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An analysis is presented to investigate the unsteady magnetohydrodynamic (MHD) mixed convection 

boundary-layer flow of a micropolar fluid over a vertical wedge in the presence of thermal radiation and heat 

generation or absorption. The free-stream velocity and surface temperature are assumed to be oscillating in 

magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by 

two distinct methods, namely, the finite difference method for the entire frequency range, and the series solution 

for low frequency range and the asymptotic series expansion method for the high frequency range. Numerical 

solutions provide a good agreement with the series solutions. The amplitudes of skin friction and couple stress 

coefficients are found to be strongly dependent on the Richardson number and the vortex viscosity parameter. 

The Prandtl number, the conduction–radiation parameter, the surface temperature parameter and the pressure 

gradient parameter significantly affect the amplitudes of skin friction, couple stress and surface heat transfer 

rates. However, the amplitudes of skin friction coefficient are considerably affected by the magnetic field 

parameter, whereas the amplitudes of heat transfer rate are appreciably changed with the heat generation or 

absorption parameter. In addition, results are presented for the transient skin friction, couple stress and heat 

transfer rate with the variations of the Richardson number, the vortex viscosity parameter, the pressure gradient 

parameter and the magnetic field parameter  
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1. Introduction 

 
 A mixed convection boundary-layer flow and heat transfer over wedge shaped bodies has been the 

focus of research due to its occurrence in many industrial and engineering applications such as thermal 

insulation, crude oil extraction, geothermal systems, ground water pollution, heat exchanger and the storage 

of nuclear waste, etc [1]. When temperature differences between the wedge surface and the fluid are present, 

there occur density differences within the fluid. As a result, both the flow and heat transfer are affected by 

the buoyancy force and this process is known as free convection. When the magnitude of the buoyancy force 

is high even in the presence of a large surface-fluid temperature gradient and moderate flow velocity, forced 

and free convection are of comparable order. In this case, the combined effect of forced and free convection 

becomes important. Sing et al. [1] investigated the behavior of an unsteady mixed convection flow of an 

incompressible viscous fluid over a vertical wedge with constant suction or injection. Lin and Lin [2] 

examined the laminar forced convection heat transfer from either an isothermal surface or a uniform flux 
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boundary to fluids of any Prandtl number. Watanabe [3] theoretically studied the behavior of incompressible 

laminar boundary layers in a forced flow over a wedge with uniform suction or injection. He also 

investigated the mixed convection boundary layer flow with uniform suction or injection on a flat plate [4]. 

Later, Watanabe et al. [5] extended the work of Watanabe [4] for a mixed convection flow with uniform 

suction and injection. 

 Micropolar fluids play an in important role in controlling the conjugate effect of forced and free 

convection over a wedge because of their non-Newtonian characteristics. This type of fluids contains a large 

amount of rigid, randomly oriented or spherical particles suspended in a viscous medium which move along 

with microrotations. Lok et al. [6] mentioned that the fluids consisting of an extremely small amount of 

polymeric additives significantly reduce the skin friction near a rigid body. Applications may arise in the 

field of aeronautics and submarine navigation where the main concern is the drag reduction of the airplane 

and ship. Kim [7] investigated the steady laminar flow of micropolar fluids past a wedge with constant 

surface temperature while Kim and Kim [8] considered the micropolar fluid boundary layer over a wedge 

with prescribed constant surface heat flux. They solved the problems numerically and examined the details 

of the flow and heat transfer characteristics and their dependence on the material properties of the micropolar 

fluid.  

 A magnetohydrodynamic (MHD) viscous incompressible fluid can be used either for producing heat 

by electromagnetic field such as MHD power generators and pumps [9] or to control the heat transfer in the 

cooling of reactors [10] as well as aerodynamic heating [9]. Ishak et al. [11, 12] investigated the MHD 

boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux as well as variable wall 

temperature. Gorla et al. [13] examined the combined effects of buoyancy and magnetic forces of an 

electrically conducting micropolar fluid along a hot vertical plate. Bhargava et al. [14] studied the influences 

of a magnetic field and temperature dependent heat source on a micropolar fluid between two parallel porous 

plates. Mohammadein and Gorla [9] analyzed the mixed convection flow of a micropolar fluid over a semi-

infinite horizontal plate with vectored mass transfer in a transverse magnetic field. Nanousis [15] 

investigated the influence of an applied magnetic field on the mixed convection boundary-layer flow over a 

wedge with uniform suction or injection. Kumari et al. [16] carried out numerical solutions to examine the 

mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium. The 

effects of a magnetic field for the free convection flow of a Newtonian fluid past an isothermal wedge were 

studied by Watanabe and Pop [17].  

 Vajravelu and Nayfeh [18] analyzed the hydromagnetic convection flow and heat transfer from a 

cone and a wedge with variable surface temperature and internal heat generation or absorption. Ganapathirao 

[19] investigated the unsteady mixed convection boundary-layer flow over a vertical wedge with chemical 

reaction and heat generation or absorption. Yih [20] studied the MHD forced convection flow adjacent to a 

non-isothermal wedge in the presence of viscous and magnetic dissipations and stress work. Chamkha et al. 

[21] have generalized the work of Yih [20] by considering the effects of bowling or suction, temperature-

dependent heat generation or absorption and thermal radiation. Uddin et al. [22] examined the influence of 

MHD, thermal radiation and heat generation/absorption on a micropolar fluid flow and heat transfer to a 

wedge.  

 The present study has been undertaken in order to investigate the unsteady MHD mixed convection 

boundary-layer flow of a micropolar fluid over a wedge taking into account the effects of the applied 

magnetic field, thermal radiation, heat generation/absorption and angle of the wedge surface. The governing 

equations have been solved using the finite difference method and the series solution for the low frequency 

range and the asymptotic series expansion method for the high frequency range. The agreement of results 

between the series solutions and the numerical solutions is good. The results are presented in terms of the 

amplitudes of skin friction coefficient, couple stress coefficient and heat transfer rate with the variation of the 

Richardson number, vortex viscosity parameter, Prandtl number, conduction–radiation parameter, surface 

temperature parameter, pressure gradient parameter, magnetic field parameter and heat generation or 

absorption parameter. We compared our numerical results for the special case of Newtonian fluids with those 

of Watanabe et al. [5] and Kumari et al. [16] and found them to be in excellent agreement.  
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2. Mathematical formalisms 

 
 We consider a two-dimensional, unsteady, magneto-hydrodynamic, mixed convection boundary 

layer flow of a micropolar fluid over the surface of a vertical wedge having an angle πφ in the presence of 

thermal radiation and heat generation or absorption. The flow configuration and coordinate system are shown 

in Fig.1. Under the usual boundary layer approximation, the equations for the conservation of mass, 

momentum, angular velocity and energy may be written as 
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 Here x and y are the coordinates parallel and perpendicular to the wedge surface, u and v are the 

velocity components in the x- and y-directions, respectively, μ is the viscosity of the fluid, ρ is the density of 

the fluid, k is the coefficient of gyro-viscosity (or vortex viscosity), g is the acceleration due to gravity, β is 

the coefficient of volumetric expansion, j is the micro-inertia density, N is the component of the micro-

rotation vector normal to the xy-plane, γ is the spin gradient viscosity, α is the thermal diffusivity, κc  is the 

thermal conductivity, cp is the heat capacity of the fluid, T is the temperature of the fluid in the boundary 

layer, σc is the electrical conductivity, Q0 is the heat generation (> 0) or absorption (< 0) coefficient while 

Q0(T−T∞) represents the volumetric rate of heat generation/absorption from a source or sink of heat within 

the fluid. Furthermore, B0 is the strength of the magnetic field which is presumed to be applied in the positive 

y direction and normal to the surface. In this study, we have considered that B0 is proportional to x−1/4. 

 In Eq.(2.4), the term qr represents the radiative heat-flux in the y-direction. The fluid is assumed to 

be an optically thick gray viscous fluid which can only absorb and emit radiation. In this regard, the radiative 

heat-flux term is simplified using the Rosseland diffusion approximation and expressed following Raptis 

[23] as 
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where σ* is the Stefan–Boltzman constant and k* is the Rosseland mean absorption coefficient. Moreover, the 

spin-gradient viscosity, γ, introduced in Eq.(2.3) gives a relationship between the coefficients of viscosity 

and micro-inertia as below  
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 The associated boundary conditions are 
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Fig.1. Flow configuration and coordinate system. 

 

 In Eqs (2.8), U(x, t) is the local velocity of the mainstream at the outer edge of the boundary layer 

and is assumed to be of the form   
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where U0, ε<<1 are constants, ω is the frequency of oscillation and m is the pressure gradient parameter 

which is related to the angle of wedge πφ by m = φ/(2 − φ).  

 We now define the stream function ψ by 
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which satisfy the continuity Eq.(2.1). 

 The boundary conditions (2.7) and (2.8) suggest that the functions ψ, N and T may be expressed in 

the following forms 
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where ψs,  Ns, Ts are the steady-state parts and ψ1, N1, T1 are the oscillating parts of the corresponding 

functions. 

 Now, using Eqs (2.9)-(2.11) in Eqs (2.2)-(2.4) and equating the coefficients of ε0 give 
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 The set of equations for ψs,  Ns and Ts represents the steady-state solutions that can be determined by 

the following functions 
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 Substituting Eqs (2.15) into Eqs (2.12)-(2.14), we obtain the following dimensionless equations  
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subject to the boundary conditions 
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 In the above equations Ri Gr Re2
x x  is the Richardson number, Grx = gβ(Tw − T∞)x3cos(πφ/2)/ν2 is 

the Grashof number, Rex = U0x
m+1/ν is the Reynolds number, 2 1 m

c 0 0M B x U    is the magnetic field 

parameter, Pr = ν/α is the Prandtl number, K = κ/μ is the vortex viscosity parameter,  3
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0 p 0Q x c U     is the heat generation (> 0) or absorption (< 0) parameter. 

 Using expressions (2.9)-(2.11) in Eqs (2.2)-(2.4) and equating the coefficients of ε, we obtain 

equations for time-dependent components ψ1, N1 and T1 as 
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 To non-dimensionalize Eqs (2.21)-(2.23), we introduce the following expressions  
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 Substituting Eqs (2.15) and (2.26) into Eqs (2.21)-(2.23), we obtain 
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 The associated boundary conditions for Eqs (2.27)-(2.29) are  
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 The values of the physical quantities, namely, the local skin friction, couple stress and heat transfer 

rate at the surface of the wedge, are readily obtained from the solutions of the sets of Eqs (2.16)-(2.20) and 

(2.27)-(2.31). These are important not only from the physical point of view but also from the experimental 

point of view. The local skin friction coefficient, Cf, couple stress coefficient, mN and heat transfer rate 

(Nusselt number) Nu may be obtained by the relations given below 
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 In this study, the results will be presented in terms of the amplitudes of the skin friction coefficient, 

Au, couple stress coefficient, Am and heat transfer coefficient, Aq given by the expressions 

 

         , , ,
2 2

u r iA F 0 F 0 F 0        , (2.35) 
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         , , ,
2 2

m r iA H 0 H 0 H 0        , (2.36) 

 

         , , ,
2 2

q r iA 0 0 0            (2.37) 

 

where      , , , and ,r i r i r iF F H H        are the corresponding real and imaginary parts of the gradients of 

the  axial velocity, angular velocity and temperature at the surface.  

 

3. Solution methodologies 

 
 To find the solutions of Eqs (2.16)-(2.20) representing the steady mean flow and temperature fields, 

we have employed the finite difference method for different values of the physical parameters m, Pr, Ri, K, 

Rd, M, Ω and Δ. Subsequently, the resulting solutions are applied in finding the solutions of Eqs (2.27)-(2.31) 

that provide the oscillating parts of the flow and the temperature fields. In order to verify the numerical 

solutions, Eqs (2.27)-(2.29) satisfying the boundary conditions (2.30)-(2.31) are also solved using the series 

solutions for the low frequency range (ξ << 1) and the asymptotic series expansion method for the high 

frequency range (ξ >> 1). Details of the solutions are discussed in the following sections. 

 

3.1. Series solutions for small ξ ( << 1) 

 

 As the flow and heat transfer near the leading edge are usually determined for a very small range of 

frequencies, the results will be based on the finite number of terms in a series. Thus, we seek the solutions of 

the unknown functions F, H and Θ of Eqs (2.27)-(2.29) by the following series expansions 

 

                   , , , , , .
n n n

n n n

n 0 n 0 n 0

F 2i F H 2i H 2i
  

  

                    (3.1) 

 

 Substituting Eqs (3.1) into (27)–(29), and then equating the terms of like powers of (2iξ) to zero, the 

following groups of ordinary differential equations are obtained: 

For n = 0, 

 

       Ri ,0 0 0 0 0 0

4m 2
1 F fF f F 1 f F MF 0

m 1 m 1
               

    (3.2) 

 

      ,0 0 0 0 0 0 0

3m 1 2K
1 H fH F h f H hF 2H F 0

2 m 1 m 1

                  


 (3.3) 

 

  

     

 

Pr Pr Pr

,
Pr

2
3 2 2

d 0 d 0 d 0

2
d 0 0 0 0

1 4 8 8
1 R 1 R 1 R 1

3

4 2
R 1 F f 0

m 1

                     
 
              



 (3.4) 

 

For n = 1, 

 

     Ri ,1 1 1 1 1 1 1 0

3 m 2 1 1
1 F fF f F 2 f F MF F

m 1 m 1 m 1 m 1

                
   

   (3.5) 
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    ,1 1 1 1 1 1 1 0

3 m 3m 1 m 1 2K 1
1 H fH F h hF f H 2H F H

2 m 1 m 1 2 m 1 m 1

                      


(3.6) 

 

  

     

   
Pr Pr Pr

,
Pr

2
3 2 2

d 1 d 1 d 1

2
d 1 1 1 1 1 0

1 4 8 8
1 R 1 R 1 R 1

3

2 1 m4 3 m 2 1
R 1 f F f

m 1 m 1 m 1 m 1

                     
 

                   
   

 (3.7) 

 

For n ≥ 2, 

 

  

     

 Ri ,

n n n n n

n n n 1

2 1 m 2 1 m4m
1 F fF 1 n f F n f F

m 1 m 1 m 1

2 1
MF F

m 1 m 1


     
               

     

    
 

 
 (3.8) 

 

  

 

    ,

n n n n

n n n n 1

2 1 m 3m 1
1 H fH 1 n h F hF

2 m 1 m 1

2 1 m3m 1 2 1
n f H 2H F H

m 1 m 1 m 1 m 1


                    
         

    



 (3.9) 

 

  

     

     
Pr Pr Pr

Pr

.

2
3 2 2

d n d n d n

2
d n n n n

n n 1

1 4 8 8
1 R 1 R 1 R 1

3

2 1 m 2 1 m4
R 1 f 1 n F nf

m 1 m 1

2 1

m 1 m 1


                     
 

                    
  


   

 



 (3.10) 

 

 The corresponding boundary conditions are    

 

             , ,n n n n n 0

1
F 0 F 0 0 0 H 0 F 0 0 1

2
              at     η = 0,  (3.11) 

 

       , ,n n nF 1 H 0 0              as      η → ∞.                       (3.12) 

 

Here primes denote derivatives with respect to η only. 

 Equations (3.2)-(3.10) are linear but coupled. Hence these are solved independently group-wise 

successively. The implicit Runge–Kutta–Butcher [24] initial value solver together with Nachtsheim–Swigert 

[25] iteration scheme is employed to solve Eqs (3.2)–(3.10) up to O(ξ10). 

 

3.2. Asymptotic solutions for large ξ ( >> 1) 

 

 In this section, attention will be given to the behavior of the solutions of Eqs (2.27)-(2.29) when ξ is 

large. When the frequency of oscillation ω is too large, the boundary layer response might be significant in a 
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very thin region adjacent to the surface. Consequently, the solutions become independent of ξ provided that 

the frequency of oscillation ω tends to infinity. Therefore we introduce the following transformations in Eqs 

(2.27)-(2.29) 

 

             , , , , , , , , , .1 2 1 2 1 2F Y H g Y Y Y                     (3.13) 

 

 Thus Eqs (2.27)-(2.29) become 

 

  

 

 

Ri

,

3 2
1 2 3 2 1

3 2

1

2 2
1 2

2

2 4m
1 f f 1

m 1 m 1 YY Y

2i g 2
1 M

m 1 Y Y m 1 Y

2 1 m Y Y
f f

m 1 Y 2 2 YY

  





                
     

                      
                              





f

  (3.14) 

 

  
 

,

2
1 2 2 1 2 1

2

2
1 1

2

g g 2 3m 1 g 2m 2i
1 f h h f g g

2 Y m 1 m 1 Y m 1 m 1Y

2 1 m2K g Y g Y
2g f h

m 1 m 1 2 Y 2 YY

   

 

                         
                                        



  (3.15) 

 

  

      

 

 

Pr Pr Pr

Pr

.

2 2
3 2 21 2 1

d d d2

2 1 1 2 3 2 1
d

1 2

1 4 8 8
1 R 1 R 1 R 1

3 YY

4 2 2i 2
R 1 f

Y m 1 m 1 m 1

2 1 m Y Y
f

m 1 2 Y 2 Y

 

   



                      
 

                    
   

                            

 (3.16) 

 

 For small values of η, we can expand the solutions of Eqs (2.16)-(2.18) in the power series 

 

  ,2 3 4 5
2 3 4 5f a a a a           (3.17) 

 

  ,2 3 4 5
0 1 2 3 4 5h b b b b b b             (3.18) 

 

  .2 3 4 5
1 2 3 4 51 c c c c c             (3.19) 

 

 Using Eqs (3.17)-(3.19) into Eqs (2.16)-(2.20), we get 

 

           , , , ,2 0 1 1

1 1
a f 0 b h 0 f 0 b h 0 c 0

2 2
             (3.20) 

 

 Now the solutions of Eqs (3.14)-(3.16) can be obtained in the following forms 
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         , , ,n 2 n 2
n n

n 0 n 0

Y E Y g Y J Y
 

 

 

           and     , .n 2
n

n 0

Y L Y






     (3.21) 

 

 Substituting (3.21) into Eqs (3.14)-(3.16), and equating the like powers of ξ, we obtain 

  

 

 

 

,

,

Ri
,

0 0 0

1 1 1

2 2 0 0 2

2 2i
1 K E iE KJ

m 1 m 1

2
1 K E iE KJ

m 1

2 4m 2 2M
1 K E iE L E KJ

m 1 m 1 m 1 m 1

          

     


               


 

  

 

   

,

,

,

0 0

0
1 1

1 0
2 2 0 0 1 0

K 2i
1 J J 0

2 m 1

b 3m 1K 2i
1 J J

2 m 1 m 1

b 3m 1 b 3m 1K 2i 4 2K
1 J J KJ YJ J E

2 m 1 m 1 m 1 m 1 m 1

       

        

                  


 

and 

 

    Pr3
d 0 0

4 2i
1 R 1 L L 0

3 m 1

         
, 

 

     Pr3
d 1 1 1 0 0

4 2i
1 R 1 L L G YL 2L

3 m 1

             
, 

 

  
     Pr Pr3 2

d 2 2 1 1 1 2 0 0 0 0

4 2i 2
1 R 1 L L G YL 2L G Y L 4YL 2L L

3 m 1 m 1

                    
    


. 

 The corresponding boundary conditions are 

 

  

         

       

     

, Pr , , for , , ,

, , for , , ,

, , for , ,

1 2
n n 0 n

0 n n n

0 n n

E 0 E 0 0 E 1 E 0 n 0 1

1
J 0 E 0 J 0 J 0 n 1 2

2

L 0 1 L 0 L 0 n 1 2

         

     

    






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 Solving the above equations, we can find the expressions for  ,F 0  ,  ,H 0   and  ,0   as 

 

       , ,
1 n 2

n

n 0

F 0 E 0






      (3.22) 

 

       , ,
2 n 2

n

n 0

H 0 J 0






      (3.23) 

 

       ,
1 n 2

n

n 0

0 L 0






     (3.24) 

where   

  

     

   
 

 

, , , ,

, , , ,

1 3 0 4 5
0 1 22

2 62

22
0 1 4 1 31 3 13

0 1 22
142 2 1

2 m D r b m K D
E 0 E 0 E 0

D DD

b m m K 2D K rm D r D
J 0 J 0 J 0

DK D 2D

     


     





  

 

         
, , ,

2
1 0 2 31 1

0 1 2 3 2
00 1 0

3G 8G 3G 2Gs m 3G
L 0 L 0 L 0

4GG 32 m G s

            

with 

  

   

       

        

 

 

, Pr , , ,

, , , ,

, , ,

Pr, ,

, , ,

1 2

3 4 1 2

3 2 2
0 d 1 d 1 2 d 1 2

3 1 1 1 1 1 2

2 1 1 2 3 1 2 4 0 1

r i s i m 2 m 1 m 2m m 1

m 1 m m 1 m 3m 1 m 1 K 1 K K 1 K 2

4
G 1 R 1 G 4 R 1 c G 4R 1 c c 1

3

G 2G m D 2 K K K K

D 2 K K K K D K K D G K

     

         

              

     

      

  
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  
   

   
  

    
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4. Results and discussion 

 
 In this study, the system of dimensionless governing equations of the unsteady laminar mixed 

convection boundary layer flow past a vertical wedge has been solved by two distinct methods, 

namely, the finite difference method for the entire frequency range and the series solution for the low 

frequency range and the asymptotic series expansion method for the high frequency range. Numerical 

solutions are carried out for various values of the Richardson number, Ri, Prandtl number, Pr, vortex 

viscosity parameter, Κ, pressure gradient parameter, m, conduction-radiation parameter, Rd, surface 

temperature parameter, Δ, magnetic field parameter, M, and heat generation or absorption parameter, 

Ω.   
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Fig.2.  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values 

of Ri while Pr = 0.73, Κ = 2.0, m = 0.3333, Rd = 0.5, Δ = 0.2, M = 0.2 and Ω = 0.2.  

 

 In order to validate the numerical solutions, a comparison between the solutions obtained by the 

finite difference method and the series solutions for small and large ξ is shown in Figs 2a - c. It is found from 

the figures that the numerical solutions are in good agreement with the series solutions. Furthermore, the 

numerical solutions have been compared with Watanabe et al. [5] and Kumari et al. [16]. It should be 

mentioned that Eqs (2.16) and (2.18) reduce to the corresponding equations of Watanabe et al. [5] and 

Kumari et al. [16] for Newtonian fluids when K = 0, Δ = 0, M = 0, Rd = 0 and Ω = 0. In this regard, we have 

made a comparison of the skin friction and heat transfer coefficients in Tab.1 which suggests that the 

numerical solutions are in excellent agreement. Therefore, our numerical solutions are very accurate. 
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4.1.  Effects of different physical parameters on the amplitudes of skin friction, couple stress and heat 

transfer rates   

 

 Figures 2a - c show that the amplitudes of skin friction, couple stress and heat transfer rates increase 

with the Richardson number, Ri. As the Richardson number, Ri, increases, the buoyancy force becomes 

prominent and causes the velocity of the fluid to increase. This in turn increases the amplitudes of the skin 

friction, couple stress and heat transfer rates. In addition, the amplitudes of the skin friction and heat transfer 

coefficients oscillate near the leading edge and gradually decay in the downstream region.  

 

Table 1.  Comparison of the skin friction coefficient,  f 0  and heat transfer coefficient, θ′(0), for different 

m while Pr = 0.73, Ri = 0.0, Κ = 0.0, Rd = 0.0, Δ = 0.0, M = 0.0 and Ω = 0.0. 

 

m  f 0   0  

 Watanabe 

 et al. [5] 

Kumari  

et al. [16] 

Present 

results 

Watanabe  

et al. [5] 

Kumari  

et al. [16] 

Present 

results 

0 0.46960 0.46975 0.46960 0.42015 0.42079 0.42015 

0.0141 0.50461 0.50472 0.50461 0.42578 0.42635 0.42578 

0.04350 0.56898 0.56904 0.56897 0.43548 0.43597 0.43548 

0.0909 0.65498 0.65501 0.65497 0.44730 0.44770 0.44730 

0.1429 0.73200 0.73202 0.73199 0.45693 0.45728 0.45693 

0.2000 0.80213 0.80214 0.80211 0.46503 0.46534 0.46503 

0.3333 0.92765 0.92766 0.92763 0.47814 0.47840 0.47814 

0.5000 1.03890 – 1.03887 0.48848 – 0.48848 

0.8000 – – 1.17143 – – 0.49951 

0.9412 – – 1.21618 – – 0.50295 

1.0000 – – 1.23254 – – 0.50418 

 

 The effects of the Prandtl number, Pr, on the amplitudes of the skin friction, couple stress and heat 

transfer rates are shown in Figs 3a - c. When the Prandtl number increases, the amplitudes of the skin friction 

and couple stress coefficients decrease while the amplitudes of heat transfer rates increase. Prandtl number is 

the ratio of momentum to thermal diffusivity of the fluid. Therefore, higher Prandtl number results in 

reduced thermal boundary layer thickness. A thinner thermal boundary layer corresponds to a large 

temperature gradient at the wall and hence results in a higher heat transfer coefficient.  
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Fig.3.  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values 

of Pr while Ri = 4.0, Κ = 5.0, m = 0.3333, Rd = 0.5, Δ = 0.5, M = 0.5 and Ω = 0.5. 
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Fig.4.  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values 

of K while Ri = 4.0, Pr = 0.73, m = 0.3333, Rd = 0.5, Δ = 0.5, M = 0.5 and Ω = 0.5. 

 

 Figures 4a - c depict the effects of varying the vortex viscosity parameter, K, on the amplitudes of 

the skin friction, couple stress and heat transfer rates. It is observed that the amplitudes of the skin friction 

and couple stress coefficients considerably decrease owing to the increase of the vortex viscosity parameter, 

K, while there is a small increase in the amplitudes of the heat transfer coefficient for a large increase of the 

vortex viscosity parameter, K. This is due to the fact that the vortex viscosity parameter K (= κ/μ) is large 

either for a higher value of the coefficient of vortex viscosity κ or for smaller viscosity of the fluid. So the 

thicknesses of the momentum and microrotation boundary layers increase and the thermal boundary layer 

decreases for a higher vortex viscosity parameter.  
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Fig.5.  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values 

of Rd while Ri = 4.0, K = 5.0, Pr = 0.73, m = 0.3333, Δ = 0.5, M = 0.5 and Ω = 0.5. 

  

 The effects of the conduction-radiation parameter, Rd, on the amplitudes of the skin friction, couple 

stress and heat transfer rates are shown in Figs 5a - c. As the conduction-radiation parameter increases, the 

amplitudes of skin friction and couple stress increase but the amplitudes of the heat transfer rate decrease. 

These features are attributed to the decrease of the thicknesses of the momentum and microrotation boundary 

layers with an increase in Rd or the smaller thermal conductivity of the fluid. However, the thermal boundary 

layer thickness increases as the value of Rd increases. When Rd is large, radiation dominates heat conduction 

that lowers the surface temperature of the wedge by dissipating heat into the fluid. For this reason, the 

temperature difference between the surface and the surrounding fluid is small. It gives a small temperature 

gradient at the surface and hence a small heat transfer rate. We also observe that the amplitudes of heat 
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transfer rate are strongly dependent on the conduction-radiation parameter, Rd, whereas the effects of Rd on 

the amplitudes of skin friction and couple stress are rather weak. 

 

          

 

 

 

Fig.6.  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values 

of Δ while Ri = 4.0, K = 5.0, Pr = 0.73, m = 0.3333, Rd = 0.5, M = 0.5 and Ω = 0.5. 

 

 Figures 6a - c show the effects of the surface temperature parameter, Δ, on the amplitudes of the skin 

friction, couple stress and heat transfer rates. It is evident from the figures that the amplitudes of the skin 

friction and couple stress coefficients increase due to an increase in the surface temperature parameter. When 

the surface temperature parameter is higher the amplitudes of the heat transfer rate become smaller. The 

cause of these characteristics is that the higher surface temperature parameter, Δ, reduces the thicknesses of 

both the momentum and microrotation boundary layers and thickens the thermal boundary layer.        
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             (a)                                                                                     (b) 

 

                                                             (c) 

Fig.7  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values of 

m while Ri = 4.0, K = 5.0, Pr = 0.73, Δ = 0.5, Rd = 0.5, M = 0.5 and Ω = 0.5. 

 

 The effects of the pressure gradient parameter, m, on the amplitudes of the skin friction, couple stress 

and heat transfer rates are illustrated in Figs 7a - c. As the pressure gradient parameter, m, increases, the 

amplitudes of skin friction, couple stress and heat transfer rates decrease. Table 1 shows these results.   
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Fig.8.  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values 

of Ω while Ri = 4.0, K = 5.0, Pr = 0.73, m = 0.3333, Δ = 0.5, Rd = 0.5 and M = 0.5. 

 

 Figures 8a - c exhibit the effects of heat generation or absorption parameter, Ω, on the amplitudes of 

skin friction, couple stress and heat transfer rates. It is evident from Fig.8a that in the region ξ < 2, the 

amplitudes of the skin friction coefficient relating to heat generation (Ω > 0) are found to be lower than those 

for heat absorption (Ω < 0). Then the skin friction coefficient increases along ξ with fluctuations. Figure 8b 

shows that the amplitudes of the couple stress coefficient corresponding to heat generation (Ω > 0) are higher 

than those for heat absorption (Ω < 0) in the region ξ < 2. Moreover the amplitudes of couple stress for Ω < 0 

are higher than those for Ω > 0. It is found from Fig.8c that the amplitudes of the heat transfer rate 

corresponding to heat generation (Ω > 0) are larger along the surface of the wedge compared to the values 

with heat absorption (Ω < 0) and in the absence of this effect (Ω = 0).  
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Fig.9.  Amplitudes of (a) skin friction (b) couple stress and (c) heat transfer coefficients for different values 

of M while Ri = 4.0, K = 5.0, Pr = 0.73, m = 0.3333, Δ = 0.5, Rd = 0.5 and Ω = 0.5. 

 

 The effects of changing the magnetic field parameter, M, on the amplitudes of the skin friction, 

couple stress and heat transfer coefficients are shown in Figs 9a - c. It is observed from the figures that the 

amplitudes of the skin friction and couple stress coefficients decrease and the amplitudes of the heat transfer 

rate increase owing to an increase of the magnetic field parameter, M. In addition, for any value of M, the 

amplitudes of the skin friction coefficient first decrease and then increase along ξ. The skin friction and heat 

transfer rates  are found to be oscillating in ξ and the amplitudes of oscillations reduce with an increase of M. 

The reasons for the above results can be understood from the definition of the magnetic field parameter, 

 2 1 m
c 0 0M B x U   . The value of M becomes higher either for a higher electrical conductivity, σc or for a 

higher magnetic field strength, B0. The imposition of transverse magnetic field tends to retard the fluid flow. 

As a result, the thicknesses of momentum and microrotation boundary layers increase and hence the 

amplitudes of the skin friction and couple stress coefficients decrease with an increase of M. The thermal 
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boundary layer thickness decreases as the electrical conductivity, σc, increases. Consequently, the amplitudes 

of heat transfer rates increase due to an increase of the magnetic field parameter, M.    

 

4.2.  Effects of different physical parameters on the transient skin friction, couple stress and heat 

transfer coefficients 

 

 Now we illustrate the characteristics of the transient skin friction, τ, transient couple stress, s, and 

transient heat transfer, q, with the change of the Richardson number, the vortex viscosity parameter, the 

pressure gradient parameter and the magnetic field parameter using the following expressions 

 

  cos( )s u uA t       , (4.1) 

 

  cos( )s m ms m A t     , (4.2) 

 

  cos( )s q qq q A t      (4.3) 

 

where τs = f′′(0), ms = h′(0) and qs = θ′(0) are respectively the steady mean skin friction, mean couple stress 

and mean heat transfer. 

 Figures 10a - c demonstrate the transient skin friction, couple stress and heat transfer rates  for 

different values of ξ against ωt. The results indicate that the amplitudes of oscillation of the transient skin 

friction, couple stress and heat transfer coefficients increase with ξ in the vicinity of the leading edge. For 

higher values of Ri this tendency is found to decrease in the case of transient skin friction and couple stress 

and increase for the transient heat transfer rate.        
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Fig.10. Transient (a) skin friction coefficient (b) couple stress and (3) heat transfer coefficients for different 

values of ξ against ωt while M = 1.0, K = 5.0, Pr = 0.73, m = 0.3333, Δ = 0.5, Rd = 0.5 and Ω = 0.5. 

 

 The variations of the transient skin friction, couple stress and heat transfer rates for different values 

of ξ against ωt are shown in Figs 11a - c. It is found from the figures that the amplitudes of oscillation of the 

transient skin friction, couple stress and heat transfer rate increase owing to an increase of ξ. It becomes 

pronounced for the skin friction and couple stress with higher values of the magnetic field parameter, M. On 

the contrary, Fig.11c shows that higher values of M and ξ reduce the amplitude of oscillation of the heat 

transfer rate.         
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Fig.11. Transient (a) skin friction (b) couple stress and (3) heat transfer coefficients for different values of ξ 
against ωt while Ri = 1.0, K = 5.0, Pr = 0.73, m = 0.3333, Δ = 0.5, Rd = 0.5 and Ω = 0.5. 

 

 Figures 12a - c depict the changes of the transient skin friction, couple stress and heat transfer rates 

for different values of ξ against ωt. It is seen that the amplitudes of oscillation of the transient skin friction, 

couple stress and heat transfer rates increase with ξ. For increasing values of the mixed convection 

parameter, K, the amplitudes of oscillation with the variation of ξ significantly reduce for the transient skin 

friction and couple stress coefficients and increase for the transient heat transfer rate.  

 

               

 

Fig.12.   Transient (a) skin friction (b) couple stress and (3) heat transfer coefficients for different values of 

ξ against ωt while Ri = 1.0, M = 0.5, Pr = 0.73, m = 0.3333, Δ = 0.5, Rd = 0.5 and Ω = 0.5. 

 

 The variations of the transient skin friction, couple stress and heat transfer rate are illustrated for 

different values of ξ against ωt. Evidently the amplitudes of oscillation of the transient skin friction, couple 
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stress and heat transfer rates increase with the distance away from the stagnation point. The amplitudes of 

oscillation with the change of ξ considerably decrease for higher values of the pressure gradient parameter, 

m, resulting in a decrease of the amplitudes of the skin friction, couple stress and heat transfer rates. 

 

          

 

Fig.13. Transient (a) skin friction (b) couple stress and (3) heat transfer coefficients for different values of ξ 
against ωt while Ri = 1.0, M = 0.5, Pr = 0.73, K = 5.0, Δ = 0.5, Rd = 0.5 and Ω = 0.5. 

 

5. Conclusions 

 
 We studied the unsteady MHD mixed convection boundary-layer flow of a micropolar fluid over a 

vertical wedge in the presence of thermal radiation and heat generation or absorption. The Richardson 

number and the vortex viscosity parameter significantly affect the amplitudes of the skin friction and couple 

stress coefficients. However, the amplitudes of the skin friction, couple stress and heat transfer rates are 

found to be strongly dependent on the Prandtl number, the conduction–radiation parameter, the surface 
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temperature parameter and the pressure gradient parameter. In addition, the effects of the magnetic field 

parameter on the amplitudes of the skin friction coefficient are significant whereas the amplitudes of heat 

transfer rates are substantially affected by the heat generation or absorption parameter. It is found that the 

vortex viscosity parameter, which indicates the material property of the micropolar fluid, and the magnetic 

field parameter significantly reduce the skin friction, however, these bring about a small increase in the rate 

of heat transfer. As a result, this type of fluid can be used efficiently for controlling the drag force and the 

rate of heat transfer as it is frequently required in MHD power generators and accelerators and cooling of 

nuclear reactors. Furthermore, the influences of the Richardson number, the vortex viscosity parameter, the 

pressure gradient parameter and the magnetic field parameter on the transient skin friction, transient couple 

stress and transient heat transfer rate are presented. These results reveal how the physical parameters affect 

the skin friction, couple stress and heat transfer rate near the leading edge of the wedge. 

 

Nomenclature 

 
 B0 – strength of magnetic field 

 Cf – local skin friction coefficient 

 cp – specific heat capacity of the fluid 

 F – dimensionless stream function of time dependent component 

 f – dimensionless stream function of steady-state component 

 Grx – Grashof number 

 g – acceleration due to gravity 

 j – micro-inertia density 

 K – vortex viscosity parameter 

 k – coefficient of gyro-viscosity  

 k* – Rosseland mean absorption coefficient 

 M – magnetic field parameter 

 m – pressure gradient parameter 

 mN – couple stress coefficient 

 N – component of the micro-rotation vector normal to the xy-plane 

 Nu – heat transfer rate (Nusselt number) 

 Pr – Prandtl number =    

 q – transient heat transfer 

 rq  – radiative heat-flux in the y-direction 

 Rd – conduction–radiation parameter 

 Rex – Reynolds number = m 1
0U x    

 Ri – Richardson’s number = Gr Re2
x x  

 s – transient couple stress 

 T  – temperature of the fluid 

 t – time 

 U0 –free stream velocity 

 u, v – fluid velocities in the x- and y-  direction respectively 

 x, y – coordinates parallel with and perpendicular to the wedge surface   

 α – thermal diffusivity 

 β – coefficient of volumetric expansion 

 γ – spin-gradient viscosity 

 ∆ – surface temperature parameter 

 η – similarity variable 

 θ, Θ – dimensionless temperature function 

 κc – thermal conductivity 

 μ – viscosity of the fluid 

 ξ – similarity variable 

 ν – kinematic viscosity 

 ρ – fluid density 
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 σc – electrical conductivity 

 σ* – Stefan-Boltzman constant 

  τ – transient skin friction 

 φ – related to angle of wedge (πφ) 

 ψ – stream function 

 Ω – heat generation (> 0) or absorption (< 0) parameter 

 ω – amplitude of oscillation 

 

Subscripts 

 

 s – refers to the steady state 

 w – refers to the surface of the wedge 

 ∞ – ambient condition 

 

Superscript 

 

 ʹ – differentiation with respect to Y or   
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