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Abstract

Magnetic field influence on unsteady free convection flow of a second grade fluid near an infinite vertical flat plate with
ramped wall temperature embedded in a porous medium is studied. It has been observed that magnitude of velocity as
well as skin friction in case of ramped temperature is quite less than the isothermal temperature. Some special cases namely:
(i) second grade fluid in the absence of magnetic field and porous medium and (ii) Newtonian fluid in the presence of
magnetic field and porous medium, performing the same motion are obtained. Finally, the influence of various parameters
is graphically shown.
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The natural convection heat transfer from a vertical plate to a

fluid has applications in many industrial processes. It was

extensively studied by a number of researchers using different sets

of thermal conditions at the bounding plate. Special mention can

be made, for instance, to the studies of Raptis and Sing [1,2],

Sacheti et al. [3], Chandran et al. [4,5] and Ganesan and Palani [6]

that have determined analytical solutions for velocity and

temperature using continuous and well-defined conditions at the

wall. Samiulhaq et al. [7] discussed the influence of radiation and

porosity on the unsteady magnetohydrodynamic (MHD) flow past

an infinite vertical oscillating plate with uniform heat flux in a

porous medium. Keeping in mind the importance of shear stress

on the boundary, Fetecau et al. [8] reinvestigated the problem of

Samiulhaq et al. [7] by considering shear stress on the boundary.

However, some practical problems may require non-uniform or

arbitrary wall conditions. Chandran et al. [9] studied the unsteady

free convection flow of an incompressible viscous fluid near a

vertical plate with ramped wall temperature and compared the

results with those of the plate with constant temperature. Recently,

Seth and Ansari [10] and Seth et al. [11] found exact solutions for

the MHD natural convection flow past an impulsively moving

vertical plate with ramped wall temperature in the presence of

thermal diffusion or radiation heat transfer. Narahari and Beg [12]

considered the problem of Chandran et al. [9] for the impulsive

motion of the plate with radiation and constant mass diffusion.

More recently, Samiulhaq et al. [13] investigated the unsteady

MHD flow past an impulsively started vertical plate present in a

porous medium with thermal diffusion and ramped wall temper-

ature. However, all aforementioned results refer to incompressible

viscous fluids.

Due to increasing significance of non-Newtonian fluids over the

past few years, several researchers in the field are involved by

valuable contributions in the study of flows of non-Newtonian

fluids. It is due to their numerous applications in several areas,

such as the plastic manufacture, performance of lubricants, food

processing, or movement of biological fluids. These fluids are

defined by a non-linear constitutive relationship between the stress

and the rate of deformation tensors and, therefore, various models

of non-Newtonian fluids have been proposed. Amongst them, the

second grade fluids are the simplest subclass for which one can

easily obtain analytical solutions. For these reasons and because,

the second grade fluids can model many fluids such as dilute

polymer solutions, slurry flows, industrial oils, many flow problems

with various geometries and different mechanical and thermal

boundary conditions have been studied.

Tan and Masouka [14] investigated the Stokes’ first problem for

a second grade fluid in a porous half-space with a heated flat plate.

Hayat and Abbas [15], by means of homotopy analysis method,

have studied the heat transfer on the MHD flow of second grade

fluids in a channel with porous medium. Closed form solutions for

MHD flow of a second grade fluid through porous space are

obtained by Khan et al. [16]. Thermal effects in Stokes’ second

problem for second grade fluid through a porous medium under

the effect of magnetic field have been investigated by Srinivasa

Rao et al [17]. Mustafa et al [18] have studied free convection flow

of a viscoelastic second grade fluid along a vertical plate with

power- law surface temperature.

The influence of magnetic field is observed in several natural
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earth’s core, the solar magnetic field which originates sunspots and

solar flares, and the galactic magnetic field which is thought to

control the configuration of stars from interstellar clouds [19].

Three major technological innovations namely, (i) fast-breeder

reactors used liquid sodium as a coolant which requires pumping;

(ii) controlled thermonuclear fusion needs that the hot plasma be

confined away from material surfaces by magnetic forces; and (iii)

MHD power generation, in which ionized gas is propelled through

a magnetic field were made by incorporating MHD in the field of

engineering. The phenomenon concerning heat and mass transfer

with MHD flow is important due to its numerous applications in

science and technology Hayat et al. [20,21] and Hayat and Qasim

[22]. The particular applications are found in buoyancy induced

flows in the atmosphere, in bodies of water and quasi-solid bodies

such as earth. Therefore, heat and mass transfer with MHD flow

has been a subject of concern of several researchers (see for

example, Katagiri [23], Jana et al. [24], Mandal and Mandal [25],

Gosh [26], Jha and Apere [27], and the references therein). Other

interesting results regarding the second grade fluids can be found

in the references [28–34].

The purpose of this note is to extend some of the previous

results to a larger class of fluids, namely to second grade fluids.

More exactly, we establish exact solutions for velocity and

temperature corresponding to the natural convection flow of a

second grade fluid near an infinite vertical plate with ramped wall

temperature. Apart from several other applications, the present

study is significant and worthwhile as the exact solutions obtained

in this paper are important not only that these solutions are new

but as they can be used as checks for many approximate solutions

and as tests for verifying numerical schemes. These solutions,

obtained both for Pr=1 and Pr~1,satisfy all imposed initial and

boundary conditions. For comparison, the solutions corresponding

to the plate with constant temperature are also established. Finally,

temporal and spatial variations of velocity as well as those of the

wall skin friction are graphically discussed.

Mathematical Formulation of the Problem

Let us consider the unsteady MHD flow of an incompressible

second grade fluid near an infinite vertical plate with ramped wall

temperature. The flow of electrically conducting fluid is taken in a

porous medium. The x{axis is taken along the plate in the

upward direction and y{axis is taken normal to the plane of the

plate. A uniform magnetic field of strength B0 is acting in

transverse direction to the flow as shown in Figure 1. Initially, at

time t~0, both the fluid and the plate are at rest to a constant

temperature T?. At time t~0z, the temperature of the plate is

raised or lowered to T?z Tw{T?ð Þt=t0 when tƒt0, and

thereafter, for twt0, is maintained at the constant temperature

Tw. The main purpose here is to study the free convection flow

resulting from the ramped temperature profile of the bounding

plate.

It is assumed that the effects of viscous dissipation are negligible

in the energy equation. One of the body force term corresponding

to an MHD flow is the Lorentz force J | B. Where B is the total

magnetic field and J is the current density. By using Ohm’s law,

the current density is given as

J ~ s E z V | Bð Þ, ð1Þ

where s is electrical conductivity of the fluid, E is the electric field, V

is the velocity vector field, B~B0zb1with B0 is the imposed

magnetic field and b1is the induced magnetic field. The current

density J with the assumptions E~0, b1~0 and B~B0~ 0,B0,0ð Þ,
where B0 is the strength of applied magnetic field B0, modifies to

J ~ s V | B0ð Þ: Finally the Lorentz force becomes

J|B~{sB2
0V,as mentioned by Hayat et al. [28]. For the problem

under consideration, we assume the velocity of the following form

V~u y,tð Þi where i is unit vector along x{axis. Under the usual

Boussinesq’s approximation of temperature gradient the equations

governing the flow are:

Lu(y,t)

Lt
~ nz

a1

r

L

Lt

� �

L2u(y,t)

Ly2
zgb T{T?ð Þ

{
sB2

0

r
u(y,t){

w

k1
nz

a1

r

L

Lt

� �

u(y,t),

ð2Þ

LT(y,t)

Lt
~

k

rcp

L2T(y,t)

Ly2
, ð3Þ

Here uis the velocity of the fluid in the x{direction, T is its

temperature, r is the density, gis the acceleration due to gravity, b
is the volumetric coefficient of thermal expansion, n is the

kinematic viscosity, w is the porosity of the porous medium, k1 is

the permeability, k is the thermal conductivity, cp is the specific

heat of the fluid at constant pressure, and a1 is one of the material

module of second grade fluids.

The initial and boundary conditions are:

u(y, 0)~0,T(y, 0)~T?; y§0,

u(0, t)~0, tw0,

T(0, t)~T?z(Tw{T?)
t

t0
for 0vtƒt0,

T(0, t)~Tw for twt0,

u(y, t)?0, T(y, t)?T? as y?? and t§0:

ð4Þ

Figure 1. Physical system and coordinate axes.
doi:10.1371/journal.pone.0088766.g001
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Introducing the following non-dimensional physical quantities

y�~
y
ffiffiffi

n
p

t0
, t�~

t

t0
, u�~

ffiffiffiffi

t0

n

r

u, h~
T{T?

Tw{T?
, Pr~

mcp

k
, ð5Þ

into Eqs. (2) and (3) and dropping out the ‘‘*’’ notation we get

L2u(y,t)

Ly2
za

L3u(y,t)

Ly2Lt
{c

Lu(y,t)

Lt
{b u(y,t)zh(y,t)~0; y,tw0,ð6Þ

Pr
Lh(y,t)

Lt
~

L2h(y,t)

Ly2
; y,tw0: ð7Þ

The adequate initial and boundary conditions are

u(y,0)~0,h(y,0)~0; y§0,

u(0,t)~0, tw0

h(0,t)~
t , 0vtƒ1

1 , tw1

(

~tH(t){(t{1)H(t{1)

u(y,t)?0, h(y,t)? 0 as y??, t§0,

ð8Þ

where H(:)is the Heaviside step function and

a~
a1

mt0
, b~M2

z
1

K
, c~1z

a

K
, M2

~
sB2

0

r
t0,

1

K
~

n

k1
t0, t0~

ffiffiffi

n
p

gb Tw{T?ð Þ

� �
2
3

:

Solution of the Problem

In the following, exact analytical solutions for the coupled

partial differential equations (6) and (7) with the initial and

boundary conditions (8) will be determined by means of Laplace

transforms. For comparison, the solutions corresponding to an

isothermal plate with constant temperature are also established.

Applying the Laplace transform to Eqs. (6), (7) and (8), we obtain

the transformed equations

(1za q)
L2�uu(y,q)

Ly2
{(cqzb)�uu(y,q)z�hh(y,q)~0, ð9Þ

L2�hh(y,t)

Ly2
{qPr �hh(y,q)~0; y,qw0, ð10Þ

where �uu y,qð Þand �hh y,qð Þare Laplace transforms of u y,tð Þand

h y,tð Þ, together with the initial and boundary conditions in the

transformed domain

Figure 2. Comparison of velocity u(y,t) in Eq. (37) with Eq. (18)
in Chandran et al. [9].
doi:10.1371/journal.pone.0088766.g002

Figure 3. Velocity profiles for different values of a with
Pr~0:71, K~2, M~1 and t~0:8.
doi:10.1371/journal.pone.0088766.g003

Figure 4. Velocity profiles for different values of M with a~0:4,
Pr~0:71, K~1 and t~0:8.
doi:10.1371/journal.pone.0088766.g004
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�uu(0,q)~0, �hh(0,q)~
1{e{q

q2
,

�uu(y,q)?0, �hh(y,q)?0 as y??:

ð11Þ

The equation (10) is uncoupled to Eq. (9) and its solution with the

corresponding conditions (11) is

�hh(y,q)~ 1{e{qð Þ 1
q

1
q
e{y

ffiffiffiffi

Pr
p

ffiffi

q
ph i

: ð12Þ

Denoting by

h1(y,t)~L{1 1

q

1

q
e{y

ffiffiffiffi

Pr
p

ffiffi

q
p� �� �

~
y2 Pr

2
zt

� �

erfc
y
ffiffiffiffiffi

Pr
p

2
ffiffi

t
p

 !

{
y
ffiffiffiffiffi

Pr
p

t

2
ffiffiffi

p
p e

{
y2 Pr
4t ,

ð13Þ

and using the second shift property

L{1 e{aqF (q)f g~f (t{a)H(t{a) if f (t)~ fF (q)g,

we obtain the following known result for the temperature

distribution [9, Eq. (11)]

h(y,t)~h1(y,t){h1(y,t{1)H(t{1): ð14Þ

The solution corresponding to Eqs. (9), (11)1 and (11)3 is given

by

�uu(y,q)~(1{e{q)U1(q)U2(y,q), ð15Þ

where

U1(q)~
1

aPrm2

1

q

m2

(qzm1)
2
{m2

2
and

U2(y,q)~
1

q
e
{y

ffiffiffiffiffiffiffiffiffi

cqzb
aqz1

q

{e{y
ffiffiffiffi

Pr
p

ffiffi

q
p

2

4

3

5,

ð16Þ

with m1~
Pr{c

2aPr
and m2~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

( Pr{c)2z4abPr

q

2aPr
:The inverse

Laplace transform u1(t) of U1(q)is given by,

u1(t)~
1

bm2
m1 sinh (m2t)zm2 cosh (m2t)½ �e{m1t{

1
b
: ð17Þ

In order to determine the inverse Laplace transform u2(y,t) of the

function U2(y,q), we consider the following function:

D(y,q)~ 1
q
e

{y

ffiffiffiffiffiffiffiffiffiffiffiffi

cqzb

aqz1

s

, ð18Þ

whose inverse Laplace transform is given by

d(y,t)~
c

a
e{

t
a

ð

?

0

erfc
y

2
ffiffiffi

z
p

� �

e{
c
azI0

2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c{ab)zt
p

� �

dz

z
b

a

ð

?

0

ð

t

0

erfc
y

2
ffiffiffi

z
p

� �

e{
czzs
a I0

2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c{ab)zs
p

� �

dsdz,

ð19Þ

and get

u2(y,t)~d(y,t){erfc 1
2

ffiffiffiffi

Pr
t

q

y
	 


, ð20Þ

where I0 gð Þ is modified Bessel function of the first kind of order

zero and erfc gð Þis complementary error function. Consequently,

the expression for velocity in the (y,t){domain, can be written in

the simple form

u(y,t)~U(y,t)H(t){U(y,t{1)H(t{1): ð21Þ

where

U(y,t)~(u16u2)(t)~
Ð

t

0

u1(t{s) u2(y,s) ds,

where the symbol u16u2ð Þ tð Þdenotes convolution of u1and u2. A

simple analysis clearly shows that both solutions (14) and (21),

satisfy all imposed initial and boundary conditions. In order to

show that u(0,t)~0, for instance, we need the following integrals.

Figure 5. Velocity profiles for different values of K with a~0:4,
Pr~0:71,M~0:5 and t~0:8.
doi:10.1371/journal.pone.0088766.g005
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ð

?

0

e{
cz
a I0

2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c{ab)z t
p

� �

dz~
a

c
e

(c{ab)t
ac ,

ð

?

0

ð

t

0

e{
czzs
a I0

2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c{ab)z s
p

� �

ds dz~
a

b
1{e{

b
ct

	 


:

Solutions for Plate with Constant Temperature

In order to bring to light the effects of ramped temperature of

the plate on the fluid flow, we must compare our results with those

corresponding to the flow near a plate with constant temperature.

In this case, the initial and boundary conditions are the same

excepting Eq. (8) that becomes h(0,t)~1for t§0. The expression

for the dimensionless temperature h(y,t) is again the same

obtained by Chandran et al. [9, Eq. (19)], i.e.

h(y,t)~erfc
1

2

ffiffiffiffiffi

Pr

t

r

y

 !

: ð22Þ

Introducing the expression of h(y,t) into Eq. (9), and following

the same way as before we find that

�uu(y,q)~U3(q):U2(y,q), ð23Þ

where

U3(q)~
1

aPr q2z( Pr{c)q{b
, ð24Þ

and its inverse Laplace transform is

Figure 6. Velocity profiles for different values of Pr with a~0:5,
K~2, M~1 and t~0:8.
doi:10.1371/journal.pone.0088766.g006

Figure 7. Velocity profiles for different values of t with a~0:5,
Pr~0:71, M~1 and K~2.
doi:10.1371/journal.pone.0088766.g007

Figure 8. Variations of the skin friction for different values of a
and M with K~2 and Pr~1:5.
doi:10.1371/journal.pone.0088766.g008
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u3(t)~
1

aPrm2

sinh (m2t)e
{m1t: ð25Þ

Consequently, the dimensionless velocity corresponding to this

case is

u(y,t)~(u36u2)(t)~

ð

t

0

u3(t{s) u2(y,s) ds: ð26Þ

Nusselt Number and Skin Friction

From velocity and temperature fields, the expressions for

Nusselt number and skin friction can easily be determined. They

are measures of the heat transfer rate and shear stress at the

boundary. The Nusselt number Nu, can be written as

Nu~{
Lh

Ly Dy~0
:ð27Þ

Introducing equations (14) and (22) into (27), we obtain:

The Nusselt number for ramped temperature

Nu~2

ffiffiffiffiffi

Pr

p

r

ffiffi

t
p

H tð Þ{
ffiffiffiffiffiffiffiffiffi

t{1
p

H t{1ð Þ
	 


, ð28Þ

and for isothermal temperature as

Nu~

ffiffiffiffiffi

Pr

pt

r

: ð29Þ

As regards the skin friction, in dimensionless form, is

tw tð Þ~t(y,t)Dy~0, ð30Þ

where the shear stress t y,tð Þis given by [28]

t y,tð Þ~ 1za
L

Lt

� �

Lu(y,t)

Ly
:

Using equations (21) and (26) into above equation, we obtain:

the shear stress for ramped temperature as

t(y,t)~F (y,t)H(t){F (y,t{1)H(t{1), ð31Þ

where

F (y,t)~
Ð

t

0

F1(t{s)
Lu2(y,s)

Ly
Dy~0ds :

The shear stress for constant temperature is

t(y,t)~
Ð

t

0

F2(t{s)
Lu2(y,s)

Ly
Dy~0ds : ð32Þ

where

F1(t)~u1(t)z
1

Pr m2

sinh (m2t)e
{m1t ,

F2(t)~
1{am1

am2 Pr
sinh (m2t)z

1

Pr
cosh (m2t)

� �

e{m1t,

and

Figure 9. Comparison between values obtained with (21) and
(38) for a~1:5, K~2, M~3, Pr~1:5.
doi:10.1371/journal.pone.0088766.g009
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Lu2(y,t)

Ly
Dy~0~

ffiffiffiffiffi

Pr

pt

r

{
c

a
ffiffiffi

p
p e{

t
a

ð

?

0

e{
c
az

ffiffiffi

z
p I0

2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c{ab)z t
p

� �

dz

{
b

a
ffiffiffi

p
p

ð

?

0

ð

t

0

e{
cz{s
a
ffiffiffi

z
p I0

2

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(c{ab)z s
p

� �

ds dz:

Special Cases

Te solutions corresponding to the flow of a second grade fluid

with ramped wall temperature or constant temperature on the

boundary in the absence of magnetic or porous effects can be

immediately obtained from the general solutions (21) and (26) by

making M2
?0 or K??, respectively. However, if K??, the

constant c~1and the corresponding solutions are different for

Pr~1and Pr=1. So, for completion, we also give the exact

solutions for velocity in two special cases.

1. The case M~0 and K??

By making M~0and K??, it results c~1and b?0. The

function U1(q) from Eq. (16)1 becomes

U1(q)~
1

aPr

1

q2(qzm)
if

m1~m2~m~
Pr{1

2aPr
and Pr=1,

ð33Þ

or

U1(q)~
1

aPr

1

q3
if Pr~1: ð34Þ

The corresponding velocity u(y,t), after lengthy but straightfor-

ward computations, is found to be

u(y,t)~
1

m2

ð

t

0

1{e{m t{sð Þ
{m t{sð Þ

h i

erfc
y
ffiffiffiffiffi

Pr
p

2
ffiffi

s
p

 !

ds

z
1

am2

ð

?

0

ð

t

0

m(t{s){(1{e{m (t{s))
� �

e{
zzs
a erfc

y

2
ffiffiffi

z
p

� �

I0
2

a

ffiffiffiffiffi

z s
p� �

dsdz,

ð35Þ

for Pr?1 respectively,

Table 1. Absolute errors of velocity calculated by Eqs. (21) and (38).

y Absolute errors Du(y,t){v(y,t)D

t~0:5 t~1:5 t~2:5 t~3:5

0 3:646|10{7 1:315|10{6 7:155|10{7 5:379|10{6

0.1 2:648|10{7 6:287|10{7 8:56|10{6 3:056|10{5

0.2 4:775|10{7 1:564|10{6 4:898|10{6 2:116|10{5

0.3 3:346|10{7 2:421|10{5 1:791|10{4 1:445|10{3

0.4 7:325|10{8 6:559|10{6 9:598|10{8 1:461|10{5

0.5 3:41|10{7 6:016|10{6 2:052|10{5 1:909|10{4

0.6 6:605|10{7 1:01|10{5 4:413|10{6 3:941|10{5

0.7 8:34|10{7 1:033|10{5 7:164|10{6 5:199|10{5

0.8 9:778|10{7 1:181|10{5 1:76|10{6 4:563|10{6

0.9 1:016|10{6 1:014|10{5 7:615|10{6 5:402|10{5

1.0 1:005|10{6 9:482|10{6 4:201|10{6 1:223|10{5

1.1 9:665|10{7 8:622|10{6 1:386|10{6 2:128|10{5

1.2 8:803|10{7 6:831|10{6 3:171|10{6 1:671|10{5

1.3 7:929|10{7 4:975|10{6 9:2|10{6 6:802|10{5

1.4 7:055|10{7 4:327|10{6 1:45|10{6 6:789|10{6

1.5 6:17|10{7 3:252|10{6 5:441|10{7 2:456|10{6

1.6 5:32|10{7 2:34|10{6 1:707|10{8 7:218|10{7

1.7 4:5|10{7 1:515|10{6 2:137|10{7 3:462|10{6

1.8 3:647|10{7 3:186|10{7 5:983|10{6 4:18|10{5

1.9 3:219|10{7 1:368|10{8 5:342|10{6 5:548|10{5

2.0 2:817|10{7 3:606|10{7 6:712|10{7 1:315|10{5

doi:10.1371/journal.pone.0088766.t001
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2. The case a~0 (Newtonian fluid with MHD and Porosity)

For Pr~1
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In Figure 2, by making b?0it is observed that the graph of

u(y,t)in Eq. (37) is similar to that of Eq. (18) from Chandran et al.

[9] given by

u y,tð Þ~u0 y,tð Þ{u0 y,t{1ð ÞH t{1ð Þ,

where

u0 y,tð Þ~ y
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Numerical Results and Discussion

The effects of different flow parameters have been analyzed by

numerical calculations and graphical illustrations. A numerical

algorithm was used in order to compare the analytical solutions

with the numerical solutions.

The velocity field, for various values of second grade parameter

a, is described in Fig. 3. The effect of the second grade parameter

is to decrease velocity throughout the flow field when a increases.

It is also clear that, the velocity approaches to zero at the far away

from the plate. It is noticed that, the thickness of the boundary

layer increases if the second grade parameter decreases. For

ramped temperature on the plate, fluids flow slower than for the

constant plate temperature. The effect of the magnetic strength on

the motion of the fluid, for both heating cases, is analyzed in Fig. 4.

Increasing of the magnetic parameter decelerates the motion of

the fluid in the boundary layer. Therefore, the magnetic field acts

like a drag force. The influence of the permeability parameter K is

shown in Fig. 5. It is observed that the velocity field is an

increasing function of K. As expected, the increase of the

permeability of the porous medium reduces the drag force and,

therefore, fluid velocity increases. The effect of Prandtl number on

the velocity field is sketched in Fig. 6. It is also clear that, the

increase of the Prandtl number decelerates the motion of the fluid.

In Fig. 7 are plotted the diagrams of velocity u(y, t), versus t, for

both cases of the plate heating. The fluid velocity is an increasing

function of time t in the boundary layer then, finally it approaches

to zero. In Fig. 8 are plotted the diagrams of the skin friction tw(t)
given by Eq. (31), for several values of the second grade parameter

a and magnetic parameter M. If both parameters increase, then

the skin friction decreases. For a short time-interval the skin

friction increases then approaches to a constant value.

In order to obtain the closed form (21) of solution, we have used

the Laplace transform method. In many problems, the inversion of

image - functions can be a difficult problem. Even if in our work,

the inversion of function (15) is not too difficult, we present a

numerical technique for inversion, namely, the Stehfest’s algo-

rithm [35]. Based on the Stehfest results, the inverse Laplace of the

function H(y, q) is given by

h(y,t)~L{1 H(y,q)f g~ ln (2)

t

X

2p

j~1

djH y, j
ln (2)

t

� �

ð38Þ

where p is a positive integer and

dj~({1)jzp
X

min (j,p)

i~
jz1
2

� �

ip(2i)!

i!(p{i)!(i{1)!(j{i)!(2i{j)!
ð39Þ

.

Here [r] denotes the integer part of the real number r and

min (j,p)~
1

2
(jzp{ Dj{pD) ð40Þ

Applying the formula (38) to Laplace transform �uu(y,q) given by

equation (15), the values of velocity field u(y, t) are obtained. As

shown in Figure 9 and in Table 1, the values ??of the function u(y,

t) obtained by formulae (21) and (38) are in excellent agreement. In

Table 1 we denoted by u(y, t) and v(y, t) the values of velocity given

by Eq. (21), respectively, by Eq. (38). The Table1 contains the

absolute errors Du(y,t){v(y,t)D. Figure 9 confirms the velocity

properties shown in Figure 7, namely the increasing of velocity in

the boundary layer when, the time increases.

Limitations of the Study and Future

Recommendations

It is important to bring to light various limitations of this

research. A discussion of these limitations will not only assist

readers to understand this study, but also provide an opportunity

to extend the current research. The following assumptions and

limitations are considered

N Flow is incompressible and laminar.

N Flow is one dimensional and uni-directional.

N A uniform magnetic field is applied outward direction

perpendicular to the flow.

N It is assumed that the effects of viscous dissipation in the energy

equation are negligible.

N Electric field due to polarization of charges is not considered.

The mathematical model of second grade fluids offers, in

general, possibilities to find of analytic solutions. Unfortunately,

this model does not exhibit some significant features of some fluids.
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From this reason the present work can be extended to other more

complex models, such as the power - law fluids of second grade in

which the fluid may exhibit normal stresses, shear thinning or

shear thickening behavior. Also, the approaches of some models

with fractional derivatives in various geometrical configurations

can be interesting. The present study provides analytical solutions

in the closed form which can be used as a benchmark by

numerical analysts.

Exact solutions corresponding to the ramped wall temperature

of unsteady MHD free convection flow of a second grade fluid in a

porous medium are established. Solutions are obtained by using

Laplace transform technique. The obtained solutions can easily be

reduced to similar solutions for Newtonian fluids. They can be

used to develop new exact solutions corresponding to free

convection flows of several non-Newtonian fluids. The corre-

sponding expressions for skin friction and Nusselt number are also

obtained. Graphical results for velocity and skin friction are

presented to understand the physical behavior of the involved flow

parameters. Finally, the following observations are made from the

above study:

N The boundary layer thickness in case of ramped temperature is

always less than isothermal temperature.

N Magnetic parameter Mretards the fluid flow.

N Permeability parameter K enhances the fluid flow.

N Velocity as well as skin friction decreases due to increasing a.
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