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Abstract

Unsteady RANS (Reynolds Averaged Navier Stokes) computations of

turbulent trailing-edge flow have been carried out at a Reynolds number

of 1000 (based on the free-stream quantities and the trailing-edge thick-

ness) using a 3D Finite Volume code, in which a Low Reynolds Number

(LRN) �✂✁☎✄ model and ✆✞✝✟✁✡✠ model were implemented. The realizability
constraints suggested by Durbin was also implemented in the models to

study their effect on the unsteady vortex shedding. Central differenc-

ing scheme was used for all the computations, but van-Leer scheme was

also tried in order to study the influence of numerical schemes on un-

steady vortex shedding.

Results from a Direct Numerical Simulation (DNS) of the same flow are

available for comparison and assessment of turbulence models used in

the URANS code. Two-dimensional URANS calculations are carried out

with turbulence mean properties from the DNS used at the inlet; the in-

flow boundary-layer thickness is 6.42 times the trailing-edge thickness,

close to typical turbine blade flow applications.

The LRN �☛✁☞✄ model failed to capture unsteady vortex shedding, but
when realizability constraint was implemented, the model captures flow

unsteadiness. Many of the key flow features observed in DNS are also

predicted by the modelling; the flow oscillates in a similar way to that

found in bluff-body flowwith a von Kármán vortex sheet produced down-

stream. The recirculation bubble predicted by unsteady RANS has a

similar shape and a length close to DNS. It was found that the unsteadi-

ness plays an important role in the near wake, comparable to the mod-

elled turbulence. A spectral analysis applied to the lift and pressure

drag coefficients show that a Strouhal number based on the trailing-

edge thickness is 0.104, very close to DNS value. It was found that

van-Leer scheme being a bounded scheme and dissipative in nature,

produces higher resolved kinetic energy compared to central difference

scheme; the reason for which has to be investigated.
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Nomenclature

Upper-case Roman

A Area

C Center line�✂✁
Lift co-efficient�☎✄
Pressure drag co-efficient� ✁✝✆
RMS lift co-efficient� ✄✞✆
RMS pressure drag co-efficient

L Length

Pr Prandtl number✟✡✠
Production term☛✌☞✎✍
Reynolds number based on the trailing-edge

thickness✏✒✑✔✓
Strain rate tensor

St Strouhal number ✕ ✏✞✖✘✗ ✕ ✠✝✙✛✚✒✜✣✢✝✤✞✥✦✜
SU Source term

SP Sink term

Lower-case Roman

✠ ✙ shedding frequency

✚ trailing-edge thickness

� turbulent kinetic energy

�★✧✪✩✬✫ modelled kinetic energy

�★✭ ✥✮✙ resolved kinetic energy✯ pressure✯✰✯ pressure correction✖
time✱ ✑ cartesian components of velocity vector✱ streamwise velocity component

✆ cross-streamwise velocity component✲ spanwise velocity component✱✒✳ wall friction velocity, ✱✴✳ ✗✶✵ ✷✹✸ ✢✻✺✼ ✑ cartesian coordinate vector component✽✿✾ dimensionless wall normal distance
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Upper-case Greek

�
Dependent variables✁ ✖
Time step✁ ✼✄✂ ✁ ✽ Grid spacing along ✼ and ✽ respectively

Lower-case Greek

☎ ✑✔✓
Kronecker delta

✄ Dissipation✆ Dynamic viscosity✝ kinematic viscosity, ✝ ✗ ✆ ✢✻✺✝✟✞ Turbulent or eddy viscosity✷✹✸
Wall shear stress

✺ density✠ ✑ ✓ viscous stress tensor✠ ✠ ✂ ✠☛✡ Turbulent Prandtl numbers

Subscripts

☞✌✂✎✍✏✂ ☞ ✂✣✲ north, south, east and west respectively✑ free stream or ambient conditions✒✔✓
boundary layer

Superscripts

✕
Modelled turbulent fluctuation✕✖✕
Resolved fluctuation✗ Instantaneous component

Symbols

✕✙✘✚✘✚✘✦✜ Ensemble averaged quantity✛ ✘✚✘✚✘✚✜ time averaged quantity

Abbreviations

CFD Computational Fluid Dynamics

CFL Courant-Friedrichs-Lewy

DNS Direct Numerical Simulation

FVM Finite Volume Method

LRN Low Reynolds Number

LES Large Eddy Simulation

PDE Partial Differential Equation

TDMA Tri-Diagonal MAtrix Algorithm

URANS Unsteady Reynolds Averaged Navier-Stokes
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Chapter 1

Introduction

1.1 What is a trailing-edge flow?

A simple 2D configuration of a trailing-edge flow is shown in Figure 1.1.

The turbulent flow over the trailing-edge presents difficulties for numer-

ical simulation because of the sudden removal of the solid wall and con-

sequent turbulence interactions. The flow characteristics change from

boundary-layer (i.e. wall-bounded shear-layer) upstream to wake flow

(i.e. free shear-layer) down-stream. Complicated flow phenomena oc-

cur in the near-wake, largely due to the flow separation and instability.

The flow oscillates downstream in the wake in a similar way to that

observed in bluff-body flow, with a von Kármán vortex sheet produced.

This flow also shows complicated turbulence kinetic energy transport,

notably the balance between the energy production and dissipation in

the upstream boundary-layer is destroyed and then re-created in the

wake downstream, where a new equilibrium state is reached.

Obviously this flow has many practical engineering applications, for

example drag reduction and noise emission in aeronautical and turbo

machinery industries, turbine rotor blade design and airframe design

applications.

1.2 Scope of present work

Yao et al.[12] have previously carried out a Direct Numerical Simula-

tion (DNS) for this type of flow with a Reynolds number of 1000, based

on the free-stream quantities and the trailing edge thickness ( ✚ ), and
with the incoming turbulent boundary-layer displacement thickness

☎ ✳
approximately equal to ✚ .
Based on the success of DNS, Yao et al.[11] have also carried out 2D un-

steady RANS (URANS) calculations, by applying the turbulence mean

properties from DNS at the inlet and by using an unstructured com-

1
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Flow inlet

Flow inlet
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Figure 1.1: Rectangular trailing-edge plate configuration

pressible 3D code with two-equation ( �✡✁ ✄ ) turbulence model with Low
Reynolds Number (LRN) near wall treatments. The inflow boundary-

layer thickness was 6.42 times the trailing-edge thickness, close to typ-

ical turbine blade flow applications.

Their investigation revealed that their turbulence model under-predicts

the reverse flow (the recirculation bubble predicted by their URANS had

a length only half that of the DNS) and overpredicts the Strouhal num-

ber by a factor of two compared to DNS.

The present work considers 2D unsteady RANS (URANS) calculations

of the same flow problem, in which a LRN � ✁ ✄ model and ✆ ✝ ✁ ✠ models
were implemented. The realizability constraints suggested by Durbin

and production (
✟ ✠
) limiters were used in the models to study their in-

fluence on unsteady vortex shedding. The URANS computations were

carried out by applying the turbulence mean properties from DNS at

the inlet and we have used an unstructured incompressible 3D finite-

volume code. The problem is non-dimensionalized based on the trailing-

edge thickness as the reference length and the free-stream velocity as

the reference velocity.

2



Chapter 2

Governing equations

2.1 Instantaneous equations of motion

All fluid motions (where the continuum approximation is valid) are gov-

erned by a set of dynamical equations namely the continuity equation

and the momentum equation,�✂✁☎✄✺✁ ✖✝✆ ✄✱ ✓ ✁☎✄✺✁ ✼ ✓✟✞✠✆ ✄✺ ✁✡✄✱ ✓✁ ✼ ✓ ✗ ☛
(2.1)

✄✺ � ✁✡✄✱ ✑✁ ✖ ✆ ✄✱ ✓ ✁✡✄✱ ✑✁ ✼ ✓ ✞ ✗ ✁
✁☞✄✯✁ ✼ ✑ ✆ ✁

✄✌✠✍✏✎✒✑✑✔✓✁ ✼ ✓ (2.2)

where,
✄✱ ✑✌✗ ✄✱ ✑ ✕✔✓✼✄✂ ✖ ✜ , a function of space ✓✼ and time ✖

.
✄✌✠✍✏✎✒✑✑✔✓ ✕✔✓✼ ✂ ✖ ✜ is the

viscous stress tensor.

The Newtonian closure for the viscous stress tensor relates it to the

fluid motion using a property of fluid, molecular viscosity ( ✆ ).✄✌✕✍✏✎✖✑✑✔✓ ✗✘✗ ✆✚✙ ✄✍ ✑✔✓ ✁✜✛✢ ✄✍ ✠✹✠ ☎ ✑✔✓✔✣ (2.3)

✄✍ ✑✔✓ is the instantaneous strain rate tensor given by,
✄✍ ✑ ✓ ✗ ✛✗ ✙ ✁✡✄✱ ✑✁ ✼ ✓ ✆ ✁✡✄✱ ✓✁ ✼ ✑ ✣ (2.4)

For incompressible flows, the derivative of density following the fluid

material is zero and hence 2.1 & 2.2 are simplified to,✁✡✄✱ ✓✁✡✄✼ ✓ ✗ ☛
(2.5)� ✁✤✄✱ ✑✁ ✖✥✆ ✄✱ ✓ ✁✡✄✱ ✑✁ ✼ ✓ ✞ ✗ ✁ ✛✺

✁☞✄✯✁ ✼ ✑ ✆ ✝ ✁ ✝ ✄✱ ✑✁ ✼ ✓ ✁ ✼ ✓ (2.6)

3
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2.2 Averaged equations of motion-(U)RANS

Why average?

With the Newtonian closure for the viscous stress tensor we get a sys-

tem of four equations involving four unknown variables. Assuming a

complete set of boundary conditions being available the system of equa-

tions can be directly solved. This approach is called Direct Numerical

Simulation (DNS). Performing DNS implies resolving all the scales. In

turbulent flows the size of the turbulent flow structures cover a large

spectrum ranging from the very small Kolmogorov scales to integral

scales of the size of physical domain. This type of simulation is very ex-

pensive and beyond the scope of industrial applications. Also one should

realize that in most applications the turbulence itself is of secondary in-

terest, only its effect on the mean flow characteristics is important.

This means that it is convenient to analyze the turbulent flow in two

parts, a mean (ensemble) component and a fluctuating component,✄✱ ✑ ✗ ✤ ✑ ✆ ✱✁�✑ (2.7)✄✯ ✗ ✟ ✆ ✯ �
This technique of decomposing is referred to as Reynolds Decomposi-

tion. Inserting these decomposed expressions in to the instantaneous

equations and ensemble averaging results in Reynolds Averaged Navier

Stokes(RANS) equations.✁ ✤ ✓✁ ✼ ✓ ✗ ☛
(2.8)� ✁ ✤ ✑✁ ✖✘✆ ✤ ✓ ✁ ✤ ✑✁ ✼ ✓ ✞ ✗ ✁ ✛✺

✁ ✟✁ ✼ ✑ ✆ ✝ ✁ ✝ ✤ ✑✁ ✼ ✓ ✁ ✼ ✓ ✁
✁✁ ✼ ✓ ✂ ✱ ✑ ✱ ✓☎✄

(2.9)

Note that if the averages are defined as ensemble means, they are, in

general, time-dependent, i.e. the dependent variables in 2.9 are not only

a function of space, but also a function of time.

✤ ✑ ✗ ✤ ✑ ✕ ✼ ✑ ✂ ✖ ✜ ✂ ✟ ✗ ✟ ✕ ✼ ✑ ✂ ✖ ✜✝✆✟✞✡✠ ✱ ✑ ✱ ✓ ✗ ✱ ✑ ✱ ✓ ✕ ✼ ✑ ✂ ✖ ✜ (2.10)

The last term in 2.9 represents the correlation between fluctuating ve-

locities and is called as Reynolds stress tensor. All the effects of tur-

bulent fluid motion on the mean flow is lumped in to this single term

by the process of averaging. This will enable great savings in terms of

computational requirements. On the other hand, the process of averag-

ing generated six new unknown variables. Now, in total we have ten

unknowns (3-velocity, 1-pressure, 6-stresses) and only four equations

(1-continuity, 3 components of Navier Stokes equation). This is referred

4



CHAPTER 2. GOVERNING EQUATIONS

to as the turbulence closure problem. We will discuss in the next section

how to solve this closure problem. But before that we have a question,

what is URANS?

Some aspects of URANS

The URANS equations are the usual RANS equations as in 2.9. It is

by convention we call it Unsteady-RANS since we retain the transient

term
✁ ✤ ✑ ✢ ✁ ✖

during computation. As we discussed earlier in 2.10 the

averaged components are still a function of time. Therefore the results

from the URANS are unsteady, but one is often interested only in the

time-averaged flow. We denote here the time-averaged velocity as
✛ ✤ ✜ ,

which means that we can decompose the results from URANS as a time-

averaged part,
✛ ✤ ✜ , a resolved fluctuation, ✱ � � , and the modelled turbu-

lent fluctuation, ✱ � . Therefore 2.7 becomes,✄✱ ✗ ✤ ✆ ✱✁� ✗ ✛ ✤ ✜ ✆ ✱✁� � ✆ ✱ � (2.11)

2.3 Eddy viscosity models

In the previous section we came across the turbulence closure problem.

In order to close the RANS equations, we can think of using the same

idea behind the Newtonian closure for the viscous stress tensor. There,

the viscous stress tensor is related to the fluid motion using a property

of the fluid called molecular viscosity, ✆ .
A similar analogy which tries to relate the Reynolds stresses to the fluid

motion through a new term called “eddy” or “turbulent” viscosity is re-

ferred to as Boussinesq assumption. According to which,

✺ ✱ ✑ ✱ ✓ ✗ ✁ ✆ ✞ ✙ ✁ ✤ ✑✁ ✼ ✓ ✆ ✁ ✤ ✓✁ ✼ ✑ ✣ ✆ ✗✢ ✺ ☎ ✑✔✓ � (2.12)

This means that we represent the fluctuations with some kind of aver-

aged quantity and try to find out how this quantity is coupled to the

mean flow. The eddy viscosity is treated as a scalar quantity and is de-

termined using a turbulent velocity scale
✁
and a length scale ✂ , based

on the dimensional analysis.

✝✟✞ ✗ ✁ ✓
(2.13)

There are different types of EVM’s based on the way we close the eddy

viscosity. Algebraic or zero equation EVM’s normally use a geometric

relation to compute the eddy viscosity. In one equation EVM’s we solve

for one turbulence quantity and a second turbulent quantity is obtained

from algebraic expression. These two quantities are used to describe

the eddy viscosity. In two equation EVM’s, two turbulent quantities are

solved to describe the eddy viscosity.

5



Unsteady-RANS Simulation of Turbulent Trailing-Edge Flow

2.3.1 Abe-Kondoh-Nagano � - ✁ model
Since the dissipation rate of turbulent kinetic energy, ✄ appears natu-
rally in the exact equation for turbulent kinetic energy, a two equation

EVM with these two turbulent quantities would be a good choice in the

formation of ✝ ✞ . The Low Reynolds Number (LRN) � - ✄ model used in
this work is suggested by Abe-Kondoh-Nagano [1] commonly referred

to as AKN model. The modeled � and ✄ equations read,✁ �✁ ✖ ✆ ✤ ✓
✁ �✁ ✼ ✓ ✗ ✁✁ ✼ ✓ � ✙☛✝ ✆ ✝✟✞

✠ ✠ ✣ ✁ �✁ ✼ ✓ ✞✠✆ ✟✡✠ ✁ ✄ (2.14)✁ ✄✁ ✖ ✆ ✤ ✓
✁ ✄✁ ✼ ✓ ✗ ✁✁ ✼ ✓ � ✙ ✝ ✆ ✝✟✞

✠☛✡ ✣ ✁ ✄✁ ✼ ✓ ✞ ✆ � ✡✄✂ ✄
�
✟✞✠ ✁ � ✡

✝ ✠ ✝
✄ ✝

� (2.15)

where,

✟✡✠ ✗ � ✝✟✞✤✙ ✁ ✤ ✑✁ ✼ ✓ ✆ ✁ ✤ ✓✁ ✼ ✑ ✣ ✞ ✁ ✤ ✑✁ ✼ ✓ (2.16)

✝✟✞ ✗ �✆☎ ✠ ☎ � ✝
✄ (2.17)

and,

✠ ☎ ✗ �
✛ ✁✞✝✠✟☛✡ ✙ ✁

☞ ✳
✛ ☞ ✣ ✞ ✝✍✌ ✛ ✆ ✎☛✑✏✓✒✕✔✞ ✝✠✟✖✡✘✗ ✁ ✙ ☛ ✞✗ ☛ ☛ ✣ ✝✖✙✛✚

✠ ✝
✗ �

✛ ✁✞✝✠✟☛✡ ✙ ✁
☞ ✳✢ ✘ ✛
✣ ✞ ✝✜✌ ✛ ✁ ☛ ✘ ✢ ✝✠✟☛✡ ✗ ✁ ✙ ☛ ✞✢ ✘ ✎ ✣ ✝✣✙✤✚

☞ ✳ ✗ ✄
✂ ✒✕✔ ☞
✝✣✏✓✒✕✔

where ’ ☞ ’ is the wall-normal distance between the node and the wall.
The model constants are given by,

�✆☎ ✗ ☛ ✘ ☛✦✥ � ✡✧✂ ✗ ✛ ✘ ✎ � ✡
✝
✗ ✛ ✘ ✥ ✠ ✠ ✗ ✛ ✘ ☞ ✠ ✡ ✗ ✛ ✘ ☞

The turbulent length scale is given by,

✓ ✗ � ✏✓✒ ✝
✄ (2.18)

Time scale is obtained using velocity scale and the length scale,★ ✗ ✓
✁ ✗ ✓

�
✂ ✒ ✝

✗ � ✏✓✒ ✝
✄ �
✂ ✒ ✝

✗ �
✄ (2.19)

6



CHAPTER 2. GOVERNING EQUATIONS

Wall Boundary Condition

On the wall,

✤ ✗ � ✗ � ✗ ☛
(2.20)

✄ ✸✂✁☎✄✆✄ ✗✘✗ ✝ � ✂☞ ✝ ✂ (2.21)

where ☞ ✂ is the wall normal distance for the near wall node.
2.3.2 Realizability and production ( ✝ ✠ ) limiter
In this section we will discuss the changesmade to original Abe-Kondoh-

Nagano � ✁ ✄ model. In order to limit the growth of turbulent kinetic
energy, we have used the following two different methods.

Realizability

The realizability constraint is expressed in terms of a limit on the tur-

bulent time scale,
★
. The following expression shows the time-scale

constraint derived for � ✁ ✄ model (see [8] for derivation),★ ✗✟✞✡✠ ✞
☛

�
✄

✂ ☛ ✘ ✢☞ ✢ �✆☎ ✠ ☎ ✏✍✌ (2.22)

where,
✏
is the strain rate tensor,

✏ ✑✔✓
. It should be noted that the time

scale appears both in ✝ ✞ expression and ✄ equation.

Production ( ✝ ✠ ) limiter
This is an explicit method of limiting the production of turbulent kinetic

energy. The production term in the modelled � equation is modified as,
✟✡✠ ✗✟✞✡✠ ✞✡✎ ✗ ✝ ✞ ✏ ✝ ✂✑✏ ✄✓✒ (2.23)

where, a = 2.5, was found to be the optimal value by Aldo [6].

2.3.3 Realizable ✔ ✝✖✕✘✗ model
During the last few years the ✆ ✝ ✁ ✠ turbulence model, originally sug-
gested by Durbin [3], has become increasingly popular due to its ability

to account for near-wall damping without use of damping functions. The

✆ ✝ ✁ ✠ model has also shown to be superior to other RANS methods in
many fluid flows where more complex flow features are present. The ad-

vantages of the model have attracted quite a few CFD researchers and

several of them have suggested modifications to the original model. The

7



Unsteady-RANS Simulation of Turbulent Trailing-Edge Flow

present ✆ ✝ ✁ ✠ model investigated in this work is suggested by Kalitzin
[4]. The modelled equations read,

✁ �✁ ✖ ✆ ✤ ✓
✁ �✁ ✼ ✓ ✗ ✁✁ ✼ ✓ � ✙ ✝ ✆ ✝✟✞

✠ ✠ ✣ ✁ �✁ ✼ ✓ ✞✕✆ ✟✞✠ ✁ ✄ (2.24)✁ ✄✁ ✖✕✆ ✤ ✓
✁ ✄✁ ✼ ✓ ✗ ✁✁ ✼ ✓ � ✙ ✝ ✆ ✝ ✞

✠ ✡ ✣ ✁ ✄✁ ✼ ✓✟✞✠✆ � ✡✧✂ ✟✡✠ ✁ � ✡
✝ ✄★ (2.25)

✁ ✆ ✝✁ ✖ ✆ ✤ ✓
✁ ✆ ✝✁ ✼ ✓ ✗ ✁✁ ✼ ✓ ✌ ✙ ✝ ✆ ✝ ✞

✠ ✠ ✣ ✁ ✆ ✝✁ ✼ ✓ ✚ ✆ � ✠ ✁ ✢ ✆ ✝ ✄
� (2.26)

� ✝
✁ ✝ ✠✁ ✼ ✓ ✝ ✁ ✠ ✗ � ✂✌ ☛

✆ ✝
� ✁

✗ ✢ ✌ ✁ �
✝
✟✡✠

� ✁ ✛✌ ☛ ✎ ✆ ✝
� ✁ ☛ ✌ (2.27)

where,

✟✡✠ ✗✘✗ ✝ ✞ ✏ ✝ ✏ ✝ ✗ ✏ ✑✔✓ ✏ ✑✔✓
(2.28)

✝ ✞ ✗ � ☎ ✆ ✝ ★ (2.29)

� ✗ � ✁ ✞ ✆ ✟ ☛
� ✏✓✒ ✝

✄
✂ �✂✁ ✝ ✏✓✒✕✔

✄
✂ ✒✕✔ ✌ (2.30)

� ☎ � ✡✄✂ � ✡
✝

� ✂ �
✝

✠ ✠ ✠ ✡ � ✁ �✂✁☛ ✘ ✗ ✗ ☛ ✘ ☛ ☞ ✎ ✛ ✘ ✥ ☛ ✘ ☞ ☛ ✘ ✢ ✛ ✘ ☛ ✛ ✘ ✢ ☛ ✘ ✗ ✢ ✄ ☛
Wall boundary condition

On the wall,

✤ ✗ � ✗ � ✗ ✠ ✗ ✆ ✝ ✗ ☛
(2.31)

✄ ✸✂✁☎✄✆✄ ✗✘✗ ✝ � ✂
☞ ✝ ✂ (2.32)

Where ☞ ✂ is the wall normal distance for the near wall node.
Realizability

The realizability constraint used here is based on the ✆ ✝ ✁ ✠ model by
Lien and Kalitzin [5]. They use the same constraint on the turbulent

time scale as was originally suggested by Durbin with the addition of a

model constant, hereafter referred to as
� ✄✔✑ ✧ set to 0.6, leading to

8



CHAPTER 2. GOVERNING EQUATIONS

★ ✗ ✞✡✠
✞
✌ ✞

✆ ✟ ✙ �
✄

✂ ✢✁� ✝
✄

✣ ✂ � ✄ ✑ ✧ �☞ ✢ �✆☎ ✆ ✝ ✏ ✚ (2.33)
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Chapter 3

Numerical method and the

flow domain

3.1 The solver CALC-BFC

Computations were carried out using a finite volume computer code,

CALC-BFC (Boundary Fitted Coordinates) by Davidson and Farhanieh

[2]. CALC-BFC is written for two or three dimensional, steady/unsteady,

turbulent/laminar recirculating flows. The code uses collocated vari-

able arrangement and Cartesian velocity components on a general non-

orthogonal Boundary Fitted Coordinate system for prediction of mass,

heat, and momentum transfer. Various differencing schemes are avail-

able to approximate the convective fluxes: Central, Hybrid central up-

wind differencing, the QUICK scheme or the van-Leer scheme. The

TDMA (Tri-Diagonal Matrix Algorithm) is then adapted to solve the de-

scritised equations.

3.2 The flow domain

The flow domain as shown in Figure
✢ ✘ ✛ has a trailing-edge plate of

thickness, � = 1 and length, � ✗ ✎ . The height of the ✁✄✂ ✂✆☎✞✝ on either side
of the trailing-edge plate is 8 units. The geometry is as specified by Yao

et al [11] and they have further studied domain dependency and con-

cluded that the 2D computational box as in Figure
✢ ✘ ✛ is large enough

to study the flow phenomena.

3.3 The grid

A Low Reynolds Number mesh is generated with the near wall node

located at ✽ ✾✠✟ 1, and about 8-10 nodes within ✽ ✾✠✟ 10. As suggested
by Sohankar [7] in order to make sure that vortex-shedding behind the

trailing edge was independent of grid spacing, the following condition

11
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DNS inflow

DNS inflow
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✽
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Figure 3.1: Flow domain
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Figure 3.2: A fine mesh of
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grid points
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CHAPTER 3. NUMERICAL METHOD AND THE FLOW DOMAIN

was satisfied while generating the grid:

✁ ✼ ✟ ☛ ✘ ✗ ✚✁ ✽ ✟ ☛ ✘ ✗ ✚
where

✁ ✼ and ✁ ✽ are the streamwise and cross-streamwise grid spacing
respectively. As an example a fine mesh of

✢ ✛ ✗ ☛ ☛
grid points is shown

in Figure 3.2.

3.4 Numerical schemes

Time marching was carried out using Crank-Nikolson scheme. For the

convection and diffusion terms second-order central difference scheme

was applied. van-Leer scheme was also tried in order to investigate the

influence of numerical schemes on unsteady vortex shedding. For more

information on schemes please refer Versteegh and Malalasekera [9].

3.5 Boundary conditions

Inlet

Turbulence mean properties from the DNS provided by Yao et al [12] is

used at the inlet; the inflow boundary-layer thickness is 6.42 times the

trailing-edge thickness, close to typical turbine blade flow applications.

Other

The wall boundary conditions were already discussed in section 2.3.1.

For all other boundaries including the outlet Neumann boundary condi-

tion was used.

3.6 The TDMA solver

The TDMA (Tri-DiagonalMatrix Algorithm) is actually a formula for re-

cursive use of solvingmatrix equations using Gauss-elimination. CALC-

BFC employs a segregated TDMA solver which is discussed below for a

2D case with variable � . The finite volume discretisation gives a penta-
diagonal system in 2D. The 2D discretised equation is given by,✏✂✁ � ✁ ✗ ✏☎✄ � ✄ ✆ ✏☎✆ � ✆ ✆ ✏✞✝ � ✝ ✆ ✏✞✟ � ✟ ✆ ✏✡✠

(3.1)

Rewriting the above equation in the form,✏ ✑ � ✑✴✗ ✒ ✑ � ✑ ✾ ✂ ✆☞☛ ✑ � ✑✍✌ ✂ ✆☞✎ ✑ (3.2)

where, ✏ ✑✴✗ ✏✂✁ ✂ ✒ ✑ ✗ ✏✂✄ ✂ ☛ ✑ ✗ ✏✞✆ ✂ ✎ ✑ ✗ ✏✞✝ � ✝ ✆ ✏☎✟ � ✟ ✆ ✏✡✠
(3.3)

13
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Now we want to write 3.2 on the form,

� ✑ ✗ ✟ ✑ � ✑ ✾ ✂ ✆✁� ✑
(3.4)

In order to derive 3.4 we write 3.2 on matrix form as,✂✄✄✄
☎

✏
✝ ✁ ✒

✝
☛ ✆✝✆✝✆

✁ ☛ ✏ ✏ ✏ ✁ ✒ ✏ ✞ ✆✝✆✝✆☛ ✁ ☛ ✔ ✏ ✔ ✁ ✒ ✔ ☛ ✆✝✆✝✆
...

...
...

...
...

...

✟✡✠✠✠
☛

✂✄✄✄
☎
� ✝� ✏
� ✔
...

✟✡✠✠✠
☛ ✗

✂✄✄✄
☎
✎ ✝ ✆☞☛ ✝ � ✂

✎ ✏
✎ ✔
...

✟✡✠✠✠
☛

Divide first row by ✏
✝ ,✂✄✄✄

☎
✛ ✁ ✟

✝
☛ ✆✝✆✝✆

✁ ☛ ✏ ✏ ✏ ✁ ✒ ✏ ✞ ✆✝✆✝✆☛ ✁ ☛ ✔ ✏ ✔ ✁ ✒ ✔ ☛ ✆✝✆✝✆
...

...
...

...
...

...

✟✡✠✠✠
☛

✂✄✄✄
☎
� ✝� ✏
� ✔
...

✟✡✠✠✠
☛ ✗

✂✄✄✄
☎
� ✝✎ ✏
✎ ✔
...

✟✡✠✠✠
☛

where, ✟
✝

✗ ✒
✝✏

✝
✂ � ✝

✗ ✎ ✝ ✆ ☛ ✝ � ✂✏
✝

(3.5)

To eliminate ☛ in the second row, multiply first row by ☛ ✏ , add it to second
row and finally divide the entire second row by ✏ ✏ ✁ ☛ ✏ ✟

✝ to obtain,✂✄✄✄
☎

✛ ✁ ✟
✝

☛ ✆✝✆✝✆☛ ✛ ✁ ✟ ✏ ✞ ✆✝✆✝✆☛ ✁ ☛ ✔ ✏ ✔ ✁ ✒ ✔ ☛ ✆✝✆✝✆
...

...
...

...
...

...

✟✡✠✠✠
☛

✂✄✄✄
☎
� ✝� ✏
� ✔
...

✟✡✠✠✠
☛ ✗

✂✄✄✄
☎
� ✝� ✏
✎ ✔
...

✟✡✠✠✠
☛

where, ✟ ✏ ✗ ✒ ✏✏ ✏ ✁ ☛ ✏ ✟
✝

✂ � ✏ ✗ ✎ ✏ ✆ ☛ ✏ � ✝✏ ✏ ✁ ☛ ✏ ✟
✝

(3.6)

Now we see that 3.6 becomes a recursive equation for
✟ ✑
and � ✑

of the

form, ✟ ✑ ✗ ✒ ✑✏ ✑ ✁ ☛ ✑ ✟ ✑✍✌ ✂ ✂ � ✑ ✗ ✎ ✑ ✆ ☛ ✑ � ✑✍✌ ✂✏ ✑ ✁ ☛ ✑ ✟ ✑ ✌ ✂ (3.7)

3.4 is solved from ☞ ✗ ✢
to ☞ ✧ ✁✍✌ ✁ ✛ .
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Chapter 4

Implementation of

blockage

The trailing-edge plate forms the structural component in the flow do-

main. For the computation we have used single-block version of CALC-

BFC. Therefore in order to implement this solid material in the nu-

merical domain we have made some changes to the code. This chapter

explains the ✁✁�✄✂ ✂✆☎☎� ☎ ✂ ✝✝✆ ✝ ✁✟✞ ✂ and ✠✡✆ ✂ ✁☞☛✌✆ ✝ ✁☞✞ ✂ of the blockage.

4.1 Implementation

The dependent variables (
✍✏✎✟✑
) are set to zero

The first step is to set all the dependent variables (
� � ✍ ) i.e., ✒ ✂ ✠ ✂ ✂✓✂ ✂✕✔ ✂ ✄

to zero for each node inside the blocked domain. This is implemented as

follows:

Set,

� ✕ ☞ ✂✗✖ ✂ � ✜ ✗✘☛ ✘ ☛✏ ✤ ✕ ☞ ✂✗✖ ✂ � ✜ ✗✘☛ ✘ ☛✏ ✟ ✕ ☞ ✂✗✖ ✂ � ✜ ✗ ✁ ✛ ☛ ✝✙✘

Thereby in the descritised equation the value of
�
at each blocked node

yields,

� ✁ ✗✛✚ ✏☎✝✢✜ � ✝✢✜ ✆ ✏ ✤
✚ ✏✞✝✣✜ ✁ ✏ ✟ ✤ ☛ (4.1)

where, ✏✞✝✢✜ are the co-efficients ✏ ✝ ✂✑✏✞✟ ✂✑✏✞✆ and ✏☎✄ .
15
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�

�

�

Blockage

C

✟ ✕ ☞ ✂✗✖ ✆ ✗ ✂ � ✜
✟ ✕ ☞ ✂✗✖ ✆ ✛ ✂ � ✜
✟ ✕ ☞ ✂✗✖ ✂ � ✜

Inlet

✼

✽
Wall boundary

Figure 4.1:

Extrapolate pressure

In collocated grid arrangement we employ Rhie-Chow interpolation to

eliminate pressure oscillations. Since Rhie-Chow uses nodes in the

blockage, pressure is extrapolated for all the cells along the blocked sur-

face in the appropriate direction . Here is an example for the cell along

the north boundary face of the blockage.

By extrapolation the pressure at node ✕ ☞ ✂✗✖ ✂ � ✜ in Figure ☞ ✘ ✛ is fixed as
follows,

✟ ✕ ☞ ✂✗✖ ✂ � ✜ ✗✘✗✂✁ ✟ ✕ ☞ ✂✗✖ ✆ ✛ ✂ � ✜ ✁ ✟ ✕ ☞ ✂✗✖ ✆ ✗ ✂ � ✜ (4.2)

Similarly for cells along the east face of the blockage is extrapolated in✼ direction.

Set the convections to zero

Set the convections through all the faces i,e., north,south,east and west

faces of each cell inside the blocked domain to zero.

Modify the weight functions

As we see in Figure
☞ ✘ ✗ the wall boundary of the trailing-edge plate

coincides with the grid lines. Do notice that there are no nodes on the

wall! Therefore to fix the wall-boundary condition we need to fix the � ✙
and � ✸

equal to zero i.e., in Figure
☞ ✘ ✗ ,

✄ ✆✆☎✝☎✟✞✡✠☞☛✡✞✡✠✡✆✍✌✏✎✒✑✓✠ ✞✡✠ ✠✕✔✑✠ ✠ ✞ ✗✗✖ � ✙ ✕ ✖ ✆ ✛ ✜ ✗✘☛✙✘ � ✙ ✕ ✖ ✁ ✛ ✜ ✗✘☛✙✘ � ✸ ✕ ☞✮✜ ✗ ☛
16
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�

�

�

�

� �

C

� ✙✎✕ ✖ ✆ ✛ ✜

� ✙ ✕ ✖ ✁ ✛ ✜

✖ ✆ ✛
✖

✖ ✁ ✛
✖ ✁ ✗ ☞ ✁ ✛ ☞

� ✸ ✕ ☞✮✜

Figure 4.2:

The easiest way to implement this is by modifying the weight functions

✠ ✌
and ✠✂✁ . Let’s illustrate how it is done.

We know that,

� ✙ ✕ ✖ ✆ ✛ ✜ ✗ ✠ ✁ ✕ ✖ ✜ � ✕ ✖ ✆ ✛ ✜ ✆ ✕ ✛ ✁ ✠ ✁ ✕ ✖ ✜✣✜ � ✕ ✖ ✜ (4.3)� ✙✎✕ ✖ ✁ ✛ ✜ ✗ ✠✂✁ ✕ ✖ ✁ ✗ ✜ � ✕ ✖ ✁ ✛ ✜ ✆ ✕ ✛ ✁ ✠✂✁ ✕ ✖ ✁ ✗ ✜✣✜ � ✕ ✖ ✁ ✗ ✜ (4.4)� ✸ ✕ ☞✮✜ ✗ ✠ ✌ ✕ ☞ ✁ ✛ ✜ � ✕ ☞✮✜ ✆ ✕ ✛ ✁ ✠ ✌ ✕ ☞ ✁ ✛ ✜✣✜ � ✕ ☞ ✁ ✛ ✜ (4.5)

Now all we have to do is fix,

✠ ✁ ✕ ✖ ✜ ✗ ☛
✠ ✁ ✕ ✖ ✁ ✗ ✜ ✗ ✛

✠ ✌ ✕ ☞ ✁ ✛ ✜ ✗ ☛
Since all the dependent variables inside the blockage are already set to

zero,
☞ ✘ ✢ ✂ ☞ ✘ ☞ ✂ ☞ ✘ ✎ becomes, � ✙ ✕ ✖ ✆ ✛ ✜ ✗ � ✕ ✖ ✜☎✄ ☛

(4.6)� ✙ ✕ ✖ ✁ ✛ ✜ ✗ � ✕ ✖ ✁ ✛ ✜☎✄ ☛
(4.7)� ✸ ✕ ☞✮✜ ✗ � ✕ ☞ ✁ ✛ ✜☎✄ ☛
(4.8)

Also one should note that by modifying the weight functions even the

gradients
✁ � ✢ ✁ ✽ , ✁ � ✢ ✁ ✼ and so on are computed correctly.

Force ✆✞✝✠✟✡✆ inside the blockage

Set the eddy-viscosity, ✝ ✞ equal to kinematic viscosity, ✝ for each node
inside the blocked domain.
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✏ ✟ ✕ ✖ ✆ ✛ ✜

✏✞✝ ✕ ✖ ✁ ✗ ✜

✖ ✆ ✛
✖

✖ ✁ ✛
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☞ ✁ ✛ ☞
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Figure 4.3:

Modify the coefficients ✁✄✂✆☎✝✁✄✞ and ✁✠✟

The coefficients ✏ ✝ ✂✑✏☎✟ and ✏✞✆ for the near wall nodes have to be rede-
fined each time after it is computed such that the new value is twice

that of computed value. We will see below why and how it is modified.

The coefficient ✏ ✟ ✕ ✖ ✆ ✛ ✜ (see Figure ☞ ✘ ✢ ) is computed as follows,✏☎✟ ✕ ✖ ✆ ✛ ✜ ✗☛✡ ✙✌☞✎✍ ☞ ✏ ✙☎ ✽ ✙ (4.9)

Where ✡ is the diffusion co-efficient. We can see from the Figure that
the distance between the near wall node ✕ ✖ ✆ ✛ ✜ and the wall is ☎ ✽ ✙ ✢ ✗ .
Therefore we should evaluate the coefficient only over this distance.

which implies, ✏☎✟ ✕ ✖ ✆ ✛ ✜ ✗ ✡ ✙✌☞✎✍ ☞ ✏ ✙☎ ✽ ✙ ✢ ✗ (4.10)

Therefore fix, ✏✞✟ ✕ ✖ ✆ ✛ ✜ ✗✘✗ ✏✞✟ ✕ ✖ ✆ ✛ ✜ (4.11)
✏ ✠ ✞ ✠ ☎ ✆✍✌ ☎✕✎ ✂✓✏☎✝ ✕ ✖ ✁ ✗ ✜ ✗✘✗ ✏✞✝ ✕ ✖ ✁ ✗ ✜ (4.12)✏✞✆ ✕ ☞✮✜ ✗✘✗ ✏☎✆ ✕ ☞✮✜ (4.13)

4.2 Validation

The implimented code is tested for the precision and functionality. Steady

channel flow simulations were computed on different geometries and

turbulence models.

In Figure
☞ ✘ ☞
(a), if we block half the domain then the resulting flow

domain is exactly same as that in Figure
☞ ✘ ☞
(b). With the same inlet

18
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Inlet

Blockage

✚

✚

(a)

✚
Inlet

(b)

Figure 4.4: Test 1

boundary condition channel flow is simulated in both the geometries

and compared against each other. Two turbulence models, a LRN � ✁✁�
model suggested by Wilcox [10] and a LRN � ✁ ✄ model (AKN) were
tested on this geometry.

Inlet

Inlet

Blockage

✚

✚

Figure 4.5: Test 2

Channel flow is also simulated in the above geometry (see Figure
☞ ✘ ✎ )

with two inlets above and below the blockage. Here also LRN � ✁ ✄
model (AKN) was used.
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Chapter 5

Results and discussion

5.1 Grid refinement study

The unsteady RANS calculations were carried out with several differ-

ent grid resolutions. The Table below illustrates the parameters for the

three cases tested. The near-wall grid resolution is characterized by

the number of points across the trailing-edge end (
�✂✁ ✄ ), the number of

points in the sublayer region ✽ ✾ ✟ 10 ( � ✟☎✄✝✆ ) and the distance of the first
point from the solid wall in wall units ( ✽ ✾✂ ). The streamwise grid resolu-
tion,

✁ ✼ ✾ ✕ ✗ ✱ ✳ ✁ ✼ ✢ ✝ ✜ , is calculated in wall units for the boundary-layer.
The streamwise grid size,

✁ ✼ ✆ ✄ and ✁ ✼ ✸✂✁ ✠ ✥ , in both boundary-layer and
wake regions are also shown in the table.

Case Nodes
�✞✁ ✄ � ✟✟✄✝✆ ✽ ✾✂ ✁ ✼ ✾✆ ✄ ✁ ✼ ✆ ✄ ✁ ✼ ✸ ✁ ✠ ✥✛ ✛ ✎ ✢ ☛ ☛ ✎ ☛ ✠ ☛ ✘ ☞ ✄ ☞ ✘ ✢ ✁ ✗ ✢ ✘ ✗ ☛ ✘ ☛ ✄ ✁ ☛ ✘ ☞ ☛ ✘ ☛ ✎ ✁ ☛ ✘ ✎✗ ✢ ✛ ✗ ☛ ☛ ✎ ☛ ✥ ☛ ✘ ✎ ✛ ✗ ✘ ✗ ✁ ✛ ✢ ✘ ✗ ☛ ✘ ☛ ☞ ✁ ☛ ✘ ✗ ☛ ✘ ☛ ✢ ✁ ☛ ✘ ✗✢ ☞ ✢ ☛ ☛ ☛ ✎ ☛ ✛ ✛ ☛ ✘ ☞ ☛ ✗ ✘ ✛ ✁ ✛ ✢ ✘ ☛ ☛ ✘ ☛ ✢ ✁ ☛ ✘ ✗ ☛ ✘ ☛ ✢ ✁ ☛ ✘ ✛ ✥

All the three test cases were computed using � ✁ ✄ model (AKN) with
realizability constraint. Figure ✎ ✘ ✛ shows the streamwise mean velocity✤ variations along the centerline of the trailing-edge. The mean velocity
changes from coarse grid (case 1) to finer grid (case 2) and collapses with

the finest grid (cases 3), indicating that the simulation with a grid of✛ ✎ ✢ ✁ ✗ ☛ ☛
(case 2) gives a good resolution of the flow. The time step,

✁ ✖
,

was also refined in order to confirm that the solution was independent

of time step resolution.
✁ ✖ ✗ ☛ ✘ ☛ ☞ ✄

was found appropriate for all the

computations.

5.2 Vortex shedding

Figure 5.2(a) and 5.2(b) shows instantaneous pressure (
✟
) and trans-

verse (
�
) velocity contours from � ✁ ✄ model (AKN) with realizability
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Figure 5.1: Grid refinement study

constraint, indicating clearly the oscillating shedding behaviour. To in-

vestigate the flow unsteadiness associated with vortex shedding in de-

tail, we determine the shedding frequency using lift and pressure drag

coefficients defined as,

�✂✁ ✤ ✛✂
✝ ✺ ✤ ✝✥ ☞

�✂✁
✕ ✟ ✄ ✁ ✟ ✄ ✜ ✎ ✍ ✤ ✛✂

✝ ✺ ✤ ✝✥
�
� ✘✌☎✄ ✕ ✟ ✄ ✁ ✟ ✄ ✜ ✎ ✼ (5.1)

� ✄ ✤ ✛✂
✝ ✺ ✤ ✝✥ ☞

�✆✁ ✟ ✎ ✍ ✤ ✛✂
✝ ✺ ✤ ✝✥ ✚

� ✾ ✘✞✝ ✄✌
✘✞✝ ✄ ✟ ✎ ✼ (5.2)

where ✺ and ✤ ✥ are the freestream density and velocity respectively.
✕ ✟ ✄ ✁ ✟ ✄ ✜ indicates the difference of pressure between the lower and
upper plates. For the lift coefficient, the integral is performed over the

plate horizontal length of
� ✗ ✎ . This truncation of the semi-infinite

domain to 5 is not considered serious for interpreting the shedding be-

haviour. For the pressure drag coefficient, the integral is performed over

the plate height of ✚ ✗ ✛ .
As an example, Figure 5.2(c) and 5.2(d) shows the time history of the�✂✁
and

�☎✄
computed from � ✁☞✄ model (AKN). It should be noted that
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Figure 5.2: Vortex shedding behaviour by � ✁ ✄ model (AKN): (a,b) in-
stantaneous pressure (

✟
) and

�
-velocity contours ; (c,d) time history of�✂✁

and
�☎✄
; (e,f) power spectrum of

� ✁
and

� ✄
respectively, showing

peaks at a Strouhal number St(= ✠ ✙ ✚✒✢✝✤ ✥ ) ✗ 0.104
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(see Figure 5.2(c)) � ✁ ✄ model (AKN) fails to capture unsteady vortex
shedding. Only when used with realizability constraint or

✟✪✠
limiter,

the model starts exhibiting unsteady behaviour. A precise estimation

of shedding frequency, ✠ ✙ , was obtained from the spectral analysis of�✂✁
and

�☎✄
. The power spectrum of

� ✁
and

�☎✄
(see Figure 5.2(e) and

5.2(f)) gives the main shedding frequency, ✠ ✙ . The Strouhal number, St
= ✠ ✙ ✚ ✢✝✤ ✥ , was found to be very close to the DNS value. The Table be-
low illustrates the vortex shedding parameters predicted by different

turbulence models.

Model
✏✞✖ � ✁ ✆ � ✄ ✆

� ✁ ✄ model (AKN) with realizability constraint ☛ ✘ ✛ ☛ ☞ ☛ ✘ ✗☎✠ ✗ ☛ ✘ ✠ ✢ ✗
�☎✁ ✄ model (AKN) with ✟ ✠ limiter ☛ ✘ ✛ ☛ ☞ ☛ ✘ ✛ ✎ ✄ ☛ ✘ ✎ ☛ ✄

✆ ✝ ✁ ✠ model with realizability constraint ☛ ✘ ✛ ☛ ☞ ☛ ✘ ✗ ✥ ✢ ☛ ✘ ✥ ✎ ✥
DNS by Yao et al [11]

☛ ✘ ✛ ✛ ✎ N/A N/A

5.3 Velocity profiles and streamlines

Figure 5.3(a) shows the mean streamwise velocity,
✛ ✤ ✜ contours. Figure

5.3(b), 5.3(c) and 5.3(d) shows the recirculation bubble forming down-

stream the trailing-edge. The bubble predicted by URANS (all three

cases) has a similar shape and length close to that of DNS [11]. To

investigate the bubble formation, streamlines were plotted at different

instances in time in one period (
✌
=8.883 seconds). Figure 5.4 illustrates

the separation bubble positions at different instances in time (
✖
).

To study the performance of models, mean streamwise velocity,
✛ ✤ ✜ ,

from all the three cases were plotted along the centreline (see Figure

5.5). Both ✆ ✝ ✁ ✠ model with realizability constraint and �☛✁ ✄ model
(AKN) with realizability constraint give similar results downstream but

vary in the near wake. Figure 5.6(a) shows the streamwise mean veloc-

ity profiles in the wall normal direction at seven streamwise locations

(first two in the boundary layer, next two in the near wake and the rest

downstream).

5.4 Resolved and modelled quantities

5.4.1 Resolved and modelled turbulent kinetic energy

Figure 5.7(a) and 5.7(b) shows the time-averaged resolved and modelled

turbulent kinetic energy contours as predicted by � ✁ ✄ model (AKN)
with realizability constraint. As seen in Figure 5.7(a), a strange contour

appears at the outlet, indicating the existance of oscillating shedding

behaviour at the outlet. On such occasions convective outlet boundary

condition is more realistic than the one we used (Neumann boundary
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Figure 5.3: Steamwise mean velocity contour,
✛ ✤ ✜
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Figure 5.4: Instantaneous streamlines showing separation bubbles at

different instances in one period,
✌
(=8.883 seconds). The streamlines

are as predicted by � ✁ ✄ model (AKN) with realizability constraint
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Figure 5.5: Steamwise mean velocity along the centreline

condition). It should be noted that if the vortex shedding dies within

the computational box then the use of Neumann boundary condition is

appropriate.

To study the extent at which modelled ( � ✧✪✩✬✫ ✥ ✄ ✄ ✥ ✫ ) and resolved ( � ✭ ✥✮✙ ✩ ✄ ✎ ✥ ✫ )
kinetic energies affect the total turbulence kinetic energy ( � ✞ ✩ ✞ ✁☎✄ ), Figure
5.7(c), 5.7(d) and 5.7(e) are plotted for all the three models. In the real-

izable models, both �✝✧✂✩✬✫ ✥ ✄✆✄ ✥ ✫ and � ✭ ✥✮✙ ✩ ✄ ✎ ✥ ✫ contributes towards the � ✞ ✩ ✞ ✁ ✄ ,
while with the

✟ ✠
limiter, modelled turbulent kinetic energy dominates.

Figure 5.7(f) illustrates the modelled kinetic energy variations in the

wall normal direction at seven streamwise locations.

5.4.2 Dissipation

Figure 5.8 shows the modelled dissipation ( ✄ ) contour predicted by � ✁ ✄
model (AKN) with realizability constraint. To investigate the model per-

formance, energy dissipation is plotted along the centreline for all the

three models (see Figure 5.9). Figure 5.10 illustrates ✄ profiles in the
wall normal direction at seven streamwise locations. When compared

with the DNS [11] value, only ✆ ✝ ✁ ✠ model gives better results in the
near wake. It was also found that all the three models show good agree-

ment with DNS in the boundary layer and far downstream.
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Figure 5.6: Streamwise mean velocity profiles in the wall normal direc-

tion at seven streamwise locations ( ✼ = -3, -1, 0.5, 3, 5, 10, 14). Note
that, for clarity, profiles at successive ✼ -locations have been shifted to
the right by 0.1
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Figure 5.7: (a,b) resolved and modelled kinetic energy contours from

�☛✁ ✄ model (AKN) with realizability constraint; (c,d,e) comparison of
modelled, resolved and total kinetic energy; (f) modelled kinetic energy

profiles in the wall normal direction at seven streamwise locations ( ✼
= -3, -1, 0.5, 3, 5, 10, 14). Profiles at successive ✼ -locations have been
shifted to the right by 0.025. The legend is as per Figure 5.6(a).

29



Unsteady-RANS Simulation of Turbulent Trailing-Edge Flow

-5 0 5 10 15

-5

0

5

✽

✼

Figure 5.8: Energy dissipation contour from � ✁ ✄ model (AKN) with
realizability constraint
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Figure 5.9: Energy dissipation profiles along the centreline for three

different cases
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Figure 5.10: Energy dissipation profiles in the wall normal direction

at seven streamwise locations ( ✼ = -3, -1, 0.5, 3, 5, 10, 14). Profiles at
successive ✼ -locations have been shifted to the right by 0.01. The legend
is as per Figure 5.9.

5.4.3 Resolved and modelled stresses

Figure 5.11(a) and 5.11(b) show the resolved normal stresses, ✱ ✝ and ✆ ✝
as predicted by �☎✁ ✄ (AKN) model with realizability constraint. ✱ ✝ and
✆ ✝ profiles are also plotted in the wall normal direction at seven stream-
wise locations (see Figure 5.11(c), 5.11(d)). The variation of ✱ ✆ ✭ ✥✬✙ ✩ ✄ ✎ ✥ ✫
and ✱ ✆ ✧✪✩✬✫ ✥ ✄ ✄ ✥ ✫ in the wall normal direction at seven streamwise loca-
tions is also shown in Figure 5.11(e) and 5.11(f)

5.5 Influence of discretizing scheme

In the previous sections we have investigated various turbulence mod-

els and their subsequent effect on unsteady vortex shedding. A simi-

lar investigation was carried out to study the influence of discretizing

schemes on unsteady vortex shedding. In this section we have used

van-Leer scheme instead of central difference scheme for convection-

diffusion terms. Figure 5.12(a) and 5.12(b) shows the time history of
� ✁

and power spectrum of
� ✁
respectively. It should be noted that both the

schemes have predicted the same Strouhal number (
✏ ✖ ✗ ☛ ✘ ✛ ☛ ☞

).

As we know that van-Leer scheme is bounded and dissipative in nature,

we expected the van-Leer scheme to produce lower RMS lift and drag
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Figure 5.11: (a,b) resolved normal stress contours from � ✁ ✄ model
(AKN) with realizability constraint; (c,d,e,f) profiles in the wall normal

direction at seven streamwise locations ( ✼ = -3, -1, 0.5, 3, 5, 10, 14).
Profiles at successive ✼ -locations have been shifted to the right by 0.01.
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coefficients (
� ✁✝✆
and

� ✄✞✆
) and consequently producing lower resolved ki-

netic energy compared to central difference scheme. The Table below il-

lustrates the vortex shedding parameters predicted by both the schemes

with the same turbulence model ( � ✁☞✄ model (AKN) with realizability
constraint).

Discretizing Scheme
✏ ✖ � ✁ ✆ � ✄ ✆

Central Difference
☛ ✘ ✛ ☛ ☞ ☛ ✘ ✗☎✠ ✗ ☛ ✘ ✠ ✢ ✗

van-Leer
☛ ✘ ✛ ☛ ☞ ☛ ✘ ☛✟✠ ✥ ☛ ✘ ✠ ✢ ✎

It should be noted from the table that van-Leer scheme predicts a higher

value of
� ✄✞✆

compared to central difference scheme. Also if we look

into the Figure 5.12(c) and 5.12(d), we can see that van-Leer scheme

produces higher resolved kinetic energy compared to central difference

scheme; the reason for which is not clear and has to be investigated.

Figure 5.12(e) and 5.12(f) illustrates the mean stream velocity and en-

ergy dissipation variations along the centreline for both the schemes.
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(d) van-Leer scheme
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Figure 5.12: Comparison of central difference scheme and van-Leer

scheme by using � ✁ ✄ model (AKN) with realizability constraint: (b)
power spectrum of

�☎✁
, showing peaks at a Strouhal number St(= ✠ ✙ ✚ ✢✝✤ ✥ )✗

0.104; (c,d) comparison of modelled, resolved and total kinetic energy;

(e,f) streamwise mean velocity and energy dissipation along the centre-

line.
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Chapter 6

Conclusions

The LRN � ✁ ✄ model by AKN [1] fails to capture unsteady vortex shed-
ding.

Flow unsteadyness was produced by both LRN � ✁ ✄ model (with re-
alizability constraint or

✟ ✠
limiter) and Realizable ✆ ✝ ✁ ✠ model.

Strouhal number (St) was found very close to the DNS value, irrespec-

tive of the turbulence model and discretizing scheme employed.

Separation bubble size from URANS was found close to the DNS bubble

size, indicating good prediction of reverse flow.

Streamwise mean velocity and total kinetic energy values come closer

to DNS.

The unsteady turbulence is found to be of comparable importance to

the modelled turbulence in the near wake, especially when the models

use realizability constraint.

The overall performance of LRN � ✁ ✄ model (with realizability con-
straint) and realizable ✆ ✝ ✁ ✠ model is better compared to � ✁☞✄ model
(with

✟✞✠
limiter).

It was found that van-Leer scheme (bounded and dissipative in nature)

produces higher resolved kinetic energy compared to central difference

scheme; the reason for which is not clear and has to be investigated.
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Chapter 7

Future Work

Studying the effect of convective outlet boundary condition instead of

Neumann boundary condition at the outlet.

Increasing the domain size streamwise, to investigate if the solution

is sensitive to the location of the outlet.

Performing a unsteady 3D computation to study the influence of 3D

effects.
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