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Unsteady MHD free convection boundary-layer
flow of a nanofluid along a stretching sheet with
thermal radiation and viscous dissipation effects
Md Shakhaoath Khan*, Ifsana Karim, Lasker Ershad Ali and Ariful Islam

Abstract

In this work, we study the unsteady free convection boundary-layer flow of a nanofluid along a stretching sheet

with thermal radiation in the presence of magnetic field. To obtain non-similar equations, continuity, momentum,

energy, and concentration equations have been non-dimensionalized by usual transformation. The non-similar

solutions are considered here which depend on the magnetic parameter M, radiation parameter R, Prandtl number

Pr, Eckert number Ec, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, and Grashof

number Gr. The obtained equations have been solved by an explicit finite difference method with stability and

convergence analysis. The velocity, temperature, and concentration profiles are discussed for different time steps

and for the different values of the parameters of physical and engineering interest.
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Background
Magnetohydrodynamics (MHD) boundary-layer flow of

nanofluid and heat transfer over a linearly stretched sur-

face have received a lot of attention in the field of several

industrial, scientific, and engineering applications in re-

cent years. Nanofluids have many applications in the in-

dustries since materials of nanometer size have unique

chemical and physical properties. With regard to the

sundry applications of nanofluids, the cooling applica-

tions of nanofluids include silicon mirror cooling, elec-

tronics cooling, vehicle cooling, transformer cooling, etc.

This study is more important in industries such as hot

rolling, melt spinning, extrusion, glass fiber production,

wire drawing, and manufacture of plastic and rubber

sheets, polymer sheet and filaments, etc.

Sakiadis [1] was the first author to analyze the boundary-

layer flow on a continuous surface. Crane [2] obtained an

exact solution of the boundary-layer flow of the Newtonian

fluid caused by the stretching of an elastic sheet moving in

its own plane linearly. Gorla et al. [3,4] solved the non-

similar problem of free convective heat transfer from a ver-

tical plate embedded in a saturated porous medium with

an arbitrarily varying surface temperature. Cheng and Min-

kowycz [5] also studied free convection from a vertical flat

plate with applications to heat transfer from a dick.

Dissipation is the process of converting mechanical

energy of downward-flowing water into thermal and

acoustical energy. Various devices are designed in

streambeds to reduce the kinetic energy of flowing

waters, reducing their erosive potential on banks and

river bottoms. Vajravelu and Hadjinicalaou [6] analyzed

the heat transfer characteristics over a stretching surface

with viscous dissipation in the presence of internal heat

generation or absorption.

Takhar et al. [7] studied the radiation effects on the

MHD free convection flow of a gas past a semi-infinite

vertical plate. Ghaly [8] considered the thermal radiation

effect on a steady flow, whereas Rapits and Massalas [9]

and El-Aziz [10] analyzed the unsteady case. Sattar and

Alam [11] presented unsteady free convection and mass

transfer flow of a viscous, incompressible, and electric-

ally conducting fluid past a moving infinite vertical por-

ous plate with thermal diffusion effect. Na and Pop [12]

analyzed an unsteady flow due to a stretching sheet. In

the case of unsteady boundary-layer flow, Singh et al.

[13] investigated the thermal radiation and magnetic

field effects on an unsteady stretching permeable sheet
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in the presence of free stream velocity. The study of con-

vective instability and heat transfer characteristics of

nanofluids was considered by Kim et al. [14]. Jang and

Choi [15] obtained nanofluid thermal conductivity and

the effect of various parameters on it.

The natural convective boundary-layer flows of a

nanofluid past a vertical plate have been described by

Kuznetsov and Nield [16,17]. In this model, the Brown-

ian motion and thermophoresis are accounted with the

simplest possible boundary conditions. They also studied

the Cheng-Minkowycz problem for natural convective

boundary-layer flow in a porous medium saturated by a

nanofluid. Bachok et al. [18] have shown the steady

boundary-layer flow of a nanofluid past a moving semi-

infinite flat plate in a uniform free stream. It was

assumed that the plate is moving in the same or oppos-

ite directions to the free stream to define the resulting

system of non-linear ordinary differential equations.

Khan and Pop [19,20] formulated the problem of lam-

inar boundary-layer flow of a nanofluid past a stretching

sheet. They also expressed free convection boundary-layer

nanofluid flow past a horizontal flat plate. Hamad and Pop

[21] discussed the boundary-layer flow near the

stagnation-point flow on a permeable stretching sheet in a

porous medium saturated with a nanofluid. Hamad et al.

[22] investigated free convection flow of a nanofluid past a

semi-infinite vertical flat plate with the influence of mag-

netic field. Very recently, Hady et al. [23] investigated the

effects of thermal radiation on the viscous flow of a nano-

fluid and heat transfer over a non-linearly stretching sheet.

However, the aim of the present work is to study the

unsteady free convection boundary-layer nanofluid flows

along a stretching surface with the influence of magnetic

field and radiation effect. An explicit finite difference pro-

cedure [24] has been taken to solve the obtained non-

similar equations with stability and convergence analysis.

Methods
Presentation of the hypothesis

An unsteady two-dimensional MHD free convection

laminar boundary-layer flow of a viscous incompressible

and electrically conducting nanofluid along a vertical

stretching sheet under the influence of thermal radiation

and viscous dissipation is considered. The sketch of the

physical configuration and coordinate system is shown

in Figure 1. Introducing the Cartesian coordinate system,

the x-axis is taken along the stretching sheet in the verti-

cally upward direction, and the y-axis is taken as normal

to the sheet. Two equal and opposite forces are intro-

duced along the x-axis so that the sheet is stretched,

keeping the origin fixed.

Instantaneously at time t > 0, the temperature of the

plate and the species concentration are raised to Tw(>T∞)

and Cw(>C∞), respectively, which are thereafter

maintained constant, where Tw and Cw are the

temperature and species concentration at the wall, re-

spectively, and T∞ and C∞ are the temperature and species

concentration far away from the plate, respectively.

A strong magnetic field is applied in the y direction.

The uniform magnetic field strength (magnetic induc-

tion) B0 can be taken as B = (0, B0, 0). The Rosseland ap-

proximation is used to describe the radioactive heat flux

qr in the energy equation. Under the above assumptions

and the usual boundary layer approximation, the MHD

free convection unsteady nanofluid flow and heat and

mass transfer with the radiation effect are governed by

the following equations:

� The continuity equation

∂u

∂x
þ ∂v

∂y
¼ 0 ð1Þ

� The momentum equation

∂u

∂t
þ u

∂u

∂x
þ v

∂u

∂y
¼ υ

∂
2u

∂y2
þ gβ T � T1ð Þ � σB2

0u

ρ

ð2Þ

� The energy equation

∂T

∂t
þ u

∂T

∂x
þ v

∂T

∂y
¼ k

ρcp

∂
2T

∂y2

� 1

ρcp

∂qr

∂y
þ υ

cp

∂u

∂y

� �2

þ τ DB
∂T

∂y
·
∂C

∂y

� �

þ DT

T1

∂T

∂y

� �2
( )

ð3Þ

o
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Figure 1 Physical model and coordinate system.
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� The concentration equation

∂C

∂t
þ u

∂C

∂x
þ v

∂C

∂y
¼ DB

∂
2C

∂y2
þ DT

T1

∂
2T

∂y2
ð4Þ

The initial and boundary conditions are

t ¼ 0;u ¼ Dx; v ¼ 0;T ¼ T1;C ¼ C1 everywhere

t≥0;u ¼ 0; v ¼ 0;T ¼ T1;C ¼ C1 at x ¼ 0 ð5Þ

u ¼ Dx; v ¼ 0;T ¼ Tw;C ¼ Cw at y ¼ 0

u ¼ 0; v ¼ 0;T→T1;C→C1 at y→1;

where u and v are the velocity components in the x and

y directions, respectively, v is the kinematic viscosity, k is

the thermal conductivity, DB is the Brownian diffusion

coefficient, DT is the thermophoresis diffusion coeffi-

cient, D(> 0) is the stretching constant, g is the acceler-

ation due to gravity, ρ is the density of the fluid, and cp
is the specific heat at constant pressure.

The Rosseland approximation [25] is expressed for ra-

diative heat flux and leads to the form

qr ¼ � 4σ

3κ�
∂T 4

∂y
; ð6Þ

where σ is the Stefan-Boltzmann constant and κ* is the mean

absorption coefficient. The temperature difference within

the flow is sufficiently small such that T4 may be expressed

as a linear function of the temperature, then Taylor's series

for T4 is about T∞ after neglecting higher order terms:

T4 ¼ 4T1
3 � 3T1

4: ð7Þ

Introducing the following non-dimensional variables,

X ¼ xU0

υ
;Y ¼ yU0

υ
;U ¼ u

U0
;V ¼ v

U0
;

τ ¼ tU2
0

υ
;T ¼ T�T1

Tw�T1
;C ¼ C�C1

Cw�C1
:

Then, Equations 1 to 5 become

∂U

∂X
þ ∂V

∂Y
¼ 0 ð8Þ

∂U

∂τ
þ U

∂U

∂X
þ V

∂U

∂Y
¼ ∂

2U

∂Y 2
þ GrT �MU ð9Þ

∂T

∂τ
þ U

∂T

∂X
þ V

∂T

∂Y
¼ 1þ R

Pr

� �

·
∂
2T

∂Y 2

� �� �

þ Ec
∂U

∂Y

� �2

þ Nb
∂T

∂Y
·
∂C

∂Y

� �

þ Nt
∂T

∂Y

� �2

ð10Þ

∂C

∂τ
þ U

∂C

∂X
þ V

∂C

∂Y
¼ 1

Le

∂
2C

∂Y 2
þ Nt

Nb

� �

∂
2T

∂Y 2

� �

: ð11Þ

The non-dimensional boundary conditions are

τ≤0;U ¼ 0;V ¼ 0;T ¼ 0;C ¼ 0 everywhere
τ > 0;U ¼ 0;V ¼ 0;T ¼ 0;C ¼ 0 at X ¼ 0

ð12Þ

U ¼ 1;V ¼ 0;T ¼ 1;C ¼ 1 at Y ¼ 0
U ¼ 0;V ¼ 0;T ¼ 0;C ¼ 0 as Y→1;

ð13Þ

where the magnetic parameter M ¼ σB2
0ν

ρU2
0

, Grashof num-

ber Gr ¼ gβ Tw�T1ð Þν
U3

o
, radiation parameter R ¼ 16σT 3

1
3kκ� ,

Prandtl number Pr ¼ υ
α
, Eckert number Ec ¼ U2

0

cp Tw�T1ð Þ ,

Lewis number Le ¼ υ
DB

, Brownian parameter Nb ¼
τDB Cw�C1ð Þ

υ
, and thermophoresis parameter Nt ¼

DT

T1
τ
ν
Tw � T1ð Þ.

Methods: numerical computation

In order to solve the non-similar unsteady coupled non-

linear partial differential equations (Equations 8, 9, 10,

and 11), the explicit finite difference method has been

developed. For this, a rectangular region of the flow field

is chosen, and the region is divided into a grid of lines

parallel to X and Y axes, where the X-axis is taken along

the plate and the Y-axis is normal to the plate.

Here, the plate of height Xmax(=100) is considered, i.e.,

X varies from 0 to 100 and assumed Ymax(=25) as corre-

sponding to Y→∞, i.e., Y varies from 0 to 25. There are

m(=125) and n(=125) grid spacing in the X and Y direc-

tions, respectively, as shown in Figure 2. It is assumed

that ΔX and ΔY are constant mesh sizes along the X and

Y directions, respectively, and taken as follows: ΔX = 0.8

i m

Y

2i

1i

1i

i

2i

1, 1i j

X

1,i j 1, 1i j

, 1i j ,i j , 1i j

X

1, 1i j 1,i j 1, 1i j

Y

0i

0j 2j 1j j 1j 2j j n

Figure 2 Finite difference space grid.
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(0 ≤ X ≤ 100) and ΔY = 0.2(0 ≤ Y ≤ 25) with the smaller

timestep Δτ = 0.005.

Let U0,V0, T 0 , and C0 denote the values of U,V, T , and

T at the end of a time step, respectively. Using the expli-

cit finite difference approximation, the following appro-

priate sets of finite difference equations are obtained:

U 0
i;j � U 0

i�1;j

ΔX
þ Vi;j � Vi;j�1

ΔY
¼ 0 ð14Þ

U 0
i;j � Ui;j

Δτ
þUi;j

Ui;j � Ui�1;j

ΔX
þ Vi;j

Ui;jþ1 � Ui;j

ΔY

¼ Ui;jþ1 � 2Ui;j þ Ui;j�1

ΔYð Þ2
þ GrT

0 �MUi;j ð15Þ

T
0
i;j � T i;j

Δτ
þ Ui;j

T i;j � T i�1;j

ΔX
þ Vi;j

T i;jþ1 � T i;j

ΔY

¼ 1þ R

Pr

� �

T i;jþ1 � 2T i;j þ T i;j�1

ΔYð Þ2

 !

þ Ec

Ui;jþ1 � Ui;j

ΔY

� �2

þ Nb

T i;jþ1 � T i;j

ΔY
·
Ci;jþ1 � Ci;j

ΔY

� �

þ Nt

T i;jþ1 � T i;j

ΔY

� �2

ð16Þ

C 0
i;j � Ci;j

Δτ
þ Ui;j

Ci;j � Ci�1;j

ΔX
þ Vi;j

Ci;jþ1 � Ci;j

ΔY

¼ 1

Le

Ci;jþ1 � 2Ci;j þ Ci;j�1

ΔYð Þ2

 !"

þ Nt

Nb

T i;jþ1 � 2T i;j þ T i;j�1

ΔYð Þ2

 !#

ð17Þ

with initial and boundary conditions

U0
i;j ¼ 0;V 0

i;j ¼ 0;T
0

i;j ¼ 0;C
0

i;j ¼ 0 ð18Þ

Un
0;j ¼ 0;V n

0;j ¼ 0;T
0

0;j ¼ 0;C
n

0;j ¼ 0

Un
i;0 ¼ 1;V n

i;0 ¼ 0;T
n

i;0 ¼ 1;C
n

i;0 ¼ 1 ð19Þ

Un
i;L ¼ 0;V n

i;L ¼ 0;T
n

i;L ¼ 0;C
n

i;L ¼ 0; where L→1;

where the subscripts i and j designate the grid points

with X and Y coordinates, respectively, and the super-

script n represents a value of time, τ = n · Δτ, where

n = 0, 1, 2, . . ..

Stability and convergence analysis

Since an explicit procedure is being used, the analysis

will remain incomplete unless the stability and conver-

gence of the finite difference scheme is discussed. For

the constant mesh sizes, the stability criteria of the

scheme may be established as follows.

Equation 14 will be ignored since Δτ does not appear

in it. The general terms of the Fourier expansion for

U, T , and C at a time arbitrarily called τ = 0 are all

eiαXeiβY, apart from a constant, where i ¼
ffiffiffiffiffiffiffi

�1
p

. At a

time τ, these terms become

U : ψ τð ÞeiαXeiβY
T : θ τð ÞeiαXeiβY
C : φ τð ÞeiαXeiβY ;

ð20Þ

and after the time step, these terms will become

U : ψ0 τð ÞeiαXeiβY
T : θ0 τð ÞeiαXeiβY
C : φ0 τð ÞeiαXeiβY :

ð21Þ

Substituting Equations 20 and 21 into Equations 15 to

17, with regard to the coefficients U and V as constants

over any one time step, we obtain the following equa-

tions upon simplification:

ψ0 τð Þ � ψ τð Þ
Δτ

þ U
ψ τð Þ 1� e�iαΔX

� �

ΔX

þ V
ψ τð Þ eiβΔY � 1

� �

ΔY
¼ 2ψ τð Þ cosβΔY � 1ð Þ

ΔYð Þ2

þ Grθ
0 τð Þ �Mψ τð Þ ð22Þ

θ0 τð Þ � θ τð Þ
Δτ

þ U
θ τð Þ 1� e�iαΔX

� �

ΔX

þ V
θ τð Þ eiβΔY � 1

� �

ΔY
¼ 1þ R

Pr

� �

2θ τð Þ cosβΔY� 1ð Þ
ΔYð Þ2

þ EcUψ τð Þ eiβΔY � 1
� �

ΔY

	 
2

þ NbCθ τð Þ eiβΔY � 1
� �

ΔY

	 
2

þ NtTθ τð Þ eiβΔY � 1
� �

ΔY

	 
2

ð23Þ

φ0 τð Þ � φ τð Þ
Δτ

þU
φ τð Þ 1� e�iαΔX

� �

ΔX

þ V
φ τð Þ eiβΔY � 1

� �

ΔY
¼ 1

Le

2φ τð Þ cosβΔY � 1ð Þ
ΔYð Þ2

( )"

þ Nt

Nb

� �

·
2θ τð Þ cosβΔY � 1ð Þ

ΔYð Þ2

( )#

ð24Þ
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Equations 22, 23, and 24 can be written in the follow-

ing forms:

ψ0 ¼ Aψ þ GrΔτθ
= ð25Þ

θ0 ¼ Bθ þ Eψ ð26Þ

φ0 ¼ Jφþ Kθ; ð27Þ

where

A ¼ 1�U
Δτ

ΔX
1� e�iαΔX
� �

� V
Δτ

ΔY
eiβΔY � 1
� �

þ 2Δτ

ΔYð Þ2
cosβΔY � 1ð Þ �MΔτ

B ¼ 1� U
Δτ

ΔX
1� e�iαΔX
� �

� V
Δτ

ΔY
eiβΔY � 1
� �

þ 1þ R

Pr

� �

2 cosβΔY � 1ð Þ
ΔYð Þ2

Δτ

þ Nb―C
eiβΔY � 1
� �

ΔY

	 
2

Δτ

þ Nt―T
eiβΔY � 1
� �

ΔY

	 
2

Δτ;

E ¼ EcU
Δτ

ΔYð Þ2
eiβΔY � 1
� �2

;

J ¼ 1� U
Δτ

ΔX
1� e�iαΔX
� �

� V
Δτ

ΔY
eiβΔY � 1
� �

þ 1

Le

2Δτ

ΔYð Þ2
cosβΔY � 1ð Þ;

and

K ¼ 1

Le

Nt

Nb

� �

2Δτ

ΔYð Þ2
cosβΔY � 1ð Þ:

Again using Equation 26 in Equation 25,

ψ0 ¼ Aψ þ GrΔτ Bθ þ Eψð Þ
¼ Cψ þ Dθ;

where C = A + EGrΔτ and D = BGrΔτ.

Therefore, Equations 25, 26, and 27 can be expressed

as

ψ0 ¼ Cψ þ Dθ ð28Þ

θ0 ¼ Bθ þ Eψ ð29Þ

φ0 ¼ Jφþ Kθ: ð30Þ

Hence, Equations 28, 29, and 30 can be expressed in a

matrix notation, and these equations are

ψ0

θ0

φ0

2

4

3

5 ¼
C D 0
0 B 0
0 K J

2

4

3

5:
ψ

θ

φ

2

4

3

5; ð31Þ

that is, η0 = Tη, where η0 ¼
ψ0

θ0

φ0

2

4

3

5;T ¼
C D 0
0 B 0
0 K J

2

4

3

5: and

η ¼
ψ

θ

φ

2

4

3

5:

For obtaining the stability condition, we have to find

out eigenvalues of the amplification matrix T, but this

study is very difficult since all the elements of T are dif-

ferent. Hence, the problem requires that the Eckert

number Ec is assumed to be very small, that is, tends to

zero. Under this consideration, we have E = 0, and the

amplification matrix becomes

T ¼
C D 0
0 B 0
0 K J

2

4

3

5:

After simplification of the matrix T, we get the follow-

ing eigenvalues:λ1 =C, λ2 = B, and λ3 = J.For stability,

each eigenvalue (λ1, λ2, and λ3) must not exceed unity in

modulus. Hence, the stability condition is|C| ≤ 1, |B| ≤ 1,

and J ≤ 1, for all a, β.

Now, we assume that U is everywhere non-negative

and V is everywhere non-positive. Thus, B ¼ 1�

2 aþ bþ 2c 1þR
Pr

þ NbC þ NtT
� �h i

; where a ¼ U Δτ
ΔX

;

b ¼ Vj j Δτ
ΔY

and c ¼ Δτ
ΔYð Þ2 :

The coefficients a, b, and c are all real and non-negative.

We can demonstrate that the maximum modulus of B

occurs when αΔX =mπ and βΔY = nπ, where m and n are

integers; hence, B is real. The value of |B| is greater when

both m and n are odd integers.

To satisfy the second condition |B| ≤ 1, the most nega-

tive allowable value is B = − 1. Therefore, the first stabil-

ity condition is

2 aþ bþ 2c
1þ R

Pr
þ NbC þ NtT

� �� �

≤2; ð32Þ

that is,

U
Δτ

ΔX
þ Vj j Δτ

ΔY
þ 2 1þ Rð Þ

Pr

Δτ

ΔYð Þ2

þ 2NbC
Δτ

ΔYð Þ2
þ 2NtT

Δτ

ΔYð Þ2
≤1: ð33Þ
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Likewise, the third condition |J| ≤ 1 requires that

U
Δτ

ΔX
þ Vj j Δτ

ΔY
þ 2

Le

Δτ

ΔYð Þ2
≤1: ð34Þ

Therefore, the stability conditions of the method are

U
Δτ

ΔX
þ Vj j Δτ

ΔY
þ 2 1þ Rð Þ

Pr

Δτ

ΔYð Þ2
þ 2NbC

Δτ

ΔYð Þ2

þ 2NtT
Δτ

ΔYð Þ2
≤1 andU

Δτ

ΔX
þ Vj j Δτ

ΔY

þ 2

Le

Δτ

ΔYð Þ2
≤1:

Since, from the initial condition, U ¼ V ¼ T ¼ C ¼ 0

at τ = 0, the consideration due to stability and

convergence analysis is Ec < < 1 and R ≥ 0.5. Hence,

convergence criteria of the method are Pr ≥ 0.37 and

Le ≥ 0.25.

Results and discussion
In order to investigate the problem under consideration,

the results of numerical values of non-dimensional vel-

ocity, temperature, and species concentration within the

boundary layer have been computed for different values of

magnetic parameter M, radiation parameter R, Prandtl

number Pr, Eckert number Ec, Lewis number Le, Brownian

motion parameter Nb, thermophoresis parameter Nt, and

Grashof number Gr, respectively. To obtain the steady-

state solutions of the computation, the calculations have

been carried out up to non-dimensional time τ = 5 to 80.

The velocity, temperature, and concentration profiles do

Figure 3 Grashof number (Gr) effect on velocity profiles.

Figure 4 Magnetic parameter (M) effect on velocity profiles.

Figure 5 Radiation parameter (R) effect on temperature profiles.

Figure 6 Eckert number (Ec) effect on temperature profiles.
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not show any change after non-dimensional time τ = 50.

Therefore, the solution for τ ≥ 50 is the steady-state solu-

tion. The graphical representation of the problem has

been shown in Figures 3, 4, 5, 6, 7, 8, 9, and 10.

In order to assess the accuracy of the numerical

results, the present results (non-similar solution) are

compared with the result obtained by Khan and Pop

[19] (similar solution) and the values of magnetic param-

eter M, radiation parameter R, Eckert number Ec, and

Grashof number Gr are considered zero (Table 1). From

the comparison, excellent agreement is observed.

In Figures 3, 4, 5, 6, 7, 8, 9, and 10, the dimensionless

velocity, temperature, and concentration distributions

are plotted against Y for the different non-dimensional

time τ = 5 to 50 and corresponding values of Grashof

number Gr, magnetic parameter M, radiation parameter

R, Eckert number Ec, Prandtl number Pr, Brownian mo-

tion parameter Nb, thermophoresis parameter Nt, and

Lewis number Le, respectively.

In Figures 3 and 4, the velocity distribution is plotted

respectively for different values of Gr and M. The non-

dimensional time considered here is τ = 5, 20 and 50 and

displays the entire step with a different pattern. Here, it

is observed that when the values of Gr increase, then the

velocity profiles increase and when the values of M in-

crease, then the velocity profiles decrease.

In Figures 5, 6, 7, and 8, the temperature distribution

is plotted respectively for different values of R, Ec, Pr,

and Nb. The non-dimensional time considered here is

Figure 7 Prandtl number (Pr) effect on temperature profiles.

Figure 8 Brownian parameter (Nb) effect on temperature

profiles.

Figure 9 Thermophoresis parameter (Nt) effect on

concentration profiles.

Figure 10 Lewis number (Le) effect on concentration profiles.
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τ = 5, 20 and 50 and displays the entire step with a dif-

ferent pattern. Here, it is observed that when the

values of R increase, then the temperature profiles

increases; when the values of Ec increase, then the

temperature profiles also increase; when the values of

Pr increase, then the temperature profiles decrease;

and when the values of Nb increase, then the

temperature profiles increase.

In Figures 9 and 10, the concentration distribution is

plotted respectively for different values of Nt and Le. The

non-dimensional time considered here is τ = 5,

20 and 50 and displays the entire step with a different

pattern. Here, it is observed that when the values of Nt

increase, then the concentration profiles increase, but

when the values of Le increase, then the concentration

profiles decrease.

From the present results and the result obtained by

Khan and Pop [19], it was observed that the flow field

shows the same trend with the variation of magnetic

parameter M, radiation parameter R, Prandtl number Pr,

Eckert number Ec, Lewis number Le, Brownian motion

parameter Nb, thermophoresis parameter Nt, and Gra-

shof number Gr. However, the important part of this

work is its comparison with the previous work, i.e., the

present study is the unsteady case of Khan and Pop's

[19] study when the values of magnetic parameter M, ra-

diation parameter R, Eckert number Ec, and Grashof

number Gr are considered zero.

Conclusions
An unsteady free convection boundary-layer flow of a

nanofluid due to a stretching sheet is studied with the

influence of magnetic field and thermal radiation. The

explicit finite difference [24] technique with stability and

convergence analysis has been employed as a solution

technique to complete the formulation of the unsteady

model. For the unsteady case (time-dependent), the non-

dimensional time considered here is τ = 5, 20 and 50 and

displays with the entire step and a different line pattern.

The results are presented for the effect of various para-

meters. The velocity, temperature, and concentration

effects on the sheet are studied and shown graphically.

From the present study, the concluding remarks have

been taken as follows:

1. Larger values of the Grashof number showed a

significant effect on momentum boundary layer.

2. The effect of the Brownian motion and

thermophoresis stabilizes the boundary layer growth.

3. The boundary layers are highly influenced by the

Prandtl number.

4. Using magnetic field, the flow characteristics could

be controlled.

5. The thermal boundary layer thickness increases as a

result of increasing radiation.

6. The presence of heavier species (large Lewis number)

decreases the concentration in the boundary layer.

7. The Eckert number has a significant effect on the

boundary layer growth.
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nanoparticle concentration as y tends to infinity; �C : ; cp: specific heat capacity

(J kg−1 K−1); DB: Brownian diffusion coefficient; DT: thermophoresis diffusion

coefficient; D: stretching constant; Ec: Eckert number; Gr: Grashof number;

k: thermal conductivity (Wm−1K−1); κ: Boltzmann constant (1.3805 × 10− 23

JK− 1); κ*: mean absorption coefficient; Le: Lewis number; M: magnetic field

parameter; Nb: Brownian motion parameter; Nt: thermophoresis parameter;

P: fluid pressure (Pa); Pr: Prandtl number; qr: radiative heat flux (kg m−2);

R: radiation parameter; T: fluid temperature (K); Tw: temperature at the

stretching surface (K); T
∞
: ambient temperature as y tends to infinity (K); �T : ;

u,v: velocity components along x and y axes, respectively (ms−1); U,

V: dimensionless velocity components; x: y, Cartesian coordinates measured

along stretching surface (m).

Greek symbols

υ: kinematic viscosity of the fluid (m2s−1); (ρc)p: effective heat capacity of the

nanoparticle (J m−3K−1); (ρc)f: heat capacity of the fluid (J m−3K−1); σ: Stefan-

Boltzmann constant (5.6697 × 10− 8 W/m2K4; kg m−2 K−4); �C : ; ρf: fluid density

(kgm−3); τ: dimensionless time.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MSK did the major part of the article; however, the funding, computational

suggestions, and proof reading were done by IK, LEA, and AI. All authors

read and approved the final manuscript.

Authors’ information

AI and LEA are assistant professors of Mathematics. MSK and IK are

researchers.

Table 1 Comparison of results for the reduced Nusselt number Nu ¼ � 1
ΔT

∂T
∂y

� �

y¼0
when M =Gr = R = Ec = 0 and Pr = Le = 10

Non-dimensional time Parameter Present results Khan and Pop's [19] results

(τ) Nt = Nb = (non-similar solution) (similar solution)

60 0.1 0.9541 0.9524

60 0.2 0.3667 0.3654

60 0.3 0.1359 0.1355

60 0.4 0.0499 0.0495

60 0.5 0.0185 0.0179
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