce computational cost.
WLL: The computation parameters used are 15 strips, a tolerance Tol = 10−8 and an initial time step

∆t = 10−3 for the Runge–Kutta–Fehlberg 45 algorithm.

All the calculations were run on a MacBook Pro laptop computer with a quad-core Intel i7

processor rated at 2.5 GHz, running iOS Version 10.9.5.

Table 1 shows that WLL calculation times are much lower than VLM numerical simulations to

simulate 1.3 s of pitch step or sinusoidal oscillations with reduced frequency k = [0.1, 0.5, 1].

The benefit of an adaptive time step for WLL can also be seen as the computation time is lower for

cases with low or high reduced frequencies. It should be stressed that the implementation of the

two methods is completely different; the WLL is implemented purely in MATLAB, while the VLM is

implemented as a combination of MATLAB and C code (mex functions). If the WLL were also

implemented using compiled code, it would be even faster.

Table 1. Computation time comparison between VLM and WLL.

Model Step Oscillation k = 0.1 Oscillation k = 0.5 Oscillation k = 1

VLM 503 s 504 s 495 s 497 s
WLL 15 s 36 s 57 s 32 s

8. Aeroelastic Test Case

In order to further validate the Wagner lifting line approach, an aeroelastic test case is presented

for a rigid rectangular wing with pitch and plunge degrees of freedom. The flutter speed will be

computed as a function of the position of the pitching axis and the wing’s aspect ratio using both the

Wagner lifting line and the Vortex lattice method.

8.1. Aeroelastic Equations of Motion

The structure simply consists of a rigid wing with two degrees of freedom in pitch and plunge.

The structural equations of motion are given by:

[

mw Sw

Sw Iw

]

q̈ +

[

kh 0

0 kα

]

q =

[

−L(t)

M(t)

]

(30)

where q = [h α]T , h is the plunge displacement, α the pitch displacement, mw the mass, Sw the static

imbalance around the pitching axis, Iw the moment of inertia around the pitching axis, kh and kα

the stiffnesses of the springs providing restoring loads in the plunge and pitch degrees of freedom,

respectively, and L(t) and M(t) are the lift and moment around the pitching axis computed using the

VLM or WLL approaches.

The wing is chosen as an aluminum rectangular flat plate with chord c0 = 0.1 m, thickness

h = 0.005 m and span s; the distance between the pitch axis and the mid-chord is xe. The mass matrix

components can then be computed as:

mw = ρalshc0

Iw =
mwc2

0

12
+ mwc2

0x2
e

Sw = −mwxe
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where ρal = 2300 kg/m3 is the density of aluminum. The spring stiffnesses for the two degrees of

freedom are chosen such that the uncoupled, wind-off natural frequencies of the system are fh = 1 Hz

and fα = 5 Hz. The stiffnesses are then given by:

kh = mw (2π fh)
2

kα = Iw (2π fα)
2

The normal force L(t) and moment around the pitching axis M(t) are computed from Equations (6)

and (8), together with the added mass effects described in Expressions (20) and (21). The integrals are

approximated using the trapezoidal rule.

Finally, the complete linear aeroelastic system composed of Equations (30) and (22) can be written

in first-order form as:

ẋ = H(U, xe)x (31)

The aeroelastic system matrix H is derived in Appendix A, while x represents the system states

and is defined as:

x =
[

a1 . . . am z1 . . . zm q q̇
]T

(32)

where ai is the i-th Fourier coefficient, zi are the local aerodynamic state variables for the i-th strip:

zi =
[

zi,1 zi,2 zi,3 zi,4 zi,5 zi,6

]

q = [h α] and m is the number of strips. Consequently, the total number of states is 7m + 4.

Finally, the WLL flutter solution is obtained by computing the eigenvalues of matrix H(U, xe) as

a function of the airspeed U. An indirect search procedure is employed to pinpoint the airspeed at

which one pair of complex conjugate eigenvalues becomes purely imaginary, which is the definition of

the flutter speed. The number of strips used to estimate matrix H(U, xe) is m = 20, and the flutter

solution is obtained for several values of the position of the pitch axis xe.

The VLM flutter solution is obtained using the modal frequency domain version of the method,

as detailed in [11]. Rigid body modes are chosen, one for the plunge and one for the pitch. The mode

shapes are given by:

wh(x, y) = 1

wα(x, y) = x

where wh(x, y) is the plunge mode shape and wα(x, y) the pitch mode shape. The elements of the mass

matrix are then obtained from:

mw = ρalh
∫ c

0

∫ y

0
w2

h(x, y)dxdy

Iw = ρalh
∫ c

0

∫ y

0
w2

α(x, y)dxdy

Sw = ρalh
∫ c

0

∫ y

0
wh(x, y)wα(x, y)dxdy

The resulting flutter problem is of the form:

((
kU

b

)2

Aq̈ + Eq − ρU2Q(k)

)

q(k) = 0 (33)
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where As is the structural mass matrix, Es is the structural stiffness matrix and Q(k) is the

frequency-dependent generalized aerodynamic force matrix generated by the VLM approach.

The flutter problem is solved using the p − k method.

8.2. Results

The resulting flutter speed and frequency values are plotted against the position of the pitch

axis in Figure 13 for two aspect ratios: AR = 4 and AR = 10. Figure 13a plots the flutter airspeeds

and shows that the VLM and WLL predictions are in good agreement with each other for both aspect

ratios. Figure 13b plots the flutter frequency predictions; the agreement is still very good as the highest

frequency discrepancy is of the order of 5%. It can be concluded that the Wagner lifting line method

can predict accurately the flutter of a wing with a finite span.
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Figure 13. Comparison of flutter with the aeroelastic axis for a 3D wing, computed with vortex lattices

(dashed line) and the Wagner lifting line (solid). (a) Flutter speed; (b) Flutter frequency.

9. Conclusions

The WLL method results in a closed-form, state-space representation of the unsteady aerodynamic

loads acting on finite rectangular and tapered wings of different aspect ratios, under attached

incompressible flow conditions. The technique combines Wagner’s 2D unsteady lift theory,

Prandtl’s lifting line theory, the unsteady Kutta–Joukowski theorem and the added mass terms from

Theodorsen’s analysis. Sample simulations on wings with and without taper have shown very good

agreement between the WLL predictions and VLM simulation results. The method can also be readily

applied to wings with twist and camber. Sweep is more problematic, since lifting line theory has to be

modified in order to work in the presence of sweep. This modification will be addressed in future work.

The VLM approach is still more general than the WLL technique, as it can easily represent sweep.

The advantage of WLL is the fact that the resulting aerodynamic loads are written in state space form,

as functions of the structural and aerodynamic states. They can therefore be easily included in

aeroelastic and flight dynamic calculations. In contrast, the VLM or DLM techniques result in

time-marching simulations or, if using a modal frequency domain technique, in Equation (33),

which is a hybrid time-frequency domain equation that must be transformed to the time domain

in order to carry out aeroservoelastic calculations. In the present examples, the wings were rigid with

discrete degrees of freedom, but flexible wings with generalized modes can also be treated. Finally,

the WLL calculations are significantly faster than time domain VLM numerical simulations.
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Appendix A. Wagner Lifting Line Aeroelastic Matrix Computation

Appendix A.1. Sectional Normal Lift

First, Equation (5) for the sectional normal lift coefficient can be expressed in matrix form as:

cc
l (t, yi) = a0

m

∑
n=1

(
c0

ci
an +

c0

U
ȧn

)

sin(nθi) (A1)

= Ayi
an + Dyi

ȧn (A2)

where cc
l (i) is the sectional lift at the i-th strip, y(i) is the location y of the i-th strip, an = [a1 a2 . . . am]T ,

while Ayi
and Dyi

are matrix coefficients. The special cases i = 0 and i = m + 1 correspond to the

wingtips, which are not normal strips. There is no lift at the wingtips, so that:

y0 = −s/2

ym+1 = s/2

cc
l (t, y0) = cc

l (t, ym+1) = 0

Appendix A.2. Downwash

The equation for the downwash (3) can be expressed in the following matrix form:

wyi
(t) = −

a0c0U

4s

m

∑
n=1

nan(t)
sin(nθi)

sin θi
(A3)

= Wyi
an (A4)

where Wyi
is a matrix coefficient.

Appendix A.3. Wagner Lifting Line

Using Expressions (A2) and (A4), the Wagner lifting line Equation (22) at the i-th strip can be

rewritten in the following matrix form:

Ayi
an + Dyi

ȧn = Ciq̇ + Diq + Eizi +
a0Φ(0)

U
Wyi

an (A5)

żi = Wizi + Fq +
G

U
Wyi

an (A6)

For simplicity, it is assumed that a0 is not a function of the span location y. Then, Expressions (A5)

and (A6) are extended to include the equations for all the m strips.

DyM
ȧn = CMq̇ + DMq + EMz + (WyM

− AyM
)an (A7)

ż = WMz + FMq + WGM
an (A8)
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where:

z =
[

z1 . . . zi . . . zm

]T
(A9)

AyM
=

[

Ay1 . . . Ayi
. . . Aym

]T
(A10)

DyM
=

[

Dy1 . . . Dyi
. . . Dym

]T
(A11)

CM =
[

C1 . . . Ci . . . Cm

]T
(A12)

DM =
[

D1 . . . Di . . . Dm

]T
(A13)

EM = diag (E1, . . . , Ei, . . . , Em) (A14)

WyM
=

a0Φ(0)

U

[

Wy1 . . . Wyi
. . . Wym

]T
(A15)

WM = diag (W1, . . . , Wi, . . . , Wm) (A16)

FM =
[

F . . . F . . . F
]T

(A17)

WGM
=

[
G
U Wy1 . . . G

U Wyi
, . . . , G

U Wym

]T
(A18)

Appendix A.4. Trapezoidal Rule

The computation of the circulatory lift for a rectangular wing can be expressed by the integral:

Lc(t) =
1

2
ρ U2 c

∫ s/2

−s/2
cc

l (t, y)dy (A19)

Then, using the trapezoidal rule, this integral can be approximated by the sum:

Lc(t) =
1

2
ρ U2 c

m+1

∑
i=1

yi − yi−1

2
(cc

l (t, yi−1) + cc
l (t, yi)) (A20)

or, in matrix form,

Lc(t) =
1

2
ρ U2 c

[

y1 − y0 . . . ym+1 − ym

]












cc
l (t, y1)

...

cc
l (t, yi−1) + cc

l (t, yi)
...

cc
l (t, ym)












(A21)

=
1

2
ρ U2 c

[

y1 − y0 . . . ym+1 − ym

]













1 0 . . . 0

1 1
. . .

...

0
. . .

. . . 0
...

. . . 1 1

0 . . . 0 1


















cc
l (t, y1)

...

cc
l (t, ym)




 (A22)

= T









cc
l (t, y1)

cc
l (t, y2)

...

cc
l (t, ym)









(A23)
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Using Expression (A2), one can write:

Lc(t) = TAyi
an + TDyi

ȧn (A24)

As the chord and the location of the pitch axis are constant with span for a rectangular wing, the

circulatory moment in pitch Mc is simply:

Mc(t) = (c/4 + xe)Lc(t) (A25)

Appendix A.5. Non-Circulatory Loads

It is assumed that the wing is rectangular; therefore, the non-circulatory load coefficients are

identical to the sectional lift coefficients described in Section 2.4. They are written as:

Li(t) =
1

2
ρ U2 c

(
πb

U2

(
ḧ − a b α̈

)
+

πb

U
α̇

)

= Alq̈ + Blq̇ (A26)

Mi(t) =
1

2
ρ U2 c2s

(
πb

2U2

[

aḧ −

(

a2 +
1

8

)

α̈

]

−

(
1

2
− a

)
πb

2U
α̇

)

= Amq̈ + Bmq̇ (A27)

Appendix A.6. Total Aerodynamic Loads

The total lift applied on the wing can be written as:

L = Lc(t) + Li(t)

= TAyi
an + TDyi

ȧn + Alq̈ + Blq̇ (A28)

Similarly, the total pitching moment is:

M = Mc(t) + Mi(t)

= (c/4 + xe)TAyi
an + (c/4 + xe)TDyi

ȧn + Amq̈ + Bmq̇ (A29)

Appendix A.7. Structural Equations

From Expressions (A28) and (A29), Equations (30) can be written as:

([

mw Sw

]

+ Al

)

q̈ + TDyi
ȧn = −TAyi

an − Blq̇ −

[

kh 0
]

q (A30)
([

Sw Iw

]

+ Am

)

q̈ + (c/4 + xe)TDyi
ȧn = −(c/4 + xe)TAyi

an − Bmq̇ −

[

0 kα

]

q (A31)

Appendix A.8. Aeroelastic System Matrix

Finally, Expressions (A7), (A8), (A30) and (A31) can be summarized in the following algebraic

linear form:

H1








ȧn

ż

q̇

q̈








= H2








an

z

q

q̇








(A32)

Then, the global aeroelastic system matrix H of Equation (31) is given by:

H = H1
−1H2 (A33)
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