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Unsteady boundary-layer development over moving walls in the limit of infinite
Reynolds number is investigated using both the Eulerian and Lagrangian formula-
tions. To illustrate general trends, two model problems are considered, namely the
translating and rotating circular cylinder and a vortex convected in a uniform flow
above an infinite flat plate. To enhance computational speed and accuracy for the
Lagrangian formulation, a remeshing algorithm is developed. The calculated results
show that unsteady separation is delayed with increasing wall speed and is eventually
suppressed when the speed of the separation singularity approaches that of the local
mainstream velocity. This suppression is also described analytically. Only ‘upstream-
slipping’ separation is found to occur in the model problems. The changes in the
topological features of the flow just prior to the separation that occur with increasing
wall speed are discussed.

1. Introduction

Unsteady boundary-layer flow separation at high Reynolds numbers occurs in an
extensive number of flow configurations (Van Dommelen 1981; Cowley, Van Dom-
melen & Lam 1990; Doligalski, Smith & Walker 1994). Examples of such phenomena
occur in (i) flow past surface-mounted obstacles, such as wing–body junctions, (ii) flow
on the suction side of a thin airfoil aligned at an angle of attack to the mainstream, (iii)
vortex interactions with surfaces, such as tip vortex impingement on the tail/fuselage
of aircraft and wake–rotor interactions in turbines, (iv) impulsive motion of bluff
bodies and (v) flow in internal passages with obstructions. At smaller scales, unsteady
separation is also believed to be the mechanism whereby new turbulence is generated
within a turbulent boundary layer (Smith et al. 1991; Smith & Walker 1995). In some
of the above examples, unsteady separation occurs in a complex three-dimensional
environment and may involve associated phenomena such as turbulence and com-
pressibility. However, the basic mechanism of unsteady separation at high Reynolds
numbers is believed to be similar in most such flows (Van Dommelen & Cowley
1990; Cowley et al. 1990). In many circumstances, a recirculation zone develops in
the boundary layer within a region of local adverse streamwise pressure gradient, and
this event heralds a subsequent chain of occurrences leading to unsteady separation of
the boundary layer from the surface. Eventually, a narrow region with sharp stream-
wise gradients and strong upwelling develops upstream of the recirculation zone; this
region rapidly thins in the streamwise direction with time and ultimately provokes
a viscous–inviscid interaction, wherein a narrow plume containing significant levels
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of vorticity is ejected from within the boundary layer into the external mainstream
inviscid flow (Cowley et al. 1990; Smith et al. 1991; Doligalski et al. 1994).

The problem of laminar boundary-layer separation at high Reynolds number Re
has traditionally been approached as being zonal in nature involving an interaction
between an external region and a thin boundary layer adjacent to the body surface. In
the classical interactive strategy (reviewed by Smith 1982, for example), the external
inviscid flow is calculated first and the resulting pressure distribution near the body
is prescribed in order to evaluate the boundary-layer flow. For steady flow past fixed
walls, ‘separation’ was classically defined as being associated with the development
of reversed flow and the location where the wall shear stress vanishes; however,
a Goldstein singularity structure occurs in the solution of the steady boundary-
layer equations at such points in situations where the pressure gradient is adverse
and prescribed. For certain steady boundary-layer flows past fixed walls, a self-
consistent asymptotic structure can be constructed using interactive concepts (see,
for example, Smith 1982); this physical description normally involves a multi-layer
structure (often containing regions of reversed flow) and an external mainstream
flow that is displaced an o(1) distance from the wall (in the limit Re → ∞) via
a localized viscous–inviscid interaction. On the other hand, for unsteady flows and
steady flow past moving walls, the situation is more complicated and Moore (1958),
Rott (1957) and Sears (1956) concluded independently that vanishing wall shear and
reversed flow were not a necessarily meaningful (and certainly not general) criteria
for flow separation. Subsequently, Sears & Telionis (1975) postulated the MRS model
of unsteady separation, in which ‘separation’ was defined as that instant when a
singularity evolves in the solution of the boundary-layer equations. In physical terms,
this breakdown of the boundary-layer solution indicates the first instant when a
hitherto thin and passive shear layer adjacent to the wall starts to interact with
external flow and thereby separate from the surface. In motion which is impulsively
started from rest, the boundary layer on a body is initially thin and passively driven
by the pressure distribution impressed by the external potential flow; this situation
generally does not persist, particularly when strong local outflows develop, and if the
pressure gradient is prescribed for an indefinite period of time, the boundary-layer
solution responds by developing a singularity. This irregular behaviour signals the
onset of an interaction with the external flow and indicates the need to consider a
more complex subset of the Navier–Stokes equations in order to describe locally the
developing boundary-layer eruption.

Sears & Telionis (1975) argued that separation would generally occur at a stream-
wise location xs somewhere in the middle of the boundary where two MRS conditions
are satisfied, namely (i) MRS I – the streamwise velocity vanishes in a frame of refer-
ence moving with the separation (i.e. the local particle velocity u), and (ii) MRS II –
the vorticity ω = −∂u/∂y vanishes at x = xs. As discussed by Sears & Telionis (1975),
the evolution of a singularity in the boundary-layer solution (Re → ∞) delineates a
definite time and location where the boundary layer separates from the surface and
consequently is an important diagnostic tool for unsteady flows at finite Re. According
to the MRS model, separation must eventually occur somewhere along a line of zero
vorticity; such lines are often associated with the prior development of recirculation
as a consequence of viscous effects operating in regions of adverse pressure gradient
within the boundary layer. A clear discussion of the separation process and the sig-
nificance of the zero vorticity line (ω = 0) has been given by Van Dommelen (1991),
and some central points are repeated here. At times and locations close to separation,
the boundary-layer flow develops strong local vertical currents and thickens rapidly;
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(a) (b)

Figure 1. Streamwise velocity profile at separation: (a) upstream-slipping separation
(downstream-moving wall) and (b) downstream-slipping separation (upstream-moving wall).

the motion in the upper portion of the boundary layer is effectively inviscid and the
streamwise momentum equation for the particle velocities u becomes arbitrarily close
to the unsteady one-dimensional Burgers’ equation ∂u/∂t+u∂u/∂x = 0 along the zero
vorticity line; in Lagrangian coordinates, this equation implies that the streamwise
velocity of fluid particles is conserved on the line ω = 0. However, vorticity remains
constant at a particle embedded in an inviscid flow and therefore the line ω = 0 is
also a material line. It follows that, in a situation where the values of the particle
velocities u are different on the line ω = 0 at some instant prior to separation, a
process of compression must occur in which adjacent fluid particles approach each
other arbitrarily closely in a finite time. This process leads to the severe normal
growth (away from the wall) of a particular fluid particle at the instant of separation
(see also Cowley et al. 1990).

In any experiment or calculation, it is relatively easy to identify lines of zero
vorticity, and since the location of ω = 0 is invariant to a Galilean transformation,
the particular reference frame of the observer is not at issue (in contrast to the
first MRS condition). As discussed by Williams (1977) and Van Dommelen (1981),
MRS I is less useful in establishing the location of separation since the speed of the
separation structure is not known a priori; moreover, it is essentially impossible to
evaluate us in a conventional Eulerian formulation. In any event, Sears & Telionis
(1975) identified two possible situations for which the streamwise velocity profiles
are sketched in figure 1. In both cases the external mainstream velocity is from left
to right and the velocity profile at separation is sketched in a frame of reference
moving with the separation (i.e. the local flow speed at a location where ω = 0). As
shown in figure 1 there are two possibilities which were described as the ‘downstream-
moving’ and ‘upstream-moving’ wall respectively; in this terminology, the phenomena
are categorized according to the motion of the wall relative to that of the separation
structure. Another similar terminology has also been introduced (Williams 1977; Van
Dommelen 1981) which will be used throughout the present paper. Each case is
described in terms of the relative motion of the separation singularity relative to the
wall; in this nomenclature the situations in figures 1(a) and 1(b) are referred to as
‘upstream-slipping’ and ‘downstream-slipping’ separation, respectively. In principle,
both cases are possible.

Sears & Telionis (1975) also proposed that the unsteady separation singularity
would be similar to the Goldstein singularity. A number of numerical studies were
conducted (see, for example, Tsahalis 1977; Telionis, Tshalis & Werle 1973; and
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Telionis & Werle 1973) to validate the MRS-criterion of flow separation. However,
the calculations encountered convergence difficulties when severe variations developed
in the flow field and none of the computational schemes were able to advance the
computations up to the point of occurrence of the MRS condition. Subsequently,
a major advance was made by Van Dommelen (1981) and Van Dommelen & Shen
(1980, 1982), who recast the boundary-layer equations in a Lagrangian coordinate
system; in this manner an unambiguous criterion for the location and occurrence of
the unsteady separation singularity was eventually established.

Van Dommelen & Shen (1980, 1982) carried out numerical solutions in the La-
grangian formulation for the boundary layer on an impulsively started circular
cylinder; they established that a separation singularity occurs at ts = 1.5 (in dimen-
sionless time) and at xs = 1.94, where x is dimensionless arclength measured along the
cylinder from the front stagnation point. Here the non-dimensionalizations are based
on the radius and translational speed of the cylinder. It was found that the MRS
conditions were satisfied at separation which was determined to be of the upstream-
slipping type. The analytical structure of this type of separation was considered by
Van Dommelen & Shen (1982) and Elliott, Smith & Cowley (1983) and found to be
substantially different from the Goldstein singularity. In the unsteady structure, the
boundary layer bifurcates into two shear layers on either side of separation, with one
shear layer remaining adjacent to the wall and the other growing rapidly away from
the surface; the shear layers bound an inviscid region where the vorticity is almost
zero. The separation process is driven by the dynamics of the central inviscid region
where fluid particles are compressed along the zero vorticity line and grow explosively
in a direction normal to the surface as t → ts. The analysis of Elliott et al. (1983)
suggests that the asymptotic structure for upstream-slipping separation is generic
in two-dimensional flows, and a similar behaviour was subsequently found (using a
Lagrangian formulation) in problems relating to separation on a rotating and trans-
lating cylinder at moderate rotation speeds (Shen & Wu 1990) and in vortex-induced
separation (Peridier, Smith & Walker 1991).

To date, numerical solutions have not been produced for a physical problem in
which it can be categorically stated that downstream-slipping separation occurs. It
should be emphasized that in order to definitively resolve such issues, it is necessary to
be able to complete a calculation through to ts, and at present Lagrangian calculations
are the only schemes which have been successful in this endeavour. Admittedly the
solution set and the number of physical problems treated by Lagrangian methods is
small as yet but, if cases of downstream-slipping do exist, it appears they may be
significantly rarer than upstream-slipping separation. In the vortex-induced separation
problem considered by Peridier et al. (1991), a profile at separation was obtained which
at first glance appeared similar to that in figure 1(b). However, on close examination
the separation profile was found to exhibit a local maximum near the wall, and the
growth of the boundary layer was found to be O(ts − t)−1/4, matching that of the
upstream-slipping singularity structure described by Van Dommelen & Shen (1982)
and Elliott et al. (1983). Nevertheless the downstream-slipping case has been of
historical interest (Williams 1977), as well as being controversial, and local analyses
have been carried out by Van Dommelen (1981) and Van Dommelen & Shen (1983)
in an effort to describe such a structure. In addition, sketches of the anticipated
streamline patterns expected near the singular structure have been given by Sears
& Telionis (1975) and subsequently modified by Van Dommelen (1981). At present
the case of upstream-slipping separation seems well verified, but as Williams (1977)
remarks, the nature of downstream-slipping separation is still unknown.
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The problem of a cylinder rotating in a uniform stream has been of historical
interest since the wall moves in the direction of the external flow as well as counter to
it on various portions of the cylinder. Thus some authors expected that both types of
separation might occur in this geometry. Koromilas & Telionis (1980) carried out flow
visualization studies for a rotating cylinder at low Reynolds number and observed flow
patterns near the upper and lower surface similar to those sketched by Sears & Telionis
(1975). The case of downstream-slipping separation is believed to be associated with
a saddle point in the instantaneous streamline patterns (Van Dommelen 1981) and
such behaviour was also noted in the boundary-layer calculations of Ece, Walker
& Doligalski (1984) for high-speed flow past a rotating cylinder; however, the latter
calculations were done using a spectral method in an Eulerian formulation and could
not be extended through to the formation of a singularity. Thus the issue of whether
downstream-slipping separation occurs in the rotating cylinder problem is not as yet
resolved.

In the present study, Lagrangian calculations were carried out for the impulsively
started translating and rotating cylinder for a range of rotation rates. For low to
moderate rotation rates, a singularity develops, but it is always of the upstream-
slipping type, and no cases of downstream-slipping separation were found. A second
important issue of interest here relates to the manner in which separation is suppressed
by a moving wall; here and throughout the paper, ‘unsteady separation’ refers to the
occurrence of a finite-time singularity in the boundary-layer solution. A moving
surface is known to act to inhibit the separation process (see, for example, Ece et al.
1984). However, the minimum wall speed required to achieve suppression is not
known, and here the process through which this occurs will be addressed through
consideration of two very different model problems. Interestingly, it will be shown
that elimination of upstream-slipping separation occurs through a similar process in
both cases as the wall speed is increased, suggesting a generic type of behaviour that
generally does not involve any cases of downstream-slipping separation.

The plan of the paper is as follows. The model problems are described in § 2,
while the governing equations and numerical methods are discussed in § 3 and § 4
respectively (see also Appendices A and B). Calculated results for the rotating cylinder
and vortex problems are given in § 5 and § 6, respectively, and an analytical account
of how the unsteady separation singularity is suppressed, at either a finite rotation
rate of the wall or finite vortex convection speed, is presented in Appendix C. Finally,
conclusions are drawn in § 7.

2. Model problems

Two main objectives of this study are to determine the minimum wall speeds
necessary to completely inhibit boundary-layer separation in the model problems and
to understand the changes in unsteady flow topology that occur with increasing wall
speed. The model problems consist of the unsteady boundary layer developing on: (i)
an impulsively started translating and rotating circular cylinder, and (ii) an infinite
plane wall, induced by a vortex convected in a uniform flow above the surface. In
the former problem the wall moves in the laboratory frame while in the latter case,
the wall appears to move in a frame of reference affixed to the vortex. Both examples
represent a family of problems involving a single parameter β that is proportional
to the dimensionless wall speed. Although the physical origins of these problems are
significantly different, separation is eventually suppressed at a critical value of β in a
manner which emerges to be essentially the same.



6 A. T. Degani, J. D. A. Walker and F. T. Smith

(a) (b)

Uo

a

¿
Uo

a

j

Figure 2. Geometry for the model problems: (a) rotating and translating cylinder
and (b) convected vortex above a wall.

Consider first the cylinder problem shown schematically in figure 2(a). The cylinder
has radius a and rotates in the counter-clockwise direction while the translational
speed is Uo. If all lengths and velocities are made dimensionless with respect to a and
Uo respectively, the external inviscid flow distribution and dimensionless wall speed
are given by

Ue(x) = 2 sin x, β = aΩ/Uo, (1)

respectively. Here x measures dimensionless arclength in the clockwise direction from
the front inviscid stagnation point. It is evident from equation (1) that an adverse
pressure gradient is impressed on the boundary layer in the first and fourth quadrants;
here quadrants of the plane are delineated with respect to a Cartesian coordinate
system defined by the downstream radius (x = π) and the vertical radius x = π/2.

The rotating cylinder problem has been the subject of a number of theoretical and
experimental studies. The case of very large rotation rates has been considered by
Glauert (1957) and Moore (1957), who assumed that β was large enough so that
separation was completely suppressed; the situation addressed by these authors is
relevant at large times after the initiation of the motion, since it was assumed that the
external flow had acquired a steady circulation at some previous stage (presumably
via a prior interaction with the developing boundary-layer flow on the cylinder). In
any event, a steady boundary-layer solution was found describing an attached flow
confined to a thin ring ensheathing the rapidly rotating cylinder. The solution is valid
in the limit β → ∞, but is expected to describe situations for large but finite values of
β; since the case β = 0 yields an inherently unsteady flow, it is expected that there is
some critical large value of β below which Glauert’s (1957) solution does not apply.
This type of question has been addressed in the work of Nikolayev (1982), Sychev
(1987), Lam (1988) and Chipman & Duck (1993) who studied, in effect, the minimum
value of β for which a steady periodic solution could be found. A careful numerical
study by Lam (1988) establishes this minimum value as β ≃ 3.906 for an external
flow containing circulation.

The rotating cylinder problem can be approached from another perspective by
considering the impulsively started case and attempting to track the evolution forward
in time, possibly through the viscous–inviscid interaction that ultimately produces
circulation in the external flow for large β. Ece et al. (1984) calculated the initial
development for the boundary layer on an impulsively started rotating and translating
cylinder for various values of β ranging from 0.05 to 10 using a Eulerian formulation.
Although it is not possible to continue a Eulerian calculation all the way to the
evolution of a separation singularity (Van Dommelen & Shen 1980, 1982), Ece et al.
(1984) were able to infer that unsteady separation is inhibited with increasing wall
speed and noted the evolution of streamline patterns similar to those proposed by
Sears & Telionis (1975) near the MRS point for both upstream- and downstream-
moving walls. Similar streamline patterns were also noted in the flow visualization
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studies of Koromilas & Telionis (1980) at a free-stream Reynolds number of 50. The
rotating cylinder problem has been of particular interest since, for the situation shown
in figure 2(a), the external velocity Ue and wall velocity β are in opposite directions
on the upper half of the cylinder and in the same direction on the lower half; thus
it is conceivable that both upstream- and downstream-moving wall separation are
possible for this problem. The streamline pattern conjectured by Sears & Telionis
(1975) for an upstream-moving wall was also observed in the computations of Ece
et al. (1984) at β = 2 and 10; however, at these values of β, the boundary layer was
observed to thicken gradually without the presence of sharp upflows that were seen
to start to develop for cases with β < 2. It appears that for β > 2, the thickening
boundary layer could ultimately give rise to a smooth interaction with the outer flow
in which the external region may possibly acquire circulation. Note that here our
reference to a thickening boundary layer does not imply the existence of a steady
limit.

For β < 2, the boundary-layer response appears to be much more localized and
abrupt. In a recent study, Shen & Wu (1990) carried out calculations for β = 0.2,
1.0 and 1.5 in Lagrangian coordinates and were able to continue up to the instant
of unsteady separation. A sharp eruptive response was found to occur in the fourth
quadrant in all cases (i.e. in the lower half-plane to the right; see figure 2a). It
was determined that separation is delayed with increasing wall speed and is of the
upstream-slipping type shown in figure 1(a). For the range of rotation rates considered,
no downstream-slipping separation (shown in figure 1b) was observed. Since these
calculations were part of a broader study on unsteady separation past bluff bodies,
no attempt was made to determine the value of β for which unsteady separation is
suppressed or the manner in which this occurs.

The second model problem of interest here is shown schematically in figure 2(b) and
was first considered by Doligalski & Walker (1984). A vortex of negative strength −κ,
which is located at a distance a above an infinite plane wall, will be convected with
uniform speed of κ/2a (from right to left) through the influence of its image below
the plate; if a uniform flow of speed Uo is superimposed from left to right, the vortex
convects to the right with a convection speed Vc = Uo−κ/2a. A fractional convection
rate may be defined by α = Vc/Uo, and it follows that α = 1 − κ/(2aUo) where the
principal range of interest is 0 6 α < 1. At α = 0, the mainstream uniform flow exactly
balances the self-induced velocity, and in this case the vortex remains stationary in a
crossflow. The limit α → 1 corresponds to a situation where the self-induced speed of
the vortex is vanishingly small in comparison with the uniform flow Uo. In a frame of
reference moving with the vortex, the external flow field is steady, and the wall appears
to move from right to left with speed αUo. It is convenient to non-dimensionalize
velocities in terms of the mainstream velocity at infinity which is (1 − α)Uo in a
frame of reference convecting with the vortex. With this non-dimensionalization, the
dimensionless external flow distribution and wall velocity may be shown to be given
by (Doligalski & Walker 1984)

Ue = 1 − 4

1 + x2
, β =

α

1 − α
, (2)

respectively, for all values of α, in a frame of reference convecting uniformly with
the vortex. Figure 3 shows a plot of Ue and dUe/dx. Stagnation points occur at

±
√

3 and bracket a zone of flow in the negative x-direction; and for |x| <
√

3, the
pressure gradient (with respect to the local velocity direction) is adverse for x < 0 and
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Figure 3. Mainstream velocity induced by the convected vortex in a frame of reference moving
with the vortex: ——, Ue; – – –, U ′

e.

favourable for x > 0. Between the rear stagnation point at x = −
√

3 and the vortex
centre at x = 0, the external velocity is in the same direction as the wall velocity.

The unsteady boundary-layer flow development following an impulsive start was
considered by Doligalski & Walker (1984) for a range of values from α = 0 to α = 0.8
(corresponding to β = 0 and β = 4, respectively). It was found that for values of
α 6 0.55, a recirculating region of positive rotation developed in the boundary layer
between x = −

√
3 and x = 0. Subsequently, sharp upflows developed just upstream of

the recirculation zone (in terms of the local mainstream velocity direction); however,
the calculations could not be continued beyond this stage (in the Eulerian formulation)
all the way through to what appeared to be a developing separation singularity. For
increasing α (and hence β) the calculations could be carried on progressively further
in time, and the strength of the eruptive motions seemed to diminish, suggesting
that the tendency to unsteady separation is reduced with increasing β. In the range
0.55 < α 6 0.75, the formation of a recirculation zone did not occur, but upflows
of relatively less intensity did develop which eventually terminated the calculations.
Beyond α = 0.75, a gradual thickening of the boundary layer was observed over a
streamwise extent O(1), and it was concluded that unsteady separation is suppressed
for α > 0.75 (β > 3).

The cases of β = 2 for the translating and rotating cylinder, and β = 3 (α =
0.75) for the convected vortex flow, correspond to apparently critical situations,
in which the wall speed exactly balances the maximum magnitude of the external
flow velocity (which is associated with the region of adverse pressure gradient). The
calculations of Ece et al. (1984) and Doligalski & Walker (1984) suggest that for
values of β beyond these critical values, the boundary layer gradually thickens with
no evidence of sharp upflows. Thus in both cases when the wall speed is greater
than the maximum magnitude of the mainstream velocity, the boundary-layer flow
development appears to be dominated by the influence of the moving wall; this
influence seems to mitigate the effects of the adverse mainstream pressure gradient,
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thereby leading to the suppression of unsteady separation. This conjectured behaviour
will be discussed subsequently in more detail.

3. Governing equations

In the initial stages of the development of the unsteady boundary-layer flow,
the solution is expected to be relatively smooth with an absence of sharp streamwise
gradients; in general terms, an Eulerian formulation is most effective in such situations.
For both model problems considered, an impulsive start is assumed which provides
a well-defined initial condition in Eulerian coordinates; it is convenient to utilize this
formulation from the impulsive start to some time t = to, where to denotes a value
well in advance of the expected instant of unsteady separation ts. It is well-established
that a boundary-layer calculation in Eulerian coordinates cannot be continued up to
the instant of unsteady separation (Van Dommelen 1981; Peridier et al. 1991). On the
other hand, the Lagrangian formulation is very effective in resolving the flow field
when separation begins to develop; in addition, the value of ts may be established
unambiguously in this way. Consequently, in the present study the Eulerian solution
at t = to was used to initiate a calculation in the Lagrangian coordinate system which
was then carried out until t = ts.

In the Eulerian description, the boundary-layer equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= Ue

dUe

dx
+
∂2u

∂y2
,

∂u

∂x
+
∂v

∂y
= 0, (3)

where y and v are the boundary-layer scaled normal coordinate and velocity (with
respect to Re1/2) and y = 0 defines the surface. In the cylinder problem, the radius a
and translational speed Uo are used to define dimensionless variables; for the vortex
problem, the corresponding quantities are the distance of the vortex from the wall a
and the flow speed at infinity (1 − α)Uo, respectively. For the cylinder, x = 0 denotes
the frontal inviscid stagnation point with x measuring arclength in the clockwise
direction. For the vortex problem, x = 0 denotes the location of the vortex centre for
all t in a frame of reference convecting uniformly with the vortex.

To resolve the sharp temporal variations associated with the impulsive start, it is
convenient to introduce Rayleigh variables ζ and Ψ defined by

ζ =
y

2t1/2
, Ψ (x, ζ, t) =

ψ

2t1/2
, (4a,b)

where ψ is the stream function. The governing equations (3) become

4t
∂u

∂t
=
∂2u

∂ζ2
+ 2ζ

∂u

∂ζ
+ 4t

[
∂Ψ

∂x

∂u

∂ζ
− u

∂u

∂x
+Ue

dUe

dx

]
,

∂Ψ

∂ζ
= u, (5)

and the associated conditions at the surface and mainstream require that

u = −β, Ψ = 0 at ζ = 0; u → Ue as ζ → ∞. (6)

The initial conditions are obtained by letting t → 0 in equations (5) and the solutions
satisfying conditions (6) are

u = (Ue + β)erf(ζ) − β, (7a)

Ψ = (Ue + β)

[
ζerf(ζ) − 1

π
1/2

(1 − e−ζ2

)

]
− βζ. (7b)
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For the cylinder problem the streamwise boundary conditions are periodicity in x,
while in the vortex problem the boundary layer at infinity is not influenced by the
vortex; in the latter case, the solution is also given by equations (7) for all t.

It is convenient to introduce computational spatial coordinates (x̂, ζ̂) according to

x = hx(x̂), 0 6 x̂ 6 1; ζ = kζ tan
(

1
2
πζ̂
)
, 0 6 ζ̂ 6 1, (8a,b)

in order that calculations are carried out within a finite domain. The streamwise
transformations hx that were utilized will be discussed subsequently. For the normal
coordinate, the constant kζ controls the distribution of mesh points, with smaller
values of kζ corresponding to a finer resolution near the wall (in terms of the physical
coordinate ζ). In computational coordinates, the governing equations are of the form

∂u

∂t
= T

∂2u

∂ζ̂2
+ P

∂u

∂ζ̂
+ Q

∂u

∂x̂
+ Γ ,

∂Ψ

∂ζ̂
=

πkζ

2
sec2

(
1
2
πζ̂
)
u, (9a,b)

where the functional coefficients P , Q, T and Γ are listed in Appendix A. A uniform

mesh in computational coordinates (x̂, ζ̂) was adopted, and the numerical method
used is similar to that described by Peridier et al. (1991). The scheme for equation
(9a) is second-order accurate in both space and time and is an alternating-direction-
implicit (ADI) method; at fixed t, integration of equation (9b) was accomplished
using a form of Simpson’s rule. The Eulerian calculations were carried out to t = to
and then continued in the Lagrangian formulation.

The unsteady Lagrangian boundary-layer equations are given by (Van Dommelen
& Shen, 1980; Peridier et al. 1991):

∂u

∂t
= Ue

dUe

dx
+

[
∂x

∂ξ

∂

∂η
− ∂x

∂η

∂

∂ξ

]2

u,
∂x

∂t
= u, (10a,b)

∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ
= 1, (11)

where equations (10) and (11) are the momentum and continuity equations, respec-
tively. In the Lagrangian formulation, (x, y) are independent variables and (ξ, η) are
the dependent coordinates representing the initial location of the particles at t = to;
hence the initial conditions are given by

x = ξ, y = η at t = to, (12a,b)

along with a prescribed streamwise velocity field u(ξ, η) at t = to. A key feature of
equations (10) is that they do not involve the normal coordinate y or velocity v; it
is these quantities which increase rapidly and develop sharp streamwise variations as
separation is approached. Eventually, such behaviour severely impacts the viability of
an Eulerian approach. On the other hand, the streamwise particle positions x(ξ, η, t)
and velocities u(ξ, η, t) remain regular even at separation, and this is one of the
principal advantages of using the Lagrangian formulation. The curves x = constant
denote the current streamwise location (at time t) of particles which originated on
a line of constant x (at the initial time t); these curves are characteristics of the
continuity equation (11) which has the following integral:

y =

∫ s

0

ds

[(∂x/∂ξ)2 + (∂x/∂η)2]1/2
, (13)

where s is the distance from the wall measured along the characteristic x = constant.
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This relation gives the normal coordinates y(ξ, η, t) in terms of the calculated x(ξ, η, t)
field. The continuity equation, as expressed by (13), provides an unambiguous criterion
to determine the instant and location of unsteady separation, namely the first instant
when both ∂x/∂ξ and ∂x/∂η vanish simultaneously at some location (ξs, ηs). Because
the momentum and continuity equation are decoupled, it is only necessary to solve
the system (10) and test at each time step for the first appearance of a stationary point
(i.e. ∂x/∂ξ = ∂x/∂η = 0). At this time ts, the calculations must be terminated. An
algorithm to determine (ξs, ηs) and ts is described in Appendix B; the method involves
tracking the two curves ∂x/∂ξ = 0 and ∂x/∂η = 0 and determining the instant and
location where they first touch. The evolution of a stationary point implies (from
equation (13)) that a fluid particle originally at (ξs, ηs) has been compressed to zero
streamwise thickness and a portion is now at an infinite distance from the wall on the
boundary-layer scale (Cowley et al. 1990). For any time t < ts, the Eulerian flow field
may be constructed for fixed t by integration of equation (13) (Peridier et al. 1991).

In Lagrangian coordinates, the boundary conditions for both problems are

u = −β at η = 0; u → Ue(x) as η → ∞. (14a,b)

For the cylinder problem, the solution must be periodic in ξ. For the vortex problem,
it may be inferred from equation (2) that the boundary-layer motion at infinity is a
plane-parallel flow; thus y = η for all time and from equation (7a)

u = (Ue + β)erf
[ η

2t1/2

]
− β as ξ → ±∞. (15)

Again, independent computational coordinates (ξ̂, η̂) are defined on a finite domain
according to

ξ = hξ(ξ̂), 0 6 ξ̂ 6 1; η = kη tan
(

1
2
πη̂
)
, 0 6 η̂ 6 1, (16a,b)

with dependent computational coordinates (x̂, ŷ) given by

x = hx(x̂), 0 6 x̂ 6 1; y = ky tan
(

1
2
πŷ
)
, 0 6 ŷ 6 1. (17a,b)

Here kη and ky are stretching factors for the normal coordinate. A number of
transformations were considered for ξ and x and these will be discussed subsequently.
Upon introducing (16) and (17a) into the momentum equation (10a), it may be shown
that

∂u

∂t
= R

∂2u

∂ξ̂2
+ S

∂2u

∂ξ̂∂η̂
+ T

∂2u

∂η̂2
+ P

∂u

∂η̂
+ Q

∂u

∂ξ̂
+ Γ , (18)

where the coefficients P , Q, R, S, T and Γ are given in Appendix A. The numerical
scheme used to solve (18) is similar to that used to solve (11a) (Peridier et al.
1991). Substituting (16) and (17) into (11), the continuity equation in computational
coordinates becomes

∂x̂

∂ξ̂

∂ŷ

∂η̂
− ∂x̂

∂η̂

∂ŷ

∂ξ̂
=
h′
ξ

h′
x

kη

ky

cos2
(

1
2
πŷ
)

cos2
(

1
2
πη̂
) , (19)

where the primes denote differentiation with respect to the argument.
It now remains to describe the manner in which the Lagrangian calculations are

initiated from the Eulerian solution at t = to. If it is insisted that the mesh for the
Lagrangian and Eulerian calculations be the same, then

ξ̂ = x̂, η̂ = ζ̂ at t = to. (20a,b)
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This choice is convenient because it circumvents the need to interpolate the Eulerian
solution in order to obtain initial conditions for the Lagrangian calculations. Condi-
tion (20a) is easily established by requiring the transformations in (8a) and (16a) be
identical. Using equations (4a), (12b), (8b) and (16b), it is easily shown that condition
(20b) may be satisfied if the expansion factor kη for the Lagrangian calculation is
chosen according to

kη = 2t1/2o kζ . (21)

In this manner, the computed Eulerian solution for the streamwise velocity u at to
may be used directly as the initial condition for the Lagrangian calculations.

4. Remeshing algorithm

Although the Lagrangian formulation allows accurate calculation of unsteady
separation and provides an unambiguous criterion for its occurrence, there is an
associated disadvantage which is due to what may be termed ‘mesh distortion’. This
difficulty is related to the rapid separation and distortion of adjacent particles which
can occur as the boundary-layer flow evolves; this can result in the coefficients
in equation (18) becoming large as t increases, in which case the system (18) is
said to become ‘increasingly stiff with time’. Significant streamwise separation of
initially adjacent fluid particles is generally most rapid in regions of favourable
pressure gradient and by contrast much less pronounced in an adverse pressure
gradient. Consider, for example, fluid particles near the boundary-layer edge close to
a stagnation point for which ∂x/∂t ≈ ax, where a is a constant; the solution for the
trajectories for x > 0 satisfying equation (12a) is

x = ξ ea(t−to), t > to, (22)

where x = ξ at t = to. At the rear stagnation point for the cylinder problem and
for x & −

√
3 for the vortex problem, the pressure gradient is adverse (a < 0), and

from equation (22) fluid particles remain in the vicinity of the stagnation point. On
the other hand, near x = 0 and for x .

√
3 for the cylinder and vortex problems,

respectively, the pressure gradient is favourable (a > 0) and adjacent fluid particles are
eventually separated by a distance which increases exponentially with time. Increasing
stiffness of the momentum equation causes an increase in the number of iterations
per time step and can eventually lead to highly inaccurate results. It is important
to emphasize, however, that the reasons giving rise to convergence difficulties in the
Eulerian and Lagrangian calculations are quite different. In Eulerian calculations, the
onset of separation leads to the development of sharp streamwise gradients over a
region of increasingly narrowing extent within zones of adverse pressure gradient; this
behaviour causes an abrupt increase in the number of iterations per time step. The
difficulty may be alleviated temporarily by decreasing the time step, but eventually a
point in time will be reached where the solution will fail to converge at some t < ts.
On the other hand, for Lagrangian calculations, the number of iterations per time
step increases gradually during the course of the integration; this behaviour is directly
associated with the increasing stiffness of equation (18), which is generally associated
with a region or regions of favourable pressure gradient. This is a serious problem
in the Lagrangian formulation that must be overcome whenever the mainstream
contains regions of favourable pressure gradient. One possible approach is to use
the traditional Eulerian formulation (which is well-suited for favourable pressure
gradient flows), in the initial stages of development and up until a time to just before
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sharp streamwise gradients occur. In this manner, the time interval over which the
Lagrangian calculation scheme is used is reduced from ts to ts − to; consequently,
the relative stiffness of the equations as t increases is at least reduced. Unfortunately,
the ‘stiffness problem’ is not necessarily eliminated because the time interval ts − to
cannot be made too small; otherwise, the Eulerian solution may become corrupted by
insufficient resolution for t < to and hence the initial condition at to for the Lagrangian
will be incorrect. In general, it is not possible to determine an appropriate switchover
time to a priori. The value is problem dependent and typically several values of to
must be selected; furthermore, it must be confirmed that the calculated results from
the Lagrangian coordinate formulation are independent of the choice of to .

In most problems, and indeed in those considered here, the time interval ts − to is
still sufficiently large so that the increasing stiffness of the momentum equation in the
Lagrangian coordinate formulation must be addressed in order to obtain accurate
results. Two strategies have been adopted in the past to alleviate this difficulty. In
the calculation of the boundary-layer flow past an impulsively started cylinder, Van
Dommelen & Shen (1980, 1982) used a transformation, which provided a finer mesh
in the favourable pressure gradient region in physical space, effectively reducing the
initial distance between adjacent particles there; this scheme was later adopted by
Shen & Wu (1990). Although effective, the scheme has the disadvantage that more
computational effort is expended in a region of the flow where the solution is relatively
well-behaved. In the study by Peridier et al. (1991), the initial flow development was
calculated in the Eulerian coordinate formulation. Although several values of to were
considered to confirm the invariancy of the results, the value to = 0.25 was chosen to
be most convenient because this obviated the necessity of interpolating the Eulerian
solution to obtain the initial conditions for the subsequent Lagrangian calculations;
in effect, both expansion factors kζ and kη were assumed unity (for reference, see
equations (8b), (16b) and (21). Since ts = 0.989 in the study of Peridier et al. (1991),
the time interval ts− to was still large so that the increasing stiffness of the momentum
equation had to be addressed. This was dealt with by reducing the time step with
increasing time to very small values. Once again, although the strategy was effective, a
substantial increase in computational time resulted, and the course of the integration
slowed down drastically.

A secondary objective in this study was to develop a remeshing procedure to
overcome the ‘stiffness problem’ in the Lagrangian formulation; such a procedure was
recommended by Shen & Wu (1990) but not implemented. In the present remeshing
scheme, Lagrangian calculations were carried out for a predetermined period of time
denoted by ∆t. At the end of this period, the continuity equation was solved to
construct the Eulerian description of the flow and, in particular, the solution for
u(x, y) at fixed points on a rectangular mesh. Using the initial conditions (12) with to
replaced by t1 = to+∆t and the solution u(x, y) at t = t1, the calculations were initiated
once again to perform a second Lagrangian cycle. The kth cycle ended at to + k∆t,
and the sequence of cycles was continued until an unsteady separation singularity was
encountered. Although the mesh distorts during each cycle, remeshing occurred before
the equations become excessively stiff and a reduction in the time step was required.
Consequently, this scheme obviates the necessity of finer resolution in a favourable
pressure gradient region or the need for smaller time steps as the calculation proceeds
further in time. In using this approach, the number of solution remeshings should be
kept to a minimum since the process is computationally intensive. Most importantly,
however, a sufficient time interval must be allowed between the final remeshing and
the time of unsteady separation ts; this is because interpolation is required to construct
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the Eulerian flow solution and, in order to accurately carry this out, the Eulerian field
must be sufficiently smooth at the time of remeshing.

The transition from one cycle to the next through the solution of the continuity
equation (19) is now described. In certain situations encountered in the present study,
it became necessary to adopt a different mesh for the Lagrangian calculations in the
subsequent cycle; the algorithm developed here allows this added flexibility. Let the
mesh that is to be used in the next calculation cycle be denoted by (ξ∗, η∗), which is

related to the corresponding computational coordinates (ξ̂∗, η̂∗) through

ξ∗ = hξ∗(ξ̂∗), 0 6 ξ̂∗ 6 1; η∗ = k∗
η tan

(
1
2
πη̂∗) , 0 6 η 6 1. (23a,b)

In order to construct the initial conditions for each subsequent cycle, the streamwise

velocity must be calculated at the mesh points at (ξ̂∗, η̂∗) from the Lagrangian
solution at the end of the current cycle. Suppose that the velocity is desired along
a particular mesh line denoted by ξ∗ = ξ∗

i at the start of a new cycle; this line
corresponds to the characteristic curve x = xi = ξ∗

i in the Lagrangian solution
at the end of the previous cycle. Alternatively, the characteristic is given by x̂ =
x̂i = h−1

x (hξ∗(ξ∗
i )) in computational coordinates where the superscript −1 denotes the

inverse transformation. Consequently, determining the functional dependence of u on

the normal coordinate η̂∗ at ξ̂∗ = ξ̂∗
i is equivalent to determining the variation of u

along the characteristic x̂ = x̂i in the current Lagrangian solution.
Next consider the normal coordinate η. At the beginning of the Lagrangian inte-

gration, y is defined by equation (12b), and at the start of each new cycle by y = η∗ .
Throughout the course of the integrations, ŷ and η̂ are defined on a fixed rectangular
grid, and physical values of y and η at any stage can be found from equations (16b)
and (17b). It is convenient to take ŷ = η̂ at the beginning of the Lagrangian integra-
tions, and ŷ = η̂∗ at the start of each new remeshing cycle. The normal expansion
factor kη may be changed for the subsequent cycle; denoting this by k∗

η , ky must
then be selected equal to k∗

η . Determination of the velocity u at a particular value of
η̂∗ = η̂∗

j , say, corresponds then to finding the velocity at a location ŷj = η̂∗
j from the

Lagrangian solution at the end of the current cycle along the characteristic x̂ = x̂i.
The method used is an inverse characteristic scheme which is described next.

The characteristics of equation (19) are given by

dξ̂

A
=

dη̂

B
=

dŷ

C
= d̂s, (24)

where

A = −∂x̂
∂η̂

; B =
∂x̂

∂ξ̂
; C =

h′
ξ(ξ̂)

h′
x(ξ̂)

kη

ky

cos2
(

1
2
πŷ
)

cos2
(

1
2
πη̂
) , (25)

and d̂s is the differential arclength along the characteristic in computational coordi-
nates. The integrations are initiated at the wall where ŷ = η̂ = 0. On the wall, the
distribution of x at the end of the kth cycle may be evaluated from equations (10b)
and (14a) and it follows that x = ξ − β∆t. In terms of computational coordinates

ξ̂ = h−1
ξ {hx(x̂) + β∆t} . (26)

Using this relation, an integration may be initiated for a given value of x̂ up the
characteristic starting from η̂ = 0 using the Lagrangian solution at the end of the

current cycle. Let (ξ̂n, η̂n) denote some point along the characteristic x̂ = x̂i having an
associated value of ŷ denoted by ŷn. To determine the coordinates of the next point
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along the characteristic (ξ̂n+1, η̂n̄1) and the corresponding value of ŷ = ŷn+1, equations
(24) may be discretized by writing

∆ξ̂ = A∆ŝ, ∆η̂ = B∆ŝ, ∆ŷ = C∆ŝ, (27a–c)

where

∆ξ̂ = ξ̂n+1 − ξ̂n, ∆η̂ = η̂n+1 − η̂n, ∆ŷ = ŷn+1 − ŷn. (28a–c)

A predictor-corrector algorithm, which is second-order accurate in ∆ŝ and is similar
to that described by Peridier et al. (1991), was used to solve equations (27) and (28).
Instead of specifying ∆ŝ (the step length along the characteristic), the value of ∆ŷ was
prescribed; a number of methods of specifying ∆ŷ were explored, but eventually the
simple choice ∆ŷ = ∆h/4 was used throughout, where ∆h denotes the mesh size in the
ŷ-direction. The basic idea here is to select the interval in ∆ŷ so that the integration
along the characteristic x̂ = x̂i passes through a mesh point ŷ = ŷj exactly (every 4
steps). In the predictor phase of the algorithm, the coefficients A, B, C are evaluated

at (ξn, ηn) and with ∆ŷ specified, ∆ŝ is determined from equation (27c); ∆ξ̂ and ∆η̂ are
then found from equations (27a) and (27b). In the corrector phase of the algorithm,
average values of A, B and C are evaluated midway through the interval.

The solution algorithm described here is an inverse method of characteristics and

involves the determination of the initial location (ξ̂k , η̂k) of the particle which is cur-
rently at the position (x̂i, ŷj). The streamwise velocity u at (x̂i, ŷj) is obtained by using

bilinear interpolation to determine u at (ξ̂k , η̂k) from the current computed Lagrangian
solution. In this manner, the streamwise velocity is obtained on a rectangular mesh,
and this is suitable to initiate the Lagrangian calculations in the subsequent cycle.
The remeshing algorithm not only incorporates the added flexibility of allowing a
different mesh for the subsequent cycle, but also places no restriction on a possible
change in the number of streamwise and normal mesh points. In addition, the above
procedure is also used in this study to obtain a Eulerian description of the flow field
at any instant of time (e.g. to obtain instantaneous streamlines) from that calculated
in the Lagrangian formulation.

5. Results for the cylinder

To test the present algorithms, the boundary-layer development was calculated
for the non-rotating case β = 0 and for β = 1.0, 1.5 to compare with previous
results obtained by other authors. For β = 0, two different approaches were used.
For method I, Lagrangian coordinates were used from the impulsive start at t = 0,
followed by remeshing at t = 0.5 and 1.0. In method II, the calculation was initiated
in Eulerian coordinates and switched to the Lagrangian formulation at t = 1.3. The
calculations based on method II are expected to be more accurate since an explicit
transformation to eliminate the irregular behaviour associated with the impulsive
start was not introduced in the Lagrangian formulation for method I. A number of
mesh sizes were used and the quoted results are based on a 201 × 101 mesh (in the
streamwise and normal directions, respectively) with uniform time steps of ∆t = 10−3

and 5 × 10−4 for the Eulerian and Lagrangian calculations respectively. The mesh
distribution in the streamwise direction is uniform in the sense that hx = 2πx̂ and
hξ = 2πξ̂ in equations (8a), (17a) and (16a), respectively.

Calculated results are shown in table 1, where xs and ts are the location and time of
unsteady separation, respectively, and us is the velocity of the particle at separation.
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β = 0 β = 1.5

xs ts us xs ts us

Method I 1.934, 4.349 1.500 −0.535, 0.535 3.486 1.769 0.05
Method II 1.937, 4.346 1.503 −0.533, 0.533 3.483 1.765 0.066
Van Dommelen (1981) 1.937, 4.346 1.502 0.52 — — —
Wu (1991) — — — 3.478 1.77 0.06

Table 1. Comparison of present calculations with previous results.

Although the flow for β = 0 is symmetric, this condition was not explicitly introduced
into the numerical procedure; consequently, the unsteady separation singularity occurs
simultaneously on the upper and lower halves of the cylinder. The results agree well
with one another and with the calculations of Van Dommelen (1981)†, who used an
effective spatial mesh of (579 × 129). Calculations were also carried out using method
II with switchover times of to = 0.25 and 1.0; the values of xs and ts agree with those
in table 1 up to three significant digits; however, only two significant digit accuracy
agreement was found for us. This is typical for Lagrangian calculations, and as noted
by Van Dommelen (1981), it is hardest to obtain grid-independent results for us.

The second test case considered was for β = 1.0, 1.5, which has recently been
calculated by Shen & Wu (1990) and Wu (1991) on a (65 × 65) mesh. For method
I, an additional remeshing at t2 = 1.5 was performed, and, for method II, the switch
over was implemented at to = 1.0 with a remesh at t1 = 1.5. The time steps and mesh
were the same as for β = 0. The calculated results are in good agreement with those
obtained by Shen & Wu (1990) and Wu (1991) as seen in table 1 for β = 1.5. It is
evident that the present remeshing algorithm yields good accuracy and is an effective
cure for the ‘stiffness’ problem in the Lagrangian formulation.

The maximum value of β considered by Wu (1991) is β = 1.5; in the present study
the objective is to consider larger values of β to determine the critical value βc beyond
which unsteady separation is suppressed. To this end, solutions for values of β in the
range 1.5–2.0 were calculated. Initially, the two methods described for β = 1.5 were
also used for larger values of β. However, as the value of β increased, a uniform
mesh in ξ was found to be increasingly unappealing because it yielded insufficient
resolution to accurately determine the instant of separation. The reason may be

appreciated from figure 4 which shows the curves ∂x̂/∂ξ̂ = 0 and ∂x̂/∂η̂ = 0 at the
instant of separation for β = 1.60 and β = 1.80. There are two curves ∂x̂/∂η̂ = 0,
which are both attached to the cylinder and appear at a fairly early stage in the

calculations. The curves ∂x̂/∂ξ̂ = 0 appear at a much later stage as closed curves in
the middle of the boundary layer. Separation corresponds to the first instant when

the curves ∂x̂/∂η̂ = 0 and ∂x̂/∂ξ̂ = 0 touch. It may be noted from figure 4 that this
condition is achieved in the third quadrant but by t = ts is not close to occurring

anywhere in the upper half-plane (ξ̂ < 0.5). In fact as shown in figures 4(a) and 4(b),

the curves ∂x̂/∂ξ̂ = 0 and ∂x̂/∂η̂ = 0 draw farther apart in the upper-half plane as
the rotation rate increases. The streamwise extent of the relevant curve at separation,

∂x̂/∂ξ̂ = 0 in figure 4(a), is sufficiently large and is well resolved by the uniform

† Van Dommelen (1981) non-dimensionalized the governing equations using twice the transla-
tional speed of the cylinder. Consequently, the time and velocity given in table 1 are numerically
one-half and twice, respectively, of those reported by Van Dommelen.
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Figure 4. Contours of ∂x̂/∂ξ̂ = 0 and ∂x̂/∂η̂ = 0 at separation t = ts for
(a) β = 1.6 and (b) β = 1.8.

mesh; however, as β increases, the streamwise extent of the curve ∂x̂/∂ξ̂ = 0 becomes

increasingly narrow, as typified in figure 4(b). The lower tip of the curve ∂x̂/∂ξ̂ = 0
is increasingly sharp as β increases, and due to a lack of resolution near the sharp
tip, it is difficult to determine accurately the instant when the curves first touch. To
overcome this problem, the calculations beyond the remeshing at t1 = 1.5 were carried
out using the following transformation in the streamwise direction:

ξ = hξ(ξ̂) = π

{
1 +

tan[ 1
2
πkξ(2ξ̂ − 1)]

tan
[

1
2
πkξ
]

}
. (29)

Here kξ is a parameter, and for 0 < kξ < 1, relatively more streamwise mesh points
are clustered near the rear inviscid stagnation point; the mesh resolution near x = π

increases with increasing kξ . This mesh is subsequently referred to as a non-uniform
mesh. At the same time, a uniform transformation for the dependent variable x
is retained (i.e. h(x̂) = 2πx̂ in equations (8a) and (17a)). Using the transformation
(29), the region near x = π in physical space is expanded in computational space

giving rise to an apparent tangential thickening of the relevant curve ∂x̂/∂ξ̂ = 0 and
facilitating an accurate determination of ts. Several combinations of mesh size, time
step, remeshing times and values of kξ were used, and four methods are summarized
in table 2, with the results given in table 3. The values of the location, xs, and instant,
ts, of unsteady separation in table 2 are reported to three significant digits, whereas
the value of the separation velocity, us, is given to two digits. For the mesh systems
used in this study, no unsteady separation was detected for β > 1.91.

It is evident from table 3 that all methods give much the same answers for the
lower values of β for xs and ts, but that an accurate estimate of us is more difficult, as
previously discussed. With increasing values of β, the non-uniform mesh is necessary
to achieve accurate results, and the agreement between calculated results for methods
III and IV gives confidence in the results. Figure 5 shows the variation of xs, ts
and Ue(xs) − us (with values taken from method IV of table 3) as a function of the
wall speed parameter β. With increasing β, the singularity time ts is delayed and the
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Method Description

I Impulsive start in Lagrangian coordinates.
Solution remeshed at intervals of 0.5 time units.
Uniform mesh (201 × 101); ∆t = 5 × 10−4.

II,III,IV Impulsive start in Eulerian coordinates.
Uniform mesh (201 × 101); ∆t = 10−3.
Switchover to Lagrangian calculations at to = 1.0.
Lagrangian calculations until t1 = 1.5.
Uniform mesh (201 × 101); ∆t = 5 × 10−4.

II Lagrangian solution remeshed at t1 = 1.5.
Uniform mesh (201 × 101); ∆t = 5 × 10−4.

III Lagrangian solution remeshed at t1 = 1.5.
Non-uniform mesh (201 × 101) with kξ = 0.7; ∆t = 5 × 10−4.

IV Lagrangian solution remeshed at t1 = 1.5.
Non-uniform mesh (401 × 101) with kξ = 0.7; ∆t = 2 × 10−4.

Table 2. Description of the various numerical methods used for the cylinder problem.

location of the singularity xs shifts progressively from within the fourth quadrant
toward regions of low mainstream velocity near the rear inviscid stagnation point at
x = π; in the fourth quadrant the wall and mainstream velocities are in the same
direction. The variation of Ue(xs) − us is of particular significance since its magnitude
decreases monotonically with increasing β, possibly becoming zero just slightly beyond
β = 1.91. A general theory of unsteady two-dimensional separation has been discussed
by Elliott et al. (1983), who argue that the boundary layer bifurcates at separation
into three regions in a band which progressively narrows in the streamwise direction
as the process evolves toward separation; in this structure two thin layers, one
adjacent to the wall and one which grows rapidly away from the surface, bracket
an expanding central inviscid region where the vorticity is almost zero. A schematic
diagram of a typical velocity profile for the cylinder problem at separation is shown in
figure 6(a), for a typical case occurring for small rotational velocities, say β = β1. In
the present problem, separation occurs in the fourth quadrant where Ue(x) (as well as
the wall velocity) is negative, and figure 6(a) is constructed to reflect this environment.
Note that in accordance with the physical picture of separation described by Van
Dommelen & Shen (1980, 1982) and Elliott et al. (1983), the velocity is very flat in
the central region, but adjusts rapidly through the upper and lower layers (shown by
broken lines) in order to meet the mainstream and wall velocities, respectively. For
the typical case at low rotation rates, the velocity in the central region us is positive,
and at separation, the compressed fluid particle is moving in a direction opposite to
that of the mainstream. However, us decreases with increasing wall speed and for a
value β2 (which is approximately β2 = 1.63 for the cylinder problem), the velocity
in the central region vanishes. As the wall speed increases further, the compressed
fluid particle at separation has negative velocity and moves in the same direction
as the mainstream. Note, however, that in all cases the wall appears to be moving
downstream in a frame of reference moving with the separation, and each situation
is therefore a case of upstream-slipping separation. With increasing β, the streamwise
location of separation moves progressively closer to x = π and consequently Ue(xs)
decreases. Eventually, a critical value βc is reached where Ue(xs) − us vanishes (in this
case just beyond β = 1.91) at a value near to, but distinct from, x = π.
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Method

β I II III IV

1.5 xs = 3.48 3.48 3.48 3.48
ts = 1.77 1.77 1.76 1.76
us = 0.049 0.039 0.066 0.058

1.55 3.45 3.45 3.45 3.45
1.79 1.79 1.79 1.78
0.047 0.036 0.048 0.044

1.6 3.42 3.41 3.41 3.41
1.82 1.82 1.81 1.81
0.044 0.034 0.0021 0.0017

1.65 3.38 3.38 3.38 3.38
1.86 1.86 1.84 1.83

−0.022 0.0031 −0.036 −0.021

1.70 3.34 3.34 3.34 3.34
1.88 1.88 1.86 1.86

−0.060 −0.067 −0.036 −0.039

1.75 3.31 3.30 3.30 3.30
1.90 1.90 1.89 1.89

−0.074 −0.079 −0.079 −0.082

1.80 3.27 3.27 3.27 3.27
1.94 1.94 1.92 1.91

−0.081 −0.084 −0.12 −0.12

1.85 3.24 3.24 3.24 3.24
1.97 1.97 1.95 1.94

−0.15 −0.15 −0.15 −0.13

1.87 3.19 3.20 3.23 3.23
2.36 2.22 1.97 1.96

−0.015 −0.011 −0.13 −0.13

1.90 3.21 3.21
— — 2.02 2.00

−0.11 −0.12

1.91 3.20 3.20
— — 2.05 2.03

−0.11 −0.12

Table 3. Calculated values of the location xs, instant ts and speed us of the unsteady separation
singularity for the cylinder problem.

In the structure delineated by Van Dommelen (1981) and Elliott et al. (1983),
Ue(xs)−us may be considered to be a measure of the strength of the upper separating
shear layer, and thus a vanishing value of Ue(xs) − us implies a disappearance of the
upper shear layer and suppression of separation. The precise value of βc is difficult to
establish because a separate extensive calculation must be carried out for each value
of β. However, it is evident from the present results that suppression of separation
occurs at a value of βc = 1.9 to two significant digits. Note that this critical wall
speed is slightly less than the maximum external velocity, which is 2 for the cylinder
problem (at x = π/2, 3π/2). Figure 6(b) shows the actual calculated velocity profiles
at separation for various values of β in the range 1.6 to 1.91, and here the structure
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Figure 5. Variation of xs, ts, Ue(xs) − uswith wall speed β.

described by Elliott et al. (1983) and shown in figure 6(a) may be clearly seen. It may
be noted that all separation profiles are of the ‘upstream-slipping’ type (downstream-
moving wall), and there is no evidence of ‘downstream-slipping’ (upstream-moving
wall) separation.

The decreasing strength of separation with increasing β may also be inferred from
the form of the perturbation function ψ̃ just prior to ts, which is defined as

ψ ∼ Ue − ψ̃ as y → ∞, (30)

where ψ is the streamfunction. Note that for flows with a stationary surface, ψ̃ = Ueδ
∗

where δ∗ is the displacement function; in general, ∂ψ̃/∂x may be identified with the
perturbation normal velocity associated with the developing boundary-layer flow.
Figure 7 shows plots of ψ̃ just prior to ts for various values of β in the range 1.6–1.91.
For lower values of β, a large negative spike develops in ψ̃, indicating a narrow zone
of strong outward normal velocity followed by a strong inflow. The characteristic
spiking appears to be diminished as β approaches βc; however, it should be noted
that all but one of the spikes shown in figure 7 actually decrease to minus infinity at
the tip. Although figure 7 is obtained from actual computed results, the figure should
be regarded as schematic in a sense, reflective of the fact that the spiking occurs in
a band that becomes increasingly narrow in the streamwise direction as β increases;
it therefore becomes increasingly difficult as β increases to perform a calculation
along the precise characteristic that yields an infinite value of ψ̃. As β → βc, the
spike actually reverses and is positive, now implying two regions of strong outflow
bracketing a thin zone of inflow. Although the relative magnitude of ψ̃ on the upper
half of the cylinder increases with β, the growth of ψ̃ with time is gradual and is
principally associated with the slow diffusion of vorticity from the surface over a
streamwise distance O(1). It is of interest to note that calculations for β > 1.85 can be
carried out in the Eulerian formulation with the meshes used here up to and beyond
ts without encountering the convergence difficulties experienced at lower values of β;
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Figure 6. Velocity profiles at separation for increasing wall speed β: (a) schematic diagram,
(b) calculated results for the cylinder problem.

the Lagrangian calculations show that such computations are incorrect. Although it
is conceivable that Eulerian computations may fail on a finer mesh, this behaviour
is indicative of the relative weakness of the singularity for values of β approaching
βc.

Figure 8 shows the instantaneous streamlines just prior to ts for β = 1.5, 1.7
and 1.75. The streamfunction is calculated by integrating ∂ψ/∂y = u along lines of
constant x once a Eulerian description of the velocity distribution is obtained by
following the procedure outlined in § 4. In figure 8(a), there are two recirculation
regions above the cylinder surface: the larger one occurs above the upper surface,
where the wall and mainstream velocities are in opposite directions, while the smaller
one is in the fourth quadrant. Note that the wiggles near the stagnation point far from
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the cylinder are a result of the failure of the contour plotting routine to adequately
represent the streamlines near a saddle point; the actual numerical data are smooth
there. The unsteady separation location is just upstream of the lower recirculation
region where the streamlines may be seen to converge in a band of very narrow
streamwise extent. The global features of the flow are similar to the results obtained
by Ece et al. (1984). As the wall-speed parameter β increases, the streamwise extent
of the lower recirculation region diminishes as seen in figure 8(b) for β = 1.7. As β
increases further, the lower eddy along with its associated saddle point do not form
but instead a weak ‘jet-like’ flow pattern develops as seen in figure 8(c) for β = 1.75.
The streamline patterns are qualitatively similar to those in figure 8(c) for values of
β beyond 1.75 and up to the critical value βc.

The vorticity ω in Lagrangian coordinates is given by

ω = −∂x
∂ξ

∂u

∂η
+
∂x

∂η

∂u

∂ξ
, (31)

and since separation is characterized by ∂x/∂ξ = ∂x/∂η = 0, one of the zero vorticity
lines must pass through the separation point (MRS II). The development of the
topology of the zero vorticity line is therefore of some interest here. For β < 2,
two lines of zero vorticity are present immediately after the impulsive start, which
asymptote x = 0 and x = π near the boundary-layer edge and which terminate
on the cylinder surface. For the non-rotating case β = 0, these zero vorticity lines
are straight and remain so for all t > 0 as a consequence of symmetry of the flow
field; however, at a later stage the development of recirculating flow leads to the
evolution of another zero vorticity line that is attached to the cylinder and intersects
the zero vorticity line on the downstream radius at a point labelled A in figure 9(a).
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Figure 8. Instantaneous streamlines for the cylinder problems at separation for
(a) β = 1.5, (b) β = 1.7, (c) β = 1.75; x′ and y′ denote Cartesian coordinates.
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The dotted lines show schematically how and where ω = 0 deforms at separation
in a spike on the upper and lower surfaces. When there is rotation and β < 2, two
ω = 0 lines originate on the cylinder surface in the lower half-plane (as shown in
figure 9(b), lines B and C). Near ts the difference in the topologies of figures 9(a)
and 9(b) is that the intersection at A in figure 9(a) has split to give rise to two
curves for ω = 0: (i) a line D attached to the upper surface that progressively moves
away toward the second quadrant with the continued rotation of the cylinder, and
(ii) a line C originating on the cylinder that trails outward to the boundary-layer
edge eventually asymptoting to radius θ = π. As shown schematically in figure 9(b),
separation eventually occurs on line C. As the rotation rate increases further, the lines
B and C move progressively closer in the topology near the cylinder at the separation
time, as shown in figure 9(c). For a sufficiently high value of β, a new configuration
occurs in which lines B and C merge to form the new lines F attached to the cylinder
and a line E, which on the scale of the cylinder appears to originate in a narrow
band emanating from large distances away. By this stage, the separation process has
been weakened dramatically, and the last vestiges occur as indicated in figure 9(d)
on line E. Figure 10 shows a plot of calculated results for ω = 0 for β = 1.8 and
1.85 just prior to separation where the spiky behaviour of the curve ω = 0 may be
noted, and the features discussed in connection with the schematic diagram may be
confirmed. For values of β = 1.8 and below, the curve ω = 0, which is relevant to
separation, originates at the cylinder surface and passes through the separation point
before approaching the boundary-layer edge (line C in figure 9b). On the other hand,
for β = 1.85 and beyond, the relevant curve ω = 0 that passes through the separation
point appears to originate and terminate at the boundary-layer edge on the scale
of the plot (line E in figure 9d). A theoretical description of the suppression of the
unsteady separation is given in Appendix C which is consistent with the present
numerical results.

Finally, it may be noted that the flow pattern in the vicinity of the saddle point
located above the upper surface of the cylinder in the second quadrant (as shown
in figure 8) is similar to the calculated results of Ece et al. (1984) and the inferred
streamline pattern in the flow visualization studies of Koromilas & Telionis (1980),
as well as the flow structure of upstream-moving wall unsteady separation proposed
by Sears & Telionis (1975). However, in the Lagrangian coordinate formulation
used here, it is evident that although this streamline pattern develops in the flow,
it is not associated with unsteady separation; indeed, it may be noted that the
saddle point is in a region of favourable mainstream pressure gradient and moves
closer to the streamwise location x = 0 (the frontal inviscid stagnation point) as
β → βc. For values of β > βc, calculations could be carried on in the boundary-
layer formulation almost indefinitely with no evidence of any spiky behaviour. The
large recirculation zone above the upper surface that is evident in figure 8(c) grows
continuously in the normal direction with time. However, in a narrow band near
the downstream radius (x = π), an irregular behaviour in the streamline patterns
eventually developed near the downstream end of the recirculation region at large
times. The calculated results are suggestive of the development of an instability in
the far wake, possibly of the type described by Cowley, Hocking & Tutty (1985) (see
also, Bhaskaran, Smith & Timoshin 1995), since the sharp ‘wiggles’ in the streamlines
did not disappear even with several reductions in the mesh sizes. An interaction with
the external flow may possibly occur at large times for β > βc, but this event is
expected to be considerably less dramatic than that associated with boundary-layer
separation.
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Figure 9. Schematic diagram of the topology of the zero vorticity lines at separation
with β increasing from (a) to (d).

6. Results for the convected vortex

Now consider the convected vortex problem with mainstream velocity distribution
given by equation (3); the mainstream velocity is similar to that in the rotating cylinder
problem in the sense that a region of favourable pressure gradient is followed by a
zone of decelerated flow, but otherwise the two distributions are quite different.
The main objective here is to determine whether separation is suppressed in the
same manner as the cylinder problem; consequently, only the one numerical method
described below was used, and no attempt was made to determine the precise critical
value αc (or alternatively βc) at which unsteady separation is suppressed. An impulsive
start was assumed and the initial development of the unsteady boundary-layer flow
was calculated in Eulerian coordinates, until a switchover time to = 0.6 to Lagrangian
coordinates; a spatial mesh of (201 × 101) and a time step ∆t = 10−3 were utilized.
The flow development beyond t = 0.6 was calculated in Lagrangian coordinates with
a remeshing at t = 0.9 for α = 0.7; the same number of mesh points was used with a
time step of ∆t = 5 × 10−4, except for the calculations beyond the remesh at t1 = 0.9
for which a finer mesh size of (401 × 201) was employed. In order to map the infinite
streamwise domain onto a finite region, the following transformation was adopted in
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Figure 10. Calculated equivorticity lines at separation for (a) β = 1.8, (b) β = 1.85.

both Eulerian and Lagrangian coordinate formulations:

x = hx(x̂) = tan
[

1
2
π(2x̂− 1)

]
, 0 6 x̂ 6 1, (32)

with an analogous transformation for ξ.
The computed results for several values of α were found to agree with the Eulerian

calculations of Doligalski & Walker (1984), and the focus here is to extend the
computations further in time using the Lagrangian formulation. The computed values
of the location, instant and speed of unsteady separation are summarized in table 4
for increasing values of α (and hence the wall speed, β). With the mesh system adopted
in this study, no unsteady separation was detected for values of α > 0.735. As in the

cylinder problem, the streamwise extent of the curve ∂x̂/∂ξ̂ = 0 becomes increasingly
narrower as α increases beyond 0.7 (cf. figure 4). Consequently, to determine the
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α 0.5 0.55 0.6 0.65 0.67 0.7 0.71 0.72 0.73 0.735

β 1 1.22 1.5 1.86 2.03 2.33 2.45 2.57 2.70 2.77

xs −0.484 −0.557 −0.661 −0.824 −0.922 −1.13 −1.21 −1.29 −1.35 −1.39

ts 0.783 0.817 0.875 0.985 1.08 1.22 1.24 1.27 1.30 1.35

us 0.27 0.29 0.16 0.058 −0.011 −0.19 −0.23 −0.34 −0.36 −0.35

Table 4. Calculated values of the location, instant and speed of unsteady separation singularity for
the convected vortex flow.
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Figure 11. Variation of xs, ts, Ue(xs) − us with wall speed β for the convected vortex problem.

critical value αc more precisely, it would be necessary to adopt a transformation
which sufficiently resolves the region where the singularity is expected (as described
for the cylinder problem).

The results in table 4 are plotted in figure 11 where the close similarity with the
results for the cylinder problem are apparent. The unsteady separation location xs
moves toward the inviscid stagnation point at x = −

√
3 but does not reach this

point before separation is suppressed; also the time of unsteady separation ts is
delayed with increasing wall speed β. As in the cylinder problem, the magnitude of
Ue(xs) − us decreases with increasing wall speed and approaches zero. Consequently,
the calculations for the convected vortex problem also indicate that the limiting
velocity profile at the point of suppression of unsteady separation is as shown in
figure 6(a). Although a precise value of αc was not determined, the calculations do
indicate that unsteady separation is suppressed before α = 0.75 (corresponding to
β = 3). Consequently, as was the case for the cylinder problem, unsteady separation
is suppressed when the wall speed is just less than the maximum value of the external
flow velocity (in this case β = 3).

Figure 12 shows the streamline patterns at ts − ∆t for values of α = 0.55, 0.65
and 0.7. For all three values of α, the streamlines may be observed to converge in a
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narrow streamwise region at the location of the unsteady separation. For the lower
value of α = 0.55, the separation point is located just upstream of the recirculating
region (note that the mainstream flow is right to left between the two stagnation
points located at x = ±

√
3) as seen in figure 12(a). As the value of α increases, the

streamwise extent of the recirculating region at the instant of separation decreases,
as typified by the streamline pattern for α = 0.65 in figure 12(b) and as described in
Appendix C. The formation of the recirculating region and the associated saddle point
is suppressed for larger values of α. Instead a weak ‘jet-like’ flow pattern develops as
seen in figure 12(c) for α = 0.7. It may be observed that the change in the terminal
streamline patterns with increasing wall speed is very similar for both the cylinder
and convected vortex problems.

7. Conclusions

The unsteady boundary-layer flow past moving surfaces has been investigated
here in the context of two model problems, namely the translating and rotating
circular cylinder and a vortex convecting past an infinite flat plate. In the initial
stages of the development of the flow, the traditional Eulerian formulation was
used and at a predetermined time, the calculations were continued further in the
Lagrangian formulation. Although the Lagrangian method provides an unambiguous
criterion to determine the instant and location of the unsteady separation singularity, a
difficulty associated with the formulation is mesh distortion caused by rapid separation
of adjacent particles, which is most pronounced in regions of favourable pressure
gradient. In the past, this difficulty was overcome by either concentrating mesh points
in this region or by decreasing the time step substantially. In the present study, a
remeshing algorithm was developed (§ 4) whereby, after a predetermined number of
time steps, an Eulerian description of the Lagrangian solution was obtained by solving
the continuity equation and then using this to initiate the Lagrangian calculations
once again. In this manner, the numerical difficulties due to mesh distortion were
overcome, enhancing both computational speed and accuracy.

General trends for the development of unsteady separation past moving surfaces
may be inferred from the calculated results for the two model problems considered
here (in § 5 and § 6). The time of unsteady separation ts is delayed, and the location of
unsteady separation xs approaches the inviscid stagnation point (but does not quite
reach it) in the region of adverse pressure gradient as the surface speed β increases.
Both ts and xs appear to vary approximately linearly with surface speed β as a critical
value βc is approached, whereupon separation is suppressed. A referee has suggested
that ts may tend to infinity as β → βc; the numerical results do not seem to support
this, but this suggestion cannot be ruled out in view of the substantial numerical
difficulties that occur in obtaining accurate solutions near βc. The magnitude of
Ue(xs) − us, which may be considered to represent the strength of the separation
phenomenon, decreases with increasing surface speed, and the calculations indicate
that unsteady separation is suppressed at that critical value of surface speed where
the magnitude of Ue(xs) − us becomes zero (see Appendix C). For the translating and
rotating cylinder, βc is estimated to be 1.91 and for the convective vortex problem the
estimate of βc is 2.77 (which corresponds to αc = 0.735). An accurate determination of
βc is rendered difficult because as β approaches βc, the streamwise extent of the curve
∂x/∂ξ = 0 becomes increasingly narrow. Consequently, this region of the flow must
be increasingly well resolved in order to detect the unsteady separation singularity
at all. It is interesting to note that in both of the model problems considered here,
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the critical value of βc is just less than the maximum magnitude of the external
mainstream velocity associated with the region of adverse pressure gradient. In the
cylinder problem, separation suppression occurs when the wall speed is 95.5% of
the maximum inviscid flow speed (associated with the adverse pressure gradient),
while the vortex problem indicates suppression at 92.3%; the former value is a more
accurate estimate, but whether a universal percentage is relevant in all unsteady flows
is not known. However, at least for the model problems, it can be concluded that once
the wall speed (i) is in the same direction as the maximum speed in the local inviscid
flow (at a point where the region of adverse pressure gradient commences), and (ii)
around 95% of the latter value, separation is effectively suppressed. At the critical
value of the surface speed, the velocity of the separation structure just balances the
local mainstream velocity. For all values of β less than βc, the separation velocity
profile corresponds to the upstream-slipping. No evidence of downstream-slipping
separation was found in either model problem.

For both model problems, a recirculation region develops in the flow at lower
values of β. Subsequently, the unsteady separation singularity occurs just upstream of
the recirculating region. On the other hand, at higher surface speeds, no recirculation
is observed, but a weak jet-like outflow pattern develops prior to the occurrence of
a considerably weakened separation singularity. A streamline pattern, suggested by
Sears & Telionis (1975) and Koromilas & Telionis (1980) as characterizing ‘upstream-
moving wall’ separation, was observed in the cylinder problem; however, the results in
this study indicate that this flow pattern is not associated with unsteady separation.

It is of interest to comment on the physical mechanism through which separation
and a strong interaction with the external flow is suppressed. Fluid particles in the
boundary layer are subject to two important effects associated with the external
pressure gradient and the moving wall. When the wall is stationary, fluid particles
near the surface are slowed to rest to satisfy the no-slip condition at the surface;
such particles are especially susceptible to the influence of the external pressure
field, and in a zone of adverse pressure gradient, flow reversal, leading to zones of
recirculation and ultimately boundary-layer separation, can easily occur. Once the
wall moves, however, the fluid particles near the surface are energized and become
less susceptible to the effects of the external pressure field. Separation can still occur
under such circumstances, but it originates at an increasing distance from the wall
with increasing wall speed where the particle speeds are generally smaller. Eventually,
a growing wall speed dominates events in the boundary layer and strongly influences
the separation speed us in the central separating region (see Appendix C), forcing it
to approach the local mainstream speed and thereby leading to the suppression of
the separation effect.

The case β = βc corresponds to marginal separation as discussed by Cowley et al.
(1990) who propose a general singularity structure for this type of separation. Cowley
et al. (1990) showed that ts becomes infinite at a logarithmic rate in one case; thus it
may be that here |β − βc| must be very small in order to see a significant increase in
ts. However, in view of the substantial difficulties in determining βc precisely, it was
not possible to determine whether ts → ∞ as β → βc in the present model problems;
figures 5 and 11 suggest a slight increase in ts as β → βc but are by no means
definitive.

Lastly the question of what happens for β > βc is of interest. As previously
remarked, steady periodic solutions for the rotating cylinder problem are available
for β & βd = 3.91 for an external flow with steady circulation. The present results
show that the impulsively started problem terminates with a separation singularity
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in the range 0 6 β < 1.91. Note that the two cylinder problems are similar but also
different in that the issue of how the external flow acquires circulation for any finite
βc is unresolved. A referee has suggested that calculations in the range βc 6 β < βd
should ultimately encounter another singularity at some larger but finite time. Our
current computational experience does not support this. Calculations for all β > βc
can be carried out for relatively long periods of time, but ultimately seem to encounter
a persistent instability in the far wake at the end of the recirculation zone and near
the downstream radius x = π. Grid refinement appears to hasten the onset of this
instability and this is currently under investigation; however, the appearance of the
instability precludes continued integration of the problem for β > βc on towards
interaction with the external flow. Detailed results for this case will be reported
elsewhere.

The authors would like to thank AFOSR for support of this work under Grant
Number 91-0069. The authors would like to acknowledge a number of useful com-
ments by the referees, and Stephen Cowley and Eric Varley.

Appendix A. Functional coefficients

In the Eulerian coordinate formulation, the coefficients in (9a) are given by
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Γ = Ue

dUe
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, (A 4)

where h′
x = dhx/dx̂.

In the Lagrangian coordinate formulation, the coefficients in (18) are given by
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and

h′
ξ = dhξ/dξ̂, h′′

ξ = d2hξ/dξ̂
2, h′

x = dhx/dx̂. (A 10)

Appendix B. Determination of singularity time

In this Appendix, an algorithm to determine the instant, location and velocity of the
unsteady separation singularity is described. At every time step, the solution is tested

to determine if there is a location where ∂x̂/∂ξ̂ and ∂x̂/∂η̂ vanish simultaneously.

This is accomplished by first evaluating ∂x̂/∂ξ̂ and ∂x̂/∂η̂ at each mesh point using
second-order central difference formulae. Next, the entire mesh is swept to determine

if both of the curves ∂x̂/∂ξ̂ = 0 or ∂x̂/∂η̂ = 0 simultaneously pass through any of the

rectangular elements in the mesh as follows. Let f = f(ξ̂, η̂) denote either ∂x̂/∂ξ̂ or
∂x̂/∂η̂, and let A = fi,jfi+1,j+1 and B = fi+1,jfi,j+1 denote the products of functional
values on diagonals for a typical cell in the mesh. If both A and B have the same
sign, there are two possibilities: (i) the values of f all have the same sign, in which
case the curve f = 0 either does not pass through the element or is entirely contained
within it, and (ii) the signs of f are different along each diagonal in which case the
curve f = 0 passes through the element at least twice. In the present algorithm, it is

assumed that the mesh in the (ξ̂, η̂)-plane is sufficiently small so that possibility (ii)
may be discounted, not only because it is unlikely in a finely resolved mesh, but also
because the error in estimating ts is small by allowing the solution to develop further
in time so that one of the contours f = 0 moves out of the mesh element in question.

If either A or B are negative, the contour f = 0 passes through the mesh element
once and in the algorithm is approximated within the element as a straight line. Let

points within the mesh element having bottom left corner at (ξ̂i, η̂j) be denoted by

ξ̂ = ξ̂i + p(ξ̂i+1 − ξ̂i) and η̂ = η̂j + q(η̂j+1 − η̂j) where 0 6 p, q 6 1; in effect p, q define
a coordinate system in the (i, j) mesh cell. Then if either A < 0 or B < 0, two of the
conditions in table 5 are satisfied and the intercepts of f = 0 on the sides of the mesh
element are defined by the values of p and q listed.

If the intercepts of ∂x̂/∂ξ̂ = 0 are denoted by
(
p1
ξ , q

1
ξ

)
and

(
p2
ξ , q

2
ξ

)
and the intercepts

of ∂x̂/∂η̂ = 0 by
(
p1
η , q

1
η

)
and

(
p2
η , q

2
η

)
, the equations for the approximating lines to

∂x̂/∂ξ̂ = 0 and ∂x̂/∂η̂ = 0 in the (i, j) mesh cell are given by

q = mξp+ Cξ , q = mηp+ Cη , (B 1)

respectively, where

mξ =
q1
ξ − q2

ξ

p1
ξ − p2

ξ

, mn =
q1
η − q2

η

p1
η − p2

η

; Cξ = q1
ξ − mξp

1
ξ , Cη = q1

η − mηp
1
η . (B 2)

These two lines intersect at a point defined by

ps =
Cξ − Cη

mη − mξ
, qs = mηps + Cη . (B 3)

If (ps, qs) are such that 0 6 ps, qs 6 1, then a singularity is said to have been detected

in the (i, j) mesh cell at (ξ̂s, η̂s) where

ξ̂s = ξ̂i + ps(ξ̂i+j − ξ̂i), η̂s = η̂j + qs(η̂j+i − η̂j), (B 4)

and the calculations are terminated. A third-order, six-point interpolation formula
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Condition p q

fi,jfi+1,j 6 0 afi,j 0
fi+1,jfi+1,j+1 6 0 1 afi+1,j

fi,j+1fi+1,j+1 6 0 afi,j+1 1
fi,jfi,j+1 6 0 0 afi,j

Table 5. Intercepts of f = 0; for the product fk,ℓfm,n a =
(
fk,ℓ − fm,n

)−1
.

(Abramowitz & Stegun 1972) was used to determine the value of x and u at (ξ̂s, η̂s),
hence providing the singularity location xs and velocity us.

In practice, this algorithm detects a singularity at two very close locations, one

each in two adjacent elements. The reason for this is that the two curves ∂x̂/∂ξ̂ = 0
and ∂x̂/∂η̂ = 0 generally meet and then cross one another within one time step. In
principal, the accuracy of the estimate may be increased by subdividing the final time
step into progressively smaller time intervals; however, this is usually not necessary.

Appendix C. Disappearance of the separation singularity

In this Appendix, a brief theoretical account of the disappearance of the separation
singularity as β → βc is given. The structure of the boundary-layer solution near
separation has been described by Van Dommelen (1981), Elliott et al. (1983) and
Cassel et al. (1996) and may be summarized as follows. Assume a singularity occurs
at xs and time ts and define

T̃ = ts − t, X̃ =
x− xs −K(ts − t)

(ts − t)3/2
, Ỹ = y(ts − t)1/4, (C 1)

u = −K + (ts − t)1/2Ũ(X̃, Ỹ ). (C 2)

The above describe the streamwise velocity field in a central inviscid region bounded
by a shear layer near the wall and one in the upper part of the boundary layer. As
t → ts, the coordinate system moves upstream (for K > 0) and a focusing occurs in

physical space near xs. The solution for the perturbation velocity Ũ may be expressed
in a number of ways and is of the form

|Ũ|3/2
τ̃

= ±G(φ̃), φ̃ = − Ũ3

Ũ + X̃
, (C 3)

where τ̃ = ∂Ũ/∂Ỹ is the shear stress and

G = Λ

(
|φ̃|

|φ̃− φo|

)1/2

. (C 4)

Here the constants Λ and φo, as well as xs and ts, can only be evaluated, in general,
from a global numerical solution. As described by Cassel et al. (1996), this solution

leads to an implicit relation for Ũ of the form

Ỹ − Ỹo(X̃) = ±
∫ Ũ

Ũo

dξ
{
ξ3 + φo

(
ξ + X̃

)}1/2
, (C 5)
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β xs Ue(xs) us = −K um y
b

yt ym ye

1.6 3.41 −0.53 ≃ 0 −0.24 9.4 41.6 51.5 56.8
1.7 3.34 −0.394 −0.039 −0.23 10.26 49.2 56.8 63.3
1.8 3.27 −0.256 −0.12 −0.23 9.63 56.8 67.1 76.2
1.9 3.20 −0.117 −0.12 −0.12 15.6 large large large

Table 6. Raw data estimates of solution parameters near separation for problem described in § 5.

where the + and − signs apply for Ỹ > Ỹo and Ỹ < Ỹo, respectively; here Ỹo(x̃)
denotes a central line (where τ̃ = 0) that bisects the separating portion of the boundary
layer and

Ỹo(x̃) =

∫ ∞

Ũo

dξ
{
ξ3 + φo

(
ξ + X̃

)}1/2
. (C 6)

The equation of the location of the upper shear layer bounding the separating fluid

is Ỹ = 2Ỹo(x̃).
The constants Λ and φo can be scaled out by transformations.

X̃ = φ1/2
o X, Ỹ = Λφ−1/4

o Y , Ũ = φ1/2
o U, φ̃ = φoφ, (C 7)

and it is easily shown that equations (C 3)–(C 7) apply with the tildes removed and
with φo = 1. It follows from equations (C 2) and (C 7) that if φo → 0, the separation
singularity is suppressed. The numerical results suggest that as β → βc, the separation
singularity disappears; the results of § 5 are the most detailed of the two problems
considered, and from these, the critical value is estimated to be βc ≃ 1.91. Velocity
profiles at the instant prior to separation are shown in figure 4, and from the numerical
results, the estimates shown in table 6 were obtained. Here y

b
denotes the location

where the profile becomes flat nearest the wall; this value is a measure of the vertical
extent of the lower shear layer bounding the central inviscid region. The quantity us
is the leading-order, almost uniform, velocity in the central region. In addition, yt, ym
and ye denote the approximate y locations corresponding to: (i) the top of the central
inviscid region (where the profile first deviates from the uniform central value of −K),
(ii) the middle of the upper shear layer, and (iii) the top of the upper shear layer
(where the profile again becomes uniform and almost equal to Ue(xs)), respectively;
um denotes the velocity in the middle of the upper shear layer at y = ym. It may be
noted that some of these quantities are very difficult to estimate from the numerical
solution with good accuracy, particularly as β → βc; for β = 1.9, it can only be said
with any certainty that yt, ym and ye are very large.

The constant φo can be related to certain spatial and temporal derivatives of x(ξ, η, t)
from the Lagrangian solution at separation using the results detailed in Cowley et al.
(1990), but it is very difficult to estimate φo accurately in this way. However the clear
suggestion of the numerical results is that φo → 0 as ∆ = βc − β → 0. In view of
equations (C 7), this explains why, as ∆ → 0: (i) the separation appears to weaken,
(ii) the zone of separation is confined to a thinner region in the x-direction, thereby
requiring the complicated remeshing algorithms, and (iii) the separation occurs further
from the wall and over an expanded vertical direction. For the scalings shown in (C 7)
to apply, then each of the ratios shown in table 7 should remain approximately
constant for a fixed small value of ts − t. It may be observed from table 7 that the
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∆ ∆1/4yb ∆1/4yt (us − um)∆−1/2 y2
m(us − um)

0.31 7.0 31 0.43 415
0.21 6.9 33 0.42 462
0.11 5.5 33 0.33 355
0.01 4.9 — — —

Table 7. Comparison of the numerical results of § 4 with the expected terminal singularity
structure.

agreement with the proposed terminal structure is quite reasonable, even within the
considerable limitations of this comparison.

The solution (C 3) and (C 4) is independent of the local pressure gradient as the term

associated with this quantity becomes small as T̃ → 0; thus the separating boundary
layer ‘forgets’ the external pressure field which initially provoked the separation. To

investigate the potential influence of the pressure gradient, assume that Ũ in equation

(C 2) is also a function of T̃ . Using a similar development as in Cassel et al. (1996),

it can be shown that in Crocco variables τ̃ = τ̃(X̃, Ũ, T̃ ) = ∂Ũ/∂Ỹ satisfies

(
3
2
X̃ + Ũ

) ∂τ̃

∂X̃
+
{

1
2
Ũ − µ(T̃ )1/2

} ∂τ̃

∂Ũ
− T̃

∂τ̃

∂T̃
= 3

4
τ̃, (C 8)

where

µ = −Ue

∂Ue

∂x
=
∂pe

∂x
(C 9)

is the pressure gradient evaluated at x = xs. It may be deduced that the general
solution of this equation is of the form

|Ũ − µT̃ |3/2
τ̃

= G(α̃, φ̃), (C 10)

α̃ = ŨT̃ 1/2 − µT̃ , φ̃ = − (Ũ − 1
2
µT̃ 1/2)3

X̃ + Ũ − 1
2
µT̃ 1/2

. (C 11)

For T̃ → 0, α̃ → 0 and G must approach equation (C 4). Define

U = φ1/2
o

{
Ũ − µT 1/2

}
, T = φ−1

o T̃ , (C 12)

along with the remaining scalings defined in equation (C 7). It follows that α̃ = O(φo)
as φo → 0 and that the unsteady solution is

u = −K + µφoT + φ1/2
o T 1/2U(X,Y , T ) + ..., (C 13)

where U satisfies

|U|3/2/τ = ± G(φ), φ = − U3

U +X + 1
2
µT 1/2

, (C 14)

τ = ∂U/∂Y and G is given by equation (C 4) (with Λ = φo = 1).
Consider now a simple Taylor expansion of the free-stream condition u → Ue(x)

for T̃ fixed and small; using equation (C 1) and T̃ = φoT , this yields

u → Ue(xs) −KφoTU
′
e(xs) + O(φ3/2

o T 3/2), (C 15)
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which describes the solution above the upper shear layer in the separation structure.
On the other hand, equation (C 13) describes the solution in the central region below
the upper shear layer. It is evident that the two expressions agree as φo → 0 provided

K = −Ue(xs). (C 16)

Consequently, the velocity in the central zone and the mainstream velocity must be in
the same direction for this situation to occur, and the upper shear layer then vanishes
as indicated in figures 3 and 4. The apparent unsteadiness in the first two terms in
equation (C 13) is actually the (steady) free-stream behaviour in the local moving
frame.

It is of interest to consider the solution in the shear layers bounding the central
region where the motion is governed by the classical boundary-layer equations

∂u

∂t
+ u

∂u

∂x
+ ṽ

∂u

∂ỹ
= −∂pe

∂x
+
∂2u

∂ỹ2
,

∂u

∂x
+
∂ṽ

∂ỹ
= 0. (C 17)

For the bottom shear layer ỹ = y, ṽ = v, while for the upper shear layer

ỹ = y − β(x, t), ṽ = v − u
∂β

∂x
− ∂β

∂t
, (C 18)

with β(x, t) = 2Ỹo(X̃)(ts − t̃)−1/4 denoting the equation of the moving upper shear
layer. The solution in each shear layer is effectively of the form

u = uo(ỹ) + (ts − t)3/2u1(X̃, ỹ) + ... (C 19)

ψ = ψo(ỹ) + (ts − t)3/2ψ1(X̃, ỹ) + ..., (C 20)

where X̃ is defined by equations (C 1). Here ui = ∂ψi/∂y and uo and ψo are functions
which are dependent upon the initial conditions (Cowley et al. 1990), but must satisfy
uo = ψo at ỹ = 0 and uo ∼ −K + 4/ỹ2 as ỹ → ∞ for the lower shear layer; for the
upper shear layer

uo ∼ −K +
4

ỹ2
as ỹ → −∞; uo ∼ Ue(xs) as ỹ → ∞. (C 21)

Upon substitution in equation (C 17), it may be confirmed that

(K + uo)
∂2ψ1

∂ỹ∂X̃
− ∂ψ1

∂X̃
u′
o = −µ+ u′′

o , (C 22)

which has the solution

∂ψ1

∂X̃
= (K + uo)

∫ ỹ

0

(
u′′
o − µ

)

(uo +K)2
dỹ + C(uo +K). (C 23)

For the lower shear layer, C = 0 to satisfy the solid wall condition, and for the upper

shear layer, C is a function of X̃, which may be related to displacement effects of the

layers below. It may be verified that ∂ψ1/∂X̃ ∼ −µỹ3/20 + ... as ỹ → −∞, giving rise
to a lower-order term O(ts − t) in the central region.

Now suppose that as β → βc, uo + K becomes almost uniform and small in the
upper shear layer, namely uo + K = O(̃ε) for ε̃ small, as suggested by the results in

figure 4. It follows from (C 23) that ∂ψ1/∂X̃ ∼ −µ̃ε−1X̃ in the upper shear layer. As
β → βc, φo → 0 and with ts − t = O(φo), it follows from (C 7) that the expansion
(C 19) becomes disordered when ε̃ = O(φ2

o); in this circumstance, the upper shear
layer becomes nonlinear as new physics come into play.
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It appears that a marginal separation structure exists as β → βc, the details of
which may be similar to cases considered by Cowley et al. (1990). For β > βc, an
exact solution is given by (C 13) with U = 0, and the solution is apparently free of
singularities.

REFERENCES

Abramowitz, A. & Stegun, I. 1972 Handbook of Mathematical Functions. Dover.
Bhaskaran, R., Smith, F. T. & Timoshin, S. N. 1995 The appearance of boundary-layer instabilities

as a velocity minimum develops. Proc. R. Soc. Lond. A 451, 331–339.
Cassel, K. W., Smith, F. T. & Walker, J. D. A. 1996 The onset of instability in unsteady

boundary-layer separation. J. Fluid Mech. 315, 233–256.
Chipman, P. D. & Duck, P. W. 1993 On the high Reynolds number flow between non-coaxial

rotating cylinders. Q. J. Mech. Appl. Maths 46, 163–192.
Cowley, S. J., Hocking, L. M. & Tutty, O. R. 1985 The stability of solutions of the classical

boundary-layer equations. Phys. Fluids 28, 441–443.
Cowley, S. J., Van Dommelen, L. L. & Lam, S. T. 1990 On the Lagrangian variables in descriptions

of unsteady boundary layer separation. Phil. Trans. R. Soc. Lond. A 333, 343–378.
Doligalski, T. L., Smith, C. R. & Walker, J. D. A. 1994 Vortex interactions with walls. Ann Rev.

Fluid Mech. 26, 573–616.
Doligalski, T. L. & Walker, J. D. A. 1984 The boundary layer induced by a convected two-

dimensional vortex. J. Fluid Mech. 139, 1–28.
Ece, M. C., Walker, J. D. A. & Doligalski, T. L. 1984 The boundary layer on an impulsively

started rotating and translating cylinder. Phys. Fluids 27, 1077–1089.
Elliott, J. W., Smith, F. T. & Cowley, S. J. 1983 Breakdown of boundary layers (i) on moving

surfaces; (ii) in semi-similar unsteady flow; (iii) in fully unsteady flow. Geophys. Astrophys.
Fluid Dyn. 25, 77–138.

Glauert, W. B. 1957 The flow past a rapidly rotating circular cylinder. Proc. R. Soc. Lond. A 242,
108–115.

Koromilas, C. A. & Telionis, D. P. 1980 Unsteady laminar separation: an experimental study. J.
Fluid Mech. 97, 347–384.

Lam, S. T. 1988 On high-Reynolds-number laminar flows through a curved pipe, and past a rotating
cylinder. PhD Thesis, Imperial College, University of London.

Moore, D. W. 1957 The flow past a rapidly rotating cylinder in a uniform stream. J. Fluid Mech.
2, 541–550.

Moore, F. K. 1958 On the separation of the unsteady laminar boundary layer. In Boundary Layer
Research (ed. H. G. Gortler). Springer.

Nikolayev, K. V. 1982 Boundary-layer separation on a rotating cylinder in the flow of an incom-
pressible fluid. Uch. Zap. TsAGI 13, 32–39.

Peridier, V. J., Smith, F. T. & Walker, J. D. A. 1991 Vortex-induced boundary-layer separation.
Part 1. The limit problem Re. J. Fluid Mech. 232, 99–131.

Rott, N. 1957 Unsteady viscous flow in the vicinity of a stagnation point. Q. J. Appl. Maths 13,
444–451.

Sears, W. R. 1956 Some recent developments in airfoil theory. J. Aeronaut. Sci. 23, 490–499.
Sears, W. R. & Telionis, D. P. 1975 Boundary-layer separation in unsteady flow. SIAM J. Appl.

Maths 28, 215–235.
Shen, S. F. & Wu, T. 1990 Unsteady separation over maneuvering bodies. AIAA J. 28, 2059–2068.
Smith, C. R. & Walker, J. D. A. 1995 Turbulent wall-layer vortices. In Fluid Vortices (ed. S. T.

Green), pp. 235–290. Kluwer.
Smith, C. R., Walker, J. D. A., Haidari, A. H. & Sobrun, U. 1991 On the dynamics of near-wall

turbulence. Phil. Trans. R. Soc. Lond. A, 336, 131–175.
Smith, F. T. 1982 On the high Reynolds number theory of laminar flows. IMA J. Appl. Maths 28,

207–281.
Sychev, V. V. 1987 Izv. Akad. Sci. USSR Mekh. Zhidk. Gaza, 43.
Telionis, D. P., Tsahalis, D. Th. & Werle, M. J. 1973 Numerical investigation of unsteady

boundary-layer separation. Phys. Fluids 16, 968–973.



38 A. T. Degani, J. D. A. Walker and F. T. Smith

Telionis, D. P. & Werle, M. J. 1973 Boundary-layer separation from downstream moving bound-
aries. Trans. ASME J. Appl. Mech. 95, 369–373.

Tsahalis, D. Th. 1977 Laminar boundary-layer separation from an upstream moving wall. AIAA
J. 15, 561–566.

Van Dommelen, L. L. 1981 Unsteady boundary layer separation. PhD Thesis, Cornell University,
Ithaca, NY.

Van Dommelen, L. L. 1991 Lagrangian Description of Unsteady Separation. Lecture Notes in
Mathematics, vol. 28, pp. 701–718. Springer.

Van Dommelen, L. L. & Cowley, S. J. 1990 On the Lagrangian description of unsteady boundary
layer separation. J. Fluid Mech. 210, 593–626.

Van Dommelen, L. L. & Shen, S. F. 1980 The spontaneous generation of the singularity in a
separating laminar boundary layer. J. Comput. Phys. 38, 125–140.

Van Dommelen, L. L. & Shen, S. F. 1982 The genesis of separation. In Proc. Symp. on Numerical
and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci). Springer.

Van Dommelen, L. L. & Shen, S. F. 1983 Boundary-layer separation singularities for an upstream
moving wall. Acta Mech. 49, 241–254.

Williams, J. C. 1977 Incompressible boundary-layer separation. Ann. Rev. Fluid Mech. 9, 113–144.
Wu, T. 1991 Numerical studies of unsteady laminar boundary-layer separation over impulsively-

started moving objects. PhD Thesis, Cornell University, Ithaca, NY.


