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steady Transonic Flows with Shock Waves
in an Asymmetric Channel

John S.-K. Chan* and T. C. Adamson Jr.T
The University of Michigan, Ann Arbor, Mich.

Two-dimensienal inviscid, unsteady transenic flows with shock waves in asymmetric channels having ar-
bitrary wali shapes are investigated, using the method of matched asymptotic expansions. With the exception of
thin regions in the neighborhood of both the channel throat ang the shock wave, solutions found using linearized
governing equations are valid. In the region enclosing the shock wave, an inner solution, which satisfies the
shock jump conditions and matches with the outer solutions, is presented. The shock shape is found as part of
tie solution, which is obtained numerically using the method of integral relations. A composite solution,
uniformly valid throughout the channel, and the relation between the instantaneous shock wave position and

back pressure far downstream are presented.

Introduction

rEYHE analysis of two-dimensional transonic channel flows
with shock waves has recently been the subject of several
papers, '® culminating in a description of solutions found for
unsteady flows with arbitrary initial conditions and wall
wapes.® However, the solutions, no matter whether the
h nnels are symmetric or asymmetric, are valid for
trear ,!m= curvatures small enough that, to the scale of the
hannel width, the shock waves are planar. In this paper, on
the other hand, a lower order (larger) curvature is considered
in an asymmetric channel, so that strong cross-channel
gradients in velocity and pressure are found in the lowest
order solutions. As a result, the shock wave is not planar; its
shape is unknown and must be found as part of the solution.
Two approaches have generally been used in constructing
ical solutions for transonic channel flows with shock
waves. In one, similarity solutions of the transonic small-
disturbance equation are sought through various trans-
formations, resulting in solutions for steady! or unsteady?
§ The solutions thus obtained, however, satisfy only very
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to the physﬁ.al probliem under consideration, and
ions are valid in a thin neighborhood of the sonic
H the other approach, the method of matched asymp-
totic expansions is used to derive governing equations for each
order of approximation from the general inviscid flow
cquations for various regions in the channel. Adamson,
Messiter, and Richey* showed that, in the main part of the
channel, this method gives a systematic derivation of the
power series expansion solution postulated by Szaniawski and
used, for example, in the paper by Kopystynski and
Szaniawski.? In this method, arbitrary wall shapes may be
specified, and in the extension to unsteady flows,% arbitrary
i i conditions may be considered. It is this approach which
d in the present paper.
e following, the flow is taken to be two-dimensional,
essible, and transonic. The gas is assumed to follow the
gas law and have constant specific heats. Upstream of
the l“@ck wave the flow is considered to be irrotational, and
the Revnolds number is taken to be large enough that viscous
effects are negligible. The unsteadiness in the flow is assumed
io arise as a result of disturbances impressed upon the flow
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dary conditions, which may or may not.

downstream of the region under consideration. A more
detailed description of the analysis which follows may be
found in Ref. 7.

Channel Flow Solutions

The solution is written in terms of time-dependent per-
turbations from a steady, uniform, irrotational, sonic ﬁsm
The coordinate system and notation used are iliustrated in
Fig. 1. Velocity components ¥ and v and the sound speed g are
made dimensioniess with respect to 4*, the sound speed in the
undisturbed flow (overbars indicate dimensional quantities);
space variables x and y are referred to L, the channel half
width at the minimum area; and time 7 is made dimensioniess
with respect to L/a*. The pressure, density, and temperature,
denoted by P, p, and 7, respectively, are made dimensioniess
with respect to their va!ues in the undisturbed flow. The
region being considered is that for which x=0(1} and
y=0(1); that is, it extends downstream of the throat for
distances of the order of the channel half-width. We introduce
a small parameter, e<1, which is of the order of the typical
percentage difference between the flow velocity and its critical
sonic value. Thus, u—1=0(e) for x=0(1)}. The flow en-
tering the region under consideration is irrotational and
boundary-layer effecis are negligible. Moreover, because the
flow is transonic, shock waves are weak enough that it can be
shown’ that one can define a velocity potential to the order
considered here.

Unsteady flows may be characterized by prescribing the
relative orders of the characteristic time associated with the
imposed flow disturbance, T,,, and the characteristic flow
time, £/4*. In this present work, the so-called slowly-varying

time regime is considered, where T, »L/g*. Hence, 2
parameter 7 is introduced as follows,

T=rt {la}

=Ta/(L/a%) (16

where 71 and ¢=0(1}. The slowly varying time regime
covers a range of values for T, which are found in many
physical problems.% The relationship between r and e depends
upon the relative orders of T, and the time it takes a pulse to
move upstream from the point at which a disturbance
originates to the location under consideration, e.g., the point
at which a shock wave is located. Thus, a disturbance pulse
travels upstream at sonic velocity relative to the flow and,
therefore, at an absolute velocity u, =a—u=0{¢). Hence,
the time required for the disturbance to travel a distance L is
O(I:/ed*), and the desired time ratic is 7 ,,/(L/ca*) =rie. It
is seen, therefore, that if the two times are of the same order,
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Fig. 1 Sketch of asymmetric channel flow, showing coordinate
system.

r=0(e). This is the case considered in Ref. 6. Here, we
consider the case where T, > L/ (ed*), and, in fact, define 7

as
r=(ke?) @

where £ is a constant of order unity. Physically, this means
that fiow disturbances are communicated ‘‘instantaneously”
to the shock wave.

The governing equations are the gas dynamic equation and
the Bernoulli equation:

(@~ 22, + (a2 ~82)®,,—28,8,8,, — Prr

—20,8,7—28,8,,=0 (3a)
®r+ 1 (82+82) +a¥/(y—D)=(y+1)/2(v=1)  (3b)

where subscripts », y, and T indicate partial differentiation. It
can be shown’ that the constant on the right-hand side of Eq.
(3b) is valid to and including terms of order €?, the highest-
order terms needed here. Since the solutions are written in
terms of perturbations from a uniform flow, it is convenient
to write & as

{x,y,T)=x+6{xy,T) 4

where ¢ is the perturbation potential. Then, using Eq. (3b) for
a? and Eq. (4) for @, Eq. (32) may be written as:

¢' —(7+1 [\¢x+¢x/2)¢’xx+(¢ /2)¢yy]
+2(8, +¢:0, )00 + (Y= D (@, +85/2)$,, + (¢5/2) 6]
+2(i+¢1)¢xT+(’Y_-"}¢T(¢xx+¢yy)+2¢y¢yT+¢TT (5)

The boundary conditions at the walls of the channel are, for
stationary wallis,

by (63w T) =yu I+, (5,74, T)] 6)

where y, =dy,/dx. For the asymmetric channels under
consideration, and with the coordinate system as shown in
Fig. I, the wall shape y,, is written as

Ju=21+ef (x) 2215 (%) Y

where f; (0) =£,{0)=f}({0)=13(0} =0, and where f7(x) and

7{x) are continuous and nonzerc at x=0. The upper and
lower signs refer to the upper and lower walls, respectively. It
is seen that y=ef;(x) is the equation for the channel cen-
erline and +(1+¢2f,(x)) are terms which describe walls
symmetric with respect to the centerline, so that ¢ is a measure
of the radius of curvature of the channel at x=0, the channel
throat. Thus, the channel curvature is an order of magnitude
larger than that considered previously,® and as will be seen,
this leads to completely different flow structures and shock
shapes.
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An asymptotic expansion of ¢ is written as foliows:
¢ (x,y, T) _=é¢1 (X,y,t) +52¢2 (x,y,t) +63¢3 (X,J’,l‘) +.. (8)

Substitution of Egs. (1, 2, and 8) into Eq. (5) vields the
following equations for ¢, ¢,, and ¢;.

by =0 (%a)
G2y =[(y+1)¢5:/2+¢3,], . {%b)

Say =Ly + 1) 6 1obon +2($ 1302y +Kb1,)
+ Wy = 2) (y+ D i Hvnd il — (v + Dédd,./2 (90)
The boundary conditions for Eqs. {9) are found by sub-

stituting Egs. (1, 2, 7, and 8) into Eq. (6). Thus, to first order,
it is found that

D (x, 2L} =f7{x) (19)

" where the prime indicates differentiation with respect to x.

The solution to-Eq. (9a), subject to the boundary conditions
in Eq. (10}, is

b, =f1(X)y+h(x1) -1y
where A, (x,1) is a function of integration. If the solution for

¢;, Eq. (11), is substituted into Eg. {9b), the resulting
equation may be integrated to give a solution for ¢,. Thus,

b2 (3, t) ={(y+1)/12} fifip?
Hy+ D161 Th) 9 + (7)) 2
Fy+ D) 720 ) Py P+ g () y+ By (x,0) (12)
where g, and 4, are functions of integration. If the soluticns
for ¢, and ¢, are substituted into the boundary condition,
Eq. (6), where it should be noted that evaluation of any

function at y,, implies expansion using Eq. {7), then one finds
equations for g, and #,,. Thus,

o~
[y
Lad
£

g0ty =f" R —ly+ 13 /21(fThp )«

hiu=x={ QL= D/ (y+ D +6, ()= (1H2731" (13b)
where the equation for #,, has been integrated once, and B{¢)
is the resulting function of integration; f; and f, are both
functions of x and defined in Eq. (7). It is seen from Eq. {12}
that, in order to complete the solutions to second order, it is
necessary to find A, (x,r). This is accomplished by sub-
stituting the solutions for ¢, and ¢, inte Eq. (¢}, integrating
once to obtain ¢;,, and substituting the resulting equations
into the boundary condition, Eq. (6). One finds that

IN16=nii2=fift

—YUN Y3+ U2+ D /157 1R

hoe=7(y+ D{UTY 1" 1360+ (fFif T~
+{(3/2~v) R,

= k/(v+ D)) a8/ Ay, (14)

where 8, (¢) is, again, the function of integration. Finally,
then, the solutions for w and v are, to second order,

u=d, =I+elfiy+h, )+ {(y+ DU 31"y 124
Hy+ D UThi) w77 16+ (U1 2+ ((r+ 1) 123 R0 07 /2

+(fllh1x_[(7+1)/2](flﬂ ix)x)xy'i'th}"L--- (}.53)
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Fig.2 lsoiachf corresponding to Eq. (15a) when 8, > (f7)2/3; V=
sl+ex?/2xe? [1+20(y + 1)/$1x2/2, 8,=5/12, e=0.1. a)+ sign
taken for all x in Eq. (13b}, b) — sign taken for all x in Eq. (13b).

-10

b}

~ Fig. 3 [Isotachs corresponding to Eq. (i5a) when 3, =(f}’)2 /3=1/3,

for some wall shapes and ¢ as in Fig. 2. a) + sign for x<0 and — sign
for x>0 in Eq. (13b), b) — sign for x<0 and + sign for x>0 in Eq.
(13b).

v=>,=¢f] +e’ L (y+ DIUTI 1Y /6
+ D FThp) Y2 122+ (UD 2+ ((r+ 1 12) i) Ly
+ih =y +Y/2VUTh ) )+ (15b)

where 4, and h,, are given by Eqs. (13b) and (14), respec-
tively, and 3; and B3, are to be determined from the initial
conditions of the problem under consideration.

Before proceeding to the consideration of flows with shock
waves, if is of interest to establish the range of flow patterns
covered by the solutions represented by Egs. (15). First, it
should be noted that in 4,, [Eq. (13b)] the term B, — (f3) 2/3
cannot be negative, since the remaining terms under the
square root are zero ‘at x=0. If we first consider the case
where 3, — (f7}?/3>0, and also consider the solution for u
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" Sonic line 4Y ,

b}

Fig. 4 Isotachs corresponding to Eq. (15a) when 3, = ;’)2/3= 1/3,
for same wall shapes and ¢ as in Fig, 2, a) + sign taken for all x in Eq.
(13b}, b) — sign taken for all x in Eq. (13b).

[Eq. (152)] only up to terms of order ¢, then if the upper {(+)
sign is chosen for all x in Eq. (13b), the resulting flow is
supersonic, except for a possible subsonic pocket existing in a
region around x=0, as shown in Fig. 2a. If, on the other
hand, the lower (—) sign is chosen for all x in Eq. (13b}, one
obtains a subsonic flow, except for a possible superscnic
pocket around x=0, as shown in Fig. 2b. In both cases, thé
pocket enclosed by the sonic line grows as 8, - (f7)?/3
decreases. Until 8; — (f7)2/3=0, no sign change at x=0 can
be tolerated, because the sonic line {#=1) does not pass
through - (0,0). When 8;,—(f7)2/3=0, depending upon
whether the sign in Eq. (13b) changes or remains unchanged
as x passes through zero, the sonic line either returns to the
same wall (Figs. 3a and 3b) or crosses the channel to the
opposite wall (Figs. 4a and 4b). The gradients in velocity, and
thus in pressure, temperature, etc., seen in these flow pictures
illustrate the very interesting changes which take place in the
flow when a radius of channel curvature of order ¢~/ is
considered, as opposed to the radius of curvature of order ¢ =2
considered in Ref. 6. »

it can be shown’ that for x= O(e}, the terms of order ¢ and
e? in ¥ may become of the same order, casting doubt upon the
validity of the asymptotic expansions in this region. However,
as shown in Refs. 4 and 5, this possible lack of uniform
validity for the asymptotic expansions is not a seriocus
problem, the difficulty disappearing, for example, for walls
which vary as x? in the region where x=O(e¢). Hence, the
throat region will not be considered in this paper.

The solutions presented thus far were derived for {lows with
no shock waves. It is of interest now to analyze cases where
shock waves exist and to ascertain if and at what order these
solutions break down. We choose, for illustrative purposes,
those flows for which 8, — (f/)?/3 =0, shown in Figs. 3b and
4a. In these cases, in Eq. (13b), the upper (+ ) sign (supersonic
flow) is used downstream of the throat but upstream of the
shock, with the lower {—) sign {subsonic flows) holding
downstream of the shock; the sign upstream of the throat
depends upon whether the flow is subsonic {accelerating, Fig.
4a) or supersonic {decelerating, Fig. 3b}. Similar results hold
for other sign combinations.

If the shock position is, to lowest order, x, =x, (¢} +...,
then from Egs. (1a) and (2), it is seen that the shock velocity
dx,/dT is of order ¢?. Hence, to order ¢, the shock polar
equation, which reduces to the Prandil relation, may be
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written in terms of absolute velocities. Thus,
Ujg= —HUpy (16)

where u; =¢,,, and the subscripts ¥ and 4 denote values
immediately upstream and downstream of the shock wave,
respectively. Now, if Eqs. (11) and (13b) are used to write u,,
and u,, at x,, where the upper sign in Eq. (13b) is used for u,,
and the lower for u,,, it is seen that the shock wave jump
condition, Eq. (16), is not satisfied. Thus, even in first order,
the shock wave jump conditions are not satisfied, as opposed
to the case for flows with smaller curvature,® and an inner
region about the shock must be considered.

Solutions in the Shock Wave Region
In the inner region containing the shock wave, the solutions
must satisfy the jump conditions across the shock, and match
with the outer channel flow solutions in the appropriate limit.
This region may be expected to extend across the channel, but
to be very thin in the flow direction. Then, in the inner region,
we define the independent variables as

X*=(x—xg ()} (y+ 1) %e° (17a)
y =y (17b)
T*=T=q7t* (17¢)

where, again, x, (¢) is the shock location to lowest order and ¢
is to be determined. The inner region velocity potential is
defined as

P x* y*, TY=® (00, T) /(v +1) %e” —Xpx* us)
where ¥, =dx;/dT=ke?dx,/dt. That is,

=L =u—x, {19a)

v* =8k =v/(y+1)%e° (19b)

In view of the expansion for &, Eg. (4), we write the ex-
pansion for ®* as follows:

*(x* y* , TY=(I —Xp)x* + o*(x*,y*, T*) + x5/ (y+1) €°
(20
where ¢* (x*,»*,T*) is the inner perturbation potential. .

The proper form for the expansion of ¢* results from the
application of three conditions which must be fulfilled. Since
it is expected that the fluid acceleration in the inner region is
of importance and will be found in the lowest-order governing
equation for ¢*, in order that changes introduced by the
shock may be accommodated, the first condition is that
b7 @7rep e of the same order as ¢7,.,«. The next condition is
given by the matching conditions which are to be met as
[x*} —oco. They are found by expanding the outer solutions,
Eqgs. (15), about x=x, and substituting the resulting
equations written in terms of inner variables into Egs. (19).
The final condition is imposed by the boundary conditions at
the wall. Since y—y, =0 at the walls, then also the Eulerian
derivative of this function, D(y—y,)/DT=0 at the walls,
This equation, which may be used to derive Eq. (6), is
transformed using Egs. (17, 19, 20} and Eq. (7) expanded
about x,, such that it is valid in the moving coordinate system
associated . with the inner region, and gives the desired
boundary conditions. The three conditions lead to o=% in
Eq. (17a), and :

ety Ty =" floy*/(y+ 1) ¥
+edt (X710 + e pY, (X yh )+l 21

where fi, =717 (%) .
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The governing equation for ¢7 in the inner region may be
derived from Eq. (5) by using Eqgs. (4, 18, 20, 21, and 17) with
o= Y. Thus,

¢7x‘ ¢7x‘x‘ - ¢7y‘y' =0 (22)

The matching conditions to be used as Ix*! —o0, found as
described previously, are

G1x =S10¥™ £hx (X0) (233)
by =Slox* (23b)

where A, (x,) is given by Eq. (13b) with the upper ( +) sign,
and where the upper and lower signs in Eq. (23) correspond to
the conditions as x*— —oo and x*— + o, respectively. The
boundary conditions at the wall, again found as described
previously, are

&% 1 (X", £ LIT) = fpx” ey

The final condition necessary before solutions in the inner
region may be found are the shock wave jump conditions.
Now, the shape of the shock, x*(y*,¢*), is given in the inner
region by

ax} vy —uy
= - 25
ay* uy—u; (23)

In view of Eq. (21), it is seen that the first term in the ex-
pression for x7¥ is of order of unity and the next is of order ¢ *.
In the inner and outer variables, then, the expression

xs(y:t) "‘xo * - %
—_— =X ,[* — *,f* +eyx *,t* + ...
Aty U= O 2 (0%)

(26)

where x; (y*,t*)=x;(y,t), etc., meets the necessary con-
ditions and agrees with the relation used previously that
X, =X, + ... The function x; is chosen such that x; (— 1,¢) =0;
that is, x, gives the position of the intersection of the shock
wave and the lower wall, and x,; gives the variation of the
shock shape from the normal to the x axis at that point. In
order to find the jump conditions across the shock wave, it is
necessary to write the shock polar equation relative to the
moving shock. The velocity components relative to the shock
wave are #=u—u,, and i =v—v,,, where u and vy, are the
components of the shock wave velocity. It can be shown’ that
Uy =x,+0(e?)y and vy, = O(e/?), and since X, =¢2kdx,/
dr=0(e?), itis seen that if uf=oJ., v} =¢7,, etc., then

G=1teul +e32u,+ ... @73
o= {(y+1)" (v} +e3 0T+ ..) (27

That is, to the order desired, the shock wave velocity does not
appear. Finally, from the energy equation which holds in a
moving coordinate system, it can be shown that’ the
dimensionless critical speed of sound is, in this system,

@ 2=1-2(y=DXp/ (y+1) +... (28)

The jump conditions are found, then, by expanding Egs. (27)
about x} using Eqgs. (26), and substituting these expansions
and Eq. (28) with x,=e’kdx,/d¢ intc the shock polar
equation. The results are’

W= i) = v (uf, —uly) S (uf, +uly) =0 29
It may be noted that the form of expansion derived for u#* and

v*, using boundary and matching conditions, is also con-
sistent with the shock jump conditions.
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It is not difficult to show’ that upstream of the shock wave,
the solutions for ¢ are simply the continuation of the outer
solutions evaluated at the shock wave. That is, one obtains the
physically correct result that no disturbances from the shock
affect the supersomic flow upstream of the shock wave.
Downstream of the shock, however, Eq. {22} must be solved
with the boundary conditions given by the condition at the
walls, Eq. (24), the matching condition as x* — o, Eq. (23a),
and the conditions immediately downstream of the shock
wave, given by Eqgs. (25) and (29). Thus, since both u7,; and
_ v, are found in the first-order jump condition given by Eq.

(29), the shock wave is not planar to this order, and another
equation, Eqg. (25), is necessary to relate the local shock slope
to v}, and uj;. It may be noted that this problem is, therefore,
quite different from those solved previously for channels with
smaller curvature,% where the shock is planar to the lowest
order. In that case, the boundaries and normal derivatives of
the potential at the boundaries were all given, and vj; was
calculated, as was the higher-order shock shape. In the
present case, however, u}; and v}, are related to the shock
shape, which must be found as part of the first-order solution.

It is convenient to write ¢} in terms of the difference
between it an its limiting value as x* — oo, Thus, we define {*
as

¢ =67 — [ffay" — i (%) 1" (30)

Then the governing equation and boundary conditions for the
problem to be solved are:

1oy —hp (Xg) + {5 )y ‘g‘;‘y‘ =0 (31a)
X =xp = -2yt +2(3x,/6y) ¢ (31b)

x*=x; G =203x,/39) [fioy™ + R (x) = (3%, /3y) %)

(3ic)
X*—oo  {h=0 (1d)
yi=x1 G5-=0 (3le)
where
) ax,  dx} ox
—_— = =—~+4+0 “ 32
i) P oy o oy TOl) 322)
aﬁ - _ vid"__v.iﬁ (32b) -
ay Upg — Uy

and Egs. (15) evaluated at the shock wave, and Eqgs. (19) have
been used to write u7, and v},. Evidently, this problem must
be solved numerically; specific example solutions are
discussed later.

A composite solution, uniformly valid throughout the
channel, may be constructed by adding the outer and inner
solutions and substracting those (matching) terms common to
both. In view of the definition of {*, these composite
solutions are thus, to first order,

u=Il+e(flythn,+)+... (33a)
v=efj+e3 2 (y+ 1) HE (33b)

where h,, 1s given by Eq. (13b) with the plus sign, and {*=0
upstream of the shock, x<x;. Also, for x<x,, if the flow
accelerates from subsonic to supersonic flow [with the sonic
line passing through (0,0)], then the upper sign is taken in Eq.
(33a); if the flow is supersonic, decelerating flow for x<0 and
accelerating for x>0 with possibly a subsonic pocket.in the
region about x=0, then the lower sign is taken for x<0 and
the upper forx > 0. For x >x;, only the lower sign in Eq. (33a)
is taken. It should be noted that for x*=0(1), Egs. (33)
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reduce to the inner solutions downstream of the shock, while
as x*—oo, *—0, and the outer solutions, to order e, are
recovered.

Solutions for the pressure and density are written in terms
of the solutions for the velocity components through
equations derived from the conservation equations and the
equation for the jump is entropy across the shock wave. Thus,
from the inviscid energy equation, it can be shown’ that the
stagnation or total enthalpy can be written as

T 1 y+1
hy=——+ @ +v?)= ——— +elh,+...
( - +2 (u ve) 2=1) +e'h,,+ {34a)
dx,
b= k—d;‘l (§8 =25, (x5))  x>x, (34b)
hy =0 X< X (34¢;

where A, (x,) is calculated from Eq. (13b) with the plus sign.
The pressure and density are related to the entropy and the
temperature as follows:

Pipy =g s v=D (35a)

P=pT " (35h)

The entropy change of importance is that across the shock
wave, the gradients downstream of the shock being of high
enough order that they are negligible. For transonic flow,
across a shock®

2 2v?
Su= Y (MIZ‘_ )3"_ Y
3{y+ 1) y+1y?

S,— (M2—1)*+...(36)

where, since the shock in this case is in motion, M, is the
retative normal Mach number of the incoming flow. For a
shock described by Eq. (26),

M —T=e(y+ Dy, — (3x,/09) ] 37

where, as mentioned earlier, outer solutions are valid up-
stream of the shock wave. The expansions for P and p can
then be found from Egs. (34a) and (35), where u and v are
found from Egs. (4) and (8) with u; = ¢, and v; =¢;,. Thus,

P=1—eyu; —e’y(v]/24+u;) —y{2(v+ Duy,
— (B /392 /3 ~hy~ (v + Dui/6—u,v2/2
‘v, +uzl+... (38a)
p=1—eu,—ez{(y—l)u3/2+v3/2+u2}
— e[ 2y (y+1) (up, — (8x;/8y) %) /3
—hy—y(2=v)ui/3+(y=Duju;— 2=y uvi/2
+u0, Uzl + ... (38b)

If the composite solutions are used for u; and v; [terms of
order ¢ in Egs. (33)], then Egs. (38) give solutions which are
uniformly valid to order e. A solution for 7 similar to those
given for P and p is easily derived from Eq. (34a).

It should be noted that, if composite solutions are con-
sidered, then immediately upstream of the shock wave P, = —
€vfis, while downstream of the wave P,=-—ey (/7
+¢*,)+... Thus, downstream of the wave, if the wave is
approached by first going to y* = + 1 and then to x* =x,, then
at the wave P, = —eyf7,. However, if the wave is approached
by going to x* = x, first at any y*, and then traveling along the
wave toward y*= =1, P,=eyff;*+.... That is, from Egs.
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{31c) and (31e), dx,;/3y=0at y= & 1, hence, from Eq. (3ib},
$%ry = —2f1p at y= = 1. Thaus, there is a change of sign in P,
across the shock, and since P, «vj,-, the streamline curvature,
this means that downstream of the shock wave, the limiting
value of v},. at the intersection of the shock wave and the
walls depends on the path of approach to the intersection.
This singularity in the solution is similar to that analyzed by
Messiter and Adamson.’

Shock Wave Location

The unsteady perturbations in flow velocity and ther-
modynamic properties in the channel can be caused, for
example, by pressure disturbances in a plenum downstream of
the shock wave. Here, we consider the case where the
disturbances have a characteristic time (inverse of charac-
teristic frequency) of order e ~Z and an amplitude of order ¢°.
As will be seen, this is sufficient to give shock motions with an
amplitude of order unity. .

Since only terms of order €? in P may vary with time, it is
seen from Eq. (38a) that u, is independent of time; hence,
h;=h,;(x). In fact [Egs. (38a) and (15)], the time dependence
first appears in u, through #, =4, (x,¢). As a result, in Eq.
(13b), B3, is a constant and the time dependence of 4, and thus
u; and indeed ¢,, is through 3, (¢). Both 8, and §, may have
different values upsiream and downstream of the shock wave.
Since the time enters the solutions for u only through the
integration function 3, then to order €2, the unsteady motion
may be pictured as a sequence of steady-state solutions for u,
each with different downstream conditions. The velocity
component v, to order €?, is totally time independent [Eq.
(15b)]. From Egs. (38a, 15, and 14), it is seen that specifying
the second-order variation in pressure at a downstream
plenum location is equivalent to setting 3, (¢} downstream of
the shock, say B,;. The fact that time does not appear ex-
plicitly in the solutions valid downstream of the shock wave
[e.g., see the composite solutions given in Eqg. (33)] and ap-
pears only as a parameter in 3, is due to the fact that the
disturbances travel upstream at a speed of order e, while the

. shock moves at a velocity of order €2, and indeed, the order of
the unsteady part of the fluid velocity is ¢?. Thus, the
disturbances travel upstream instantaneously, compared with
the characteristic times under study. It should be noted,
however, that as a result of the motion of the shock [i.e., since
Xy =X, (#)] the first-order pressure, velocity, etc., in the range
of motion of the shock, do change as the shock moves back
and forth; they jump between the steady-state values up-
stream and downstream of a shock wave at the point in
guestion.

The equation from which the instantaneous shock wave
location can be calculated is derived from the principle of
mass conservation applied to a control volume enclosing the
shock wave, Thus, one surface of the control volume, the
sides of which are the channel walls, is located at x=0, (the
throat), and the other at x=X_,, somewhere downstream of
the shock. Then,

3 A & +1 (-y X
&—T{S ” 50 pdxdy}— [ oy | T oudy=0 39
Yw ¢ = yw

where y ! and y denote, respectively, the upper and lower
walls. The integral in the first bracket, from zero to X, is
evaluated in two parts, one upstream of the wave (0 to x,) and
one downstream of the wave (x, to X_.), with the composite
solutions used for u; in the first-order terms of Eq. (38b).
Since d/d7=0(¢?}, and only terms up to third order are
desired, only the first-order term in g is necessary. In the
remaining integrals at x=0and x=X_, Eqgs. (15) and (38b) are
used. First-order terms are identically zero, and from the
second- and third-order terms, one finds that

Br=B81a=8, (40a)
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4k dxo  Bou—Ba i)+ his)’

(4 1) & Py ~2y 3 +G(x,)  (40b)
i £7
., ! ax;\2
ot = [ (20 [t
ax, I rox,\*
bfiu\xo)< ay} +§(§) |or (400)

where #},=dh,/dx evaluated at x, and §,, is a constant,
while f3,, is a function of time for the case under con-
sideration, where disturbances are imposed downstream of
the shock wave. If the shock wave has a higher-order cur-
vature, 6x;/0y=0, and G(x,) vanishes; then Eg. (40b) is
reduced t¢ a form equivalent to that g‘vpn by Richey and
Adamson.

Equation (40b) may be used in determining the shock
location, x,=const, for a flow which is steady with a
stationary shock wave. Thus, for a given (now constant) 8,,,
which is equivalent to a given pressure in a plenum down-
stream of the shock wave, the only unknowns in Eq. (40b),
hi, and G{x,}, are functions of x,. Since dx,/3y, which
depends on x, as well as y, as seen from Egs. (31), must be
known if G(xy) is to be calculated, this means that Egs. (31)
and (40) must be solved simultaneously. In principle,
therefore, x, may be calculated for a given 3,,. However, it is
much easier to choose a given x,, solve Egs. (31) and in the
process find x,;, calculate G(x,) and %j,, and then use Eq.
{40b} to calculate the B,, which corresponds to the chosen x,.
After a series of such calculations, x, may be plotted as a
function of §,,. If the downstream pressure varies with time
in a prescribed manner, then B,;=p8,(f) is known and
dxg/df and thus the shock velocity may, in principle, be
calculated from Egs. {31) and {40b), with the shock position,
xo{}, being found then by integration of dx,/df. The
computations may be carried out by first solving Eqgs. (31) for
a sequence of values for x,, so that dx;/dy, hjy, and thus
G{x,) are known essentially as functions of x;. With 8,,(¢#)
and the imitial value of x, known, Eq. (40b) may then be
integrated numerically, thus relating x, to #; i.e., x,{¢) is
obtained. Finally, with x, (¢} known, {* and dx,/3y, and
thus, 4, 2, p, x;, etc., may be obtained as functions of time at
any space point,

Numerical Calculations

In this paper, Eqgs. (31) were solved using the method of
integral relations proposed by Dorodnitsyn. *'? Details of the
computation are available in Ref. 7, so only a brief
description is given here. The inner region in which Egs. (31)
are valid is composed of a region extending from y*= -1 to
y*=+1 in the y* direction and from the curve x*=x} to
x*—ooin the x* direction; x?=x, + ... is to be found as part of
the solution. This region is transformed into a finite region by
the transformation ¥=e ™~ , and this finite region, between
x=0and ¥=x,=¢ %, is divided into N strips. Calculations

‘of the shock shape made with N=2, and compared with the

calculation made with N=3, showed very little difference,
indicating that relatively accurate computations can be made

ith two strips. Equation (31a), written in terms of velocity
components, and the corresponding irrotationality condition
Ul =v ,V. are the governing equations integrated across each
strip, using ANth-order pciy'xomlals in £/%, for interpolation
expressions for ¥} and v}. In the present case, it was found
that if le ¢ =0 is used as a boundary condition and the
method of integral relations applied, then {}. is not zero as
x*-»o. That is, apparently due to the approximations
inherent in the method, and the effects of the singularity at the
shock-wall interaction, there is an error in the v velocity as
x*—oo, Rather than accept this error, the condition {}- —0 as
x*—oo was enforced and the irrotationality condition was
integrated once across the whole region rather than across
each of the two strips separately.
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Fig. 5 First-order velocity component profiles downsiream of the
shock wave at various times for channel walls given by Eq. (43) and
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Fig. 6 Kirst-order velocity component profiles at various positions
downstream of the shock at 7=0 for channel walls given by Eq. (43)
and shock lecation as in Eq. (44), qb’,‘y. (,y*,0)=0,y=1.4.

Using the two-strip method, one finds a nonlinear dif-
ferential equation for the shock shape; since time enters only
as a parameter, this equation may be treated as an ordinary
differential equation. Thus, if z(y) =dx, /0y, one finds that
Uloy+hjp—322)2" — 622" —2Rz+fiphio(1—y7) =2f )2

—{2R? + (3hio+2f1yy) R —2f [ohieylz

fohio(1=y%) +3f1IR—2ffoy—fiohie=0  (41a)

R=[(f1y)?¥" +fiohioy+ (hig) * +flshio (1 =y*)2—Floz

~(floy+hig—32°)z' 1% 4ib)

UNSTEADY TRANSONIC FLOWS WITH SHOCK WAVES
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Fig. 7 Variation of shoek wave shape with iime fo o < ranme
given by Eq. {(43) and shock location asin Eq. (44}, v=1.4, ¢ =4.1

where Aj,=h;(x;), ete. The boundary conditions for Egs.
(44) are

Equation {41a) was solved numerically using a fourt
Runge-Kutta method, yielding z{y). Then z{(¥} =8x; /¢
integrated, using the condition that x;{—1}=9, to give ¢
shock shape x;. Since both ff; and 7}, are time de
because x; =x, {1}, the coefficients in Eqgs. {41} have
values at different times, and it is seen that the shock
varies with time.
The wall shapes chosen for the calculations are

Vo=l dex?/2xe? [I+20(y+1)/9x%/2

where the wall shape functions, f, (x) and f, {x) arc foun
comparing Egs. (7) and (43). In order to make the caic
as simple as possible, x,(¢} is prescribed here and
corresponding B; (and thus pressure in the do
plenum) is calculated from Egs. (40b} and (40c), That i
can prescribe 3,,{#) and find the resulting x, (7}, or pre
xp(2) and find the necessary B,,(¢#}. The laver prok
demands less computing time and is used here for i
Thus, we set

xp{ty=1.5+ (sint) /2

and perform calculations fory=1.4,e=0.1,and 8,, =0. The
wall shapes given by Eqgs. (43) with these values for e and
are those seen in Figs. 2-4.

Velocity profiles showing the first-order inner scluti
downstream of the shock wave are shown at x* =x; in
and at x* =x,; +0.69 in Fig. 5b, each at three different
t==%/2, w, and 37 /2. The corresponding x, is found ¥
(44). These figures thus illustrate the temporal varia
the velocity components at the indicated inner-region stati
The relatively large spatial variations, which occur i
inner region at a given time, are illustrated in Fig. 6 at ¢
The change in 4], from its values immediately behind
shock to the linear profile associated with subsonic figv
the given wall shapes, is indicative of the large accelerati
and decelerations which take place in the inner region.

The shock shape, x,=xg+e” (y+ 1) %x, + ..., is shown i
Fig. 7 as a function of time. It is seen thai as a resuit ¢
curvature of the walls and the attendant gradients in the
incoming flow, the shock wave has a pronounced curva :
for the direction of curvature chosen for the walls, the

[a"2
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Fig. 8 First-order wall pressure distributions for various times for
channel walls given by Eq. (43) and shock location as in Eq. (44),
v=1.4, e=0.1.7calculated pressure distribution upsiream of the
sheck wave, jump across shock, and outer pressure distribution
downstream of shock; ® pressures caiculated in inner region; --- ap-
proximate pressure distribution in inner region. a) Upper wall, b)
Lower watl.

starts normat to the iower wall, inclines in the flow direction,
and then turns back toward the upper wall so as to become
normal to it also. As the shock moves closer to the throat of
the channel, it becomes weaker and has more curvature.

The values of x,, for each time at which calculations were
made, the corresponding 8,4 (¢) calculated from Eq. (40b),
and the equivalent change in back pressure at a downstream
plenum from its value at t=0, AP, =P, (t) — P,(0), are given
" in Table 1. Finaily, the pressure on the upper and lower walls,
at the same times, to order ¢, are shown in Fig. 8. In this
figure, the solid lines indicate the calculated pressure
distributions upstream of the shock wave, the pressure jump
across the shock, and outer pressure distributions down-
stream of the shock. The large dots indicate the pressures
calculated in the inner region, and the dashed lines show a
curve drawn through these points and faired into the outer
pressure distribution, to show an approximate pressure
distribution. Since only two strips were used in the inner-
region computations, only one data point within the inner
region is available.

Conclusions

The methods used in this study enable one to analyze un-
steady flows with shock waves in relatively highly-curved
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Tablei Valuesof xy, 8,4, and AP, for various times

¢ Xg B AP,
¢ 1.5 ~12.292 0
/2 2.0 —25.708 - 0.1878
x 1.5 — 8.883 —0.0477
3x/2 1.0 — 3.047 -0.1294

asymmetric channels with arbitrary wall shapes and impressed
disturbances of arbitrary form. It is shown that the shock
wave is not planar and that its shape must be obtained as part
of an inner solution, which involves a numerical solution of
the nonlinear small disturbance transonic equation, the
unknown shock shape forming one of the boundaries of the
region in question. It proves to be relatively easy to use the
method of integral relations to obtain approximate but very
useful solutions. The solutions allow one to calculate the
shock shape and velocity, as well as fluid velocity and thermo-
dynamic property distributions, as function of time,
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