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Abstract

Modifications to unsteady transonic small-disturbance
theory to include entropy and vorticity effects are presented.
The modifications have been implemented in the CAP-TSD
(Computational Aeroelasticity Program - Iransonic Small
Disturbance) code developed recently at the NASA Langley
'Research Center. The code permits the aeroelastic analysis
of complete aircraft configurations in the flutter critical
fransonic speed range. Entropy and vorticity effects have
been incorporated within the solution procedure to more
accurately analyze flows with strong shock waves. The
modified code includes these effects while retaining the
relative simplicity and cost efficiency of the TSD
formulation. The paper presents detailed descriptions of the
entropy and vorticity modifications along with caiculated
results and comparisons which assess the modified theory.
These results are in good agreement with parallel Euler
calculations and with experimental data. Therefore, the
present method now provides the aeroelastician with an
affordable capability to analyze relatively difficult transonic
flows without having to solve the computationally more
expensive Euler equations.
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Introduction

Considerable progress has been made over the past decade
on developing methods for aeroelastic analysis in the flutter
critical transonic speed range.! Much of this progress has
been achieved by developing finite-difference computer
codes for solving the transonic small-disturbance (TSD)
potential equation,2 although significant efforts are
currently underway at the higher equation levels as well.
The advantages of the TSD formulation, especially for
aeroelastic applications, are: (1) the relatively low
computational cost, (2) the simplicity of the gridding and
geometry preprocessing, and (3) the ability to treat
complete aircraft configurations. However, a serious
limitation of the potential flow codes, in general, is the
inability to predict accurately flows with strong shock
waves. For these flows, use of the isentropic potential
formulation typically results in shock waves that are too
strong and located too far aft in comparison with experiment.
In fact, it is fairly well known that potential theory predicts
non-unique steady-state solutions3 for certain combinations
of Mach number and angle of attack. Simple modifications to
potential theory, however, have been shown to eliminate the
nonuniqueness problem and consequently provide solutions
which more accurately simulate those computed using the
Euler equations.4-7 These modifications include the effects
ot shock-generated entropy and they require only minor
changes to existing computer codes.

Rotational effects may also become important when
strong shock waves are present in the flow. For example,
vorticity is generated by shock waves due to the variation ot
entropy along the shock. Potential theory, of course, does
not account for these effects because of the irrotationality
assumption necessary for the existence of a velocity
potential. For these flows, the Euler equations generally are
required to accurately model the flow. Recently, however,
simple modifications to potential theory have been developed
1o model rotational effects.8-10 These modifications invoive
a velocity decomposition originally suggested by Clebsch.11
In this model, the velocity vector is decomposed inlo a
potential component and a rotational component. For most
applications of interest to the aeroelastician, the rotational
effects are significant only in the region downstream of
shocks. Therefore, the potential component can be obtained
throughout most of the flow field using an existing potential
fiow code. The rotational flow then can be modeled either by
adding the appropriate source term to the governing equation
or by modifying the fluxes. These changes consequently
inciude the effects of shock-generated vorticity as well as
entropy and require relatively straightforward
modifications 10 existing potential flow codes.

The purpose of the paper is to present entropy and
vonticity modifications 1o TSD theory, similar to the steady
full-potential modifications of Refs. 8 and 10, for time-
accurate applications. The modifications have been
implemented in the CAP-TSD'2 (Computational
Aeroelasticity Program - Transonic Small Disturbance) code



which is capable of transonic aeroelastic analysis of
complete aircraft configurations. The CAP-TSD code can be
used to analyze configurations with arbitrary combinations
of lifting surfaces and bodies including canard, wing, tail,
control surfaces, tip launchers, pylons, fuselage, stores, and
nacelles. The modified code models the effects of shock-
generated entropy and vorticity while retaining the relative
simplicity and cost efficiency of the TSD formulation. The
paper presents detailed descriptions of the entropy and
vorticity modifications, along with calculated results and
comparisons with Euler solutions and with experimental
data, which assess the present method.

Iransopic Small-Disturbance Theory
The flow is assumed to be governed by the general

frequency, modified TSD potential equation which may be
written in conservation law form as
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The coefficients A, B, and E are defined as
A=M, B=2M% E=1-M? (3)

Several choices are available for the coefficients F, G, and H
depending upon the assumptions used in deriving the TSD
equation. The coefficients herein are defined as

F=-%(y+l)M2 (4a)
1 2
=5@-IM (4b)
, 4
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The lifting surfaces are modeled by imposing the
following boundary conditions:

Flow tangency: ¢; = f:* £ (5a)

Trailing wake: l‘t+l‘l=0 and 4¢,=0 (5b)

where A () represents the jump in ( ) across the wake. The
flow-tangency condition is imposed along the mean plane of
the respective lifting surface. In Eq. (5a) the plus and
minus superscripts indicate the upper and lower surfaces of
the mean plane, respectively. “he wake is assumed to be a
planar extension from the trailing edge to the downstream
boundary of the finite-difference grid.

Entropy Model

Shock-generated entropy is modeled by implementing
modifications to TSD theory similar to those reported in
Refs. 6 and 7. These modifications include: (1) an
alternative streamwise flux, (2) an entropy correction in
the pressure formula, and (3) a modified wake boundary
condition to account for convection of entropy. In this
section, the entropy model is briefly described. Additional
details may be found in Refs. 6 and 7.

Alternative Streamwise Flux
The entropy model is formulated by first replacing the

streamwise flux f1 (Eq. (2b)) in the TSD equation by an
alternative flux given by
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The first term of this new flux was derived in Ref. 13 by an
asymplotic expansion of the Euler equations including the
effects of shock-generated entropy. The analysis 9f Ref. 13
shows that Eq. (6) is accurate to at least 0(¢‘) in the
expanded Euler equations. When ¢x is small, the alternative
flux of Eq. (6) is the same as the original flux of Eq. (2b)
2
o 0¢) .

Pressure Correction
The pressure formula is modified to include entropy
effects according to

Cp=Cpi+Cp. (8)

where Cp- is the isentropic pressure coefficient and C _is
the pressure coefficient due to change in entropy. °As
reported in Refs. 6 and 7, CP is given by
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where s is the change in entropy from the freestream value.
Equation (9) obviously requires the determination of
entropy along the surface of the airfoil or wing. This first
requires the determination of the shock location and then the
calculation of the entropy jump across the shock. The shock
location is determined easily since most TSD algorithms use
type-dependent differencing to capture shocks and to
properly treat regions of subsonic and supersonic flow. The
entropy jump is computed using the Rankine-Hugoniot shock
jump relation
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where
u,=1+¢x-u‘ (11)

In Eq. (11), u1 is the flow speed upstream of the shock and
us is the shock speed. In Refs. 6 and 7, the entropy was
assumed to be constant between the shock and the trailing
edge even for unsteady applications. In the present
formuiation, the entropy is convected downstream from the
shock according to

ds 0Os
a0 (12)

The correction to the pressure formula to include entropy
effects (Eq. (9)) does not directly effect the flow field. The
effect on the flow field is produced by the modified wake
boundary condition discussed in the following section.

Modified Wake Boundary Condilion

The wake boundary condition requires that the pressure
be continuous across the wake. Since the pressure formula
(Eq. (8)) includes a term due to entropy, the isentropic
wake boundary condition must be modified as

1
r+T, =54C, (13)

where A represents the jump across the wake. In Eq.
(13), AC, is determined by first convecting the entropy
along the wake and then computing Cp using Eq. (9). The
nonzero right hand side of Eq. (13) modities the circulation
distribution I'. Consequently, the circulation due to entropy
opposes the circulation associated with lift and thus
decreases the total circulation. As discussed in Ref. 6, this is
the feedback mechanism that stabilizes the shock location and
gliminates the nonuniqueness problem.

Yorticity Model

A vorticity model has been developed which is similar to
that presented in Ref. 10. In this section, the vorticity
model is described in detail including: (1) a modified
velocity vector which in turn niodifies the TSD equation, (2)
a pressure formula correction for vorticity effects, and (3)
the resulting wake boundary condition.

Moditied Velocity Vector

The vorticity model is formulated by first writing the
velocity vector as the sum of potential and rotational
components according to

2 1 s
V=Vo-— 2 vy (14)
¥1 c,

In Eq. (14), the first term on the right-hand side is the
gradient of a scalar potential ® and the second term involves
the product of the entropy s and the gradient of a Clebsch
variable ¥. The function ¥ is a measure of the stretching and
rotating of vortex filaments associated with entropy
variation.10  For the applications of interest in the present
work, the rotational part of the velocity vector is assumed to
occur only in the region downstream of shock waves as shown
in Fig. 1. Further assuming that the entropy convects with
the freestream speed and that the shock curvature is
negligible implies that

¥ 1 oY ¥

W—;Ml—z' -ry=0, -&-:0 (15)

as shown in Ref. 10. These assumptions eliminate the
variable ¥ from the tormulation leaving only the entropy s
to be determined throughout the flow fieid. In a steady flow,
entropy is constant along streamlines and changes only
through shock waves. The entropy jump is computed along
shocks using the Rankine-Hugoniot relation (Eq. (10)).
Then, for simplicity, the grid lines are assumed to
approximate the streamlines of the flow, which is consistent
with the small-disturbance approximation. The entropy is
either convected downstream along the grid lines using Eq.
(12) for unsteady applications, or is heild constant along the
grid lines for steady applications.

/,“ ]
irrotalonat region / Rotatonal region
V=vo / Veve. . LSow
¥1 6
N
L Wake
Flow

Fig. 1 Rotational and irrotational flow regions.



The modified velocity vector in turn modifies the TSD
equation because the streamwise disturbance speed u = ¢x is
now given by

u=¢-;ci (186)

DM

The new TSD equation has the same conservation law form as
Eq. (1) with new filuxes defined by simply replacing éx by
the modified speed given in EqQ. (16).

Pressure Correction

The pressure formula must also be modified when
vorticity effects are included in the model. In general form,
the pressure coefficient may be computed using

Cp=Cpi+Cp'+Cp' (17)

where C is the pressure coefficient correction due to
vorticity. As discussed by Hafez and Lovell,5 the correction
due to vorticity approximately cancels the correction due to
entropy and thus the pressure coefficient Cp is given by the
isentropic formula. At the TSD equation level, this is clearly
demonstrated by first considering the general form of Eq.
(8). Assuming the first-order small-disturbance pressure
formula for , defining CP as given by Eq. (9), and
replacing éx by lhe modified disturbance speed of Eq. (16)
yields

. 2 s 2 s
C,= -2¢, -2¢, - —+ —
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Here the corrections due to entropy and vorticity identically
cancel each other and thus the pressure coefficient is given
by the isentropic formula in terms of the irrotational
disturbance speed ¢x.

Modified Wake Boundary Condition

As with the entropy model, the wake boundary condition
in the vorticity model requires that the pressure be
continuous across the wake. Since the pressure (Eq. (18))
is now given by the isentropic formula, the wake boundary
condition is identical to the original condition given by

r+r =0 (19)

The feedback mechanism that eliminates the nonuniqueness
problem is the rotational velocity field inherent in the
vorticity model. This is in contrast to the mechanism of the
entropy mode! which is explicitly imposed through the wake
boundary condition (Eq. (13)).

Approximate Factorization Algorithm

The approximate factorization algorithm of Ref. 14 has
been modified to solve the TSD equation including entropy and
vorticity effects. In this section, the AF algorithm is
described.

General Description

The AF algorithm consists of a Newton linearization
procedure coupled with an internal iteration technique. For
unsteady flow calculations, the solution procedure involves
two steps. First, a time linearization step (described beiow)
is performed to determine an estimate of the potential fieid.
Second, internal iterations are performed to provide time
accurate modeling of the flow field. Specifically, the TSD
equation (Eq. (1)) is written in general form as

REO™Y = (20)

where ¢n+1 represents the unknown potential field at time
level (n+1). The solution to Eq. (20) is then given by the
Newton linearization of Eq. 20 about ¢

« OR
R(¢)+(3;)°=°°A¢=0 (21)

In Eq. (21), ¢ is the currently available value of an+1 and
Ad =¢n+1 . 6" During convergence of the iteration
procedure, A¢ will approach zero so that the solution will be
given by ¢n+1 = ¢". In general, only one cr two iterations
are required to achieve acceptable convergence. For steady

flow calculations, iterations are not used since time accuracy
is not necessary when marching to steady-state.

Matt ical F lati

The AF algorithm is formulated by first approximating
the time derivative terms (¢tt and ¢xt terms) by second-
order accurate finite-difference forrmulae. The TSD equation
is rewritten by substituting ¢ = ¢° + A¢ and neglecting
squares of derivatives ot A¢ which is equivalent fo applying
Eq. (21) term by term. The resulting equation is then

rearranged and the left-hand side is approximately factored
into a triple product of operators yielding

L L L 86= OR6 .06 0" (22)

L
where
Ly=1+ g ol gé‘__"_F_ (23a)
5 & Moo la
2
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Ll bRy (23b)
L=1-% i\'_-‘z-v 9 (23c)
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The equations for the spatial fluxes F1, F2, F3 and the
residual R are given in Ref. 14. In Eq. (22) o is a relaxation
parameter which is normally set equal to 1.0. To accelerate
convergence o steady-state, the residual R may be
over-relaxed using o > 1. Equation (22) is solved using
three sweeps through the grid by sequentially applying the
operators L&, Ln, and L{ as

E - sweep: L€A5=-0R (24a)
1- sweep: L'l Ad = Ao (24b)
€ - sweep: LC A¢=A; (24c)

Further details of the algorithm development and solution
procedure may be found in Refs. 14 and 15.

Iime-Linearization Step

An initial estimate of the potentials at time level (n+1)
is required to start the iteration process. This estimate is
provided by performing a time-linearization calculation.
The equations governing the time-linearization step are
derived in a similar fashion as the equations for iteration.
The only difference is that the equations are formulated by
linearizing about time level (n) instead of the iterate level
(*).

CAP-TSD Code

The AF algorithm has been user as the basis of the
CAP-TSD code for transonic unsteady aerodynamic and
aeroelastic analysis of realistic aircraft configurations. The
code can be used to analyze contigurations with arbitrary
combinations of lifting surfaces and bodies including canard,
wing, tail, control surfaces, tip launchers, pylons, fuselage,
stores, and nacelles. The code has the option of half-span
modeling for symmetric cases or full-span modeling to allow
the treatment of antisymmetric mode shapes, fuselage yaw,
or unsymmetric configurations such as an oblique wing or
unsymmetric wing stores. Steady and unsteady pressures on
several realistic aircraft configurations calculated using
CAP-TSD, including comparisons with experimental data,
are presented in Ref. 12. The calculated results are in good
general agreement with the experimental pressure data
which validates CAP-TSD for multiple component
applications with mutual aerodynamic interference effects.
Preliminary aeroelastic applications of CAP-TSD compare
well with experimental data for subsonic, transonic, and
supersonic freestream Mach numbers which gives confidence

in the code for aeroslastic prediction.16.17

Resuits and Discussion

To assess the entropy and vorticity modifications to TSD
theory, results are presented for the NACA 0012 airfoil and
the ONERA M6 wing.18 The accuracy of these results is
determined through detailed comparisons with Euler
calculations and with available experimental data.

NACA 0012 Airfoll Results

For the NACA 0012 airfoil, four cases of increasing
difficulty were selected to sys! -matically assess the modified
theory. The first two cases involve steady flow for nonlifting
(M = 0.84, ao = 0°) and lifting (M = 0.8, ao = 1.250)
conditions. These results are compared with parallel Euler
calculations. The third case is for the airfoil pitching
harmonically about the quarter chord with an amplitude of
a1 = 2.51° and reduced frequency of k = 0.0814 at M =
0.755 and ao = 0.016°. The calculations are compared with
the experimental data of Ref. 19. This case is a challenging
one for the modified TSD theory since the oscillating airfoil
produces relatively large shock motions and the upper and
lower surface shocks periodically appear and disappear
during the cycle. The fourth case is for the airfoil pitching
harmonically about the quarter chord with an oscillation
amplitude of a1 = 2.44° and reduced frequency of k = 0.081
at M = 0.599 and ao = 4.86°. These calculations also are
compared with the data of Ref. 19. This case is also a very
chaillenging one since the maximum angle of attack during a
cycle of motion is 7.3°. This relatively large instantaneous
angle of attack is normally considered to be outside the range
of validity of TSD theory.

TSD + entropy + vorticity

12 - ====TSD + entropy
[o) Euler (FLO52)

Fig. 2 Comparison of steady pressure distributions for the
NACA 0012 airfoil at M = 0.84 and oo = 0°.

TSD + entropy + vorticity
= === TSD + entropy
o Euler (FLO52)

Fig. 3 Comparison of steady pressure distributions for the
NACA 0012 airfoil at M = 0.8 and ao = 1.25°,




Nonlifting Steady Flow, - Results are first presented for
the NACA 0012 airfoil at M = 0.84 and co = 00. This is the

same case studied by Fuglsang and Willlams8 as well as by
Whitlow, Hafez, and Osher.20 At this Mach number and angle
of attack, irrotational isentropic methods, either TSD or full
potential, predict nonunique solutions as reported in Refs. 6
and 20, respectively. These nonunique or multipie solutions
are characterized by stable asymmetric flows with either
large positive or large negative lift. The correct solution, of
course, is a symmetric flow with zero lift. When shock
generated entropy effects are included in the calculation as a
modification to the streamwise flux, the nonuniqueness
problem is eliminated and the expected symmetric solution
is obtained as shown in Fig. 2. The steady pressure
distribution computed by including entropy effects compares
fairly well with the Euler result except that the upper and
lower surface shocks are located approximately 3% chord
downstream of the Euler shock location. (For clarity, only
every third pressure value from the Euler calculation was
plotted except in the region of the shock.) This discrepancy

TSD + entropy + vorticity

Upper surface O Upper surface
- — - — Lowersurface [ Lower surface
-1.5

Experiment

-1.0

3 a(r)= 2.01°
kr = 127°

10

a{v)= 0.52*
kT = 168°
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in shock location is consistent with the entropy-corrected
results for the same case shown in Refs. 6 and 20. When the
shock-generated vorticity effects are aiso included in the
model, however, the modified theory significantly improves
the prediction of the shock locaticn. Consequently, the steady
pressure distribution now is in very good agreement with
the Euler results, as further shown in Fig. 2. Therefore, for
cases with strong shock waves, both entropy and vorticity
cofrections are required to give Euler-like accuracy.

- To evaluate the modified TSD
method for a case with nonzero lift, results are presented for
the NACA 0012 airfoil at M = 0.8 and ao = 1.25°. This
well-studied case is an AGARD test case for assessment of
inviscid-flow methods.21  Calculated pressures are
presented in Fig. 3 for TSD theory with entropy effects and
TSD theory with entropy and vorticity effects. Comparisons
are made with parallel Euler calculations to assess the
accuracy of the TSD solutions. As shown in Fig. 3, the steady

ary = -241°
kt = 255°

10

Fig. 4 Comparison of instantaneous pressure distributions for the NACA
0012 airfoil at M = 0.755, ao = 0.016°, a1 = 2.51°, and k = 0.0814.



pressure distributions computed including entropy effects do
not compare well with the Euler pressures. For example,
the upper surface shock wave is slightly weaker and located
approximately 3% chord upstream of the Euler result.
Similarly, a stronger shock is predicted along the lower
surface that is located about 6% chord downstream of the
Euler calculation. When the vorticity effects are included in
the calculation, however, the modified TSD theory gives
steady pressures which are in very good agreement with the
Euler results. Here, the strong shock on the upper surface
and the weak shock on the lower surface are accurately
predicted in both strength and location.

Unsteady Flows. - To assess the modified theory for

_unsteady flow applications, resuits were first obtained for
the NACA 0012 airfoil pitching harmonically about the
quarter chord at M = 0.755 and ao = 0.0160. This case was
also studied in Ref. 20 where it was shown that the entropy
effects have only a small effect on the solution. It is still a
good check case, though, to test the robustness of the shock
identification procedure and the smoothness of the entropy
convection for a time-dependent problem with large shock
motions. The amplitude of the motion was selected as a1 =
2.510 and the reduced frequency was k = 0.0814 for
comparison with the experimental data of Ref. 19. The
results were obtained using 360 steps per cycle of motion
which corresponds to a step size of At = 0.1072. Three
cycles of motion were computed to obtzin a periodic solution.

Instantaneous pressure distributions at six points in
time during the third cycle of motion are presented in Fig. 4
for comparison with the experimental pressure data. In each
pressure plot, the instantaneous angle of attack a(t) and the
angular position in the cycle are noted. During the first pan
of the cycle there is a shock wave on the upper surface of the
airfoil anu t~ fiow about the iower surface is predominantly
subcritical. Luring the iatter part of the cycle the flow
about the upper surface is subcritical and a shock forms
along the lower surface. The pressure distributions from
the modified theory indicate that the shocks oscillate over
approximately 25% of the chord, and in general, compare
well with the data. The modified theory captures the shocks
sharply and has no cdifficulty in treating these large shock
motions.

To further assess the rmodified theory for unsteady
applications, pressures were calculated for the NACA 0012
airfoi! pitching harmonically about the quarter chord at M =
0.599 and ao = 4.86°. The amplitude of the motion was
selected as a1 = 2.44° and the reduced frequency was k =

0.081 for comparison with the experimental data.'9 The
results were obtained using 360 steps per cycle of motion
and three cycles were computed to obtain a periodic solution.

Instantaneous pressure distributions at two points in
time during the third cycle of motion are presented in Fig. 5.
The two points in time correspond to near the maximum
pitch angle (a = 6.97°), shown in Fig. 5(a), and near the
minimum pitch angle (a = 2.43°), shown in Fig. 5(b). Near
the maximum pitch angle (Fig. 5(a)), there is an embedded
supersonic region forward on the upper surface of the
airfoil, that is terminated by a relatively strong shock wave
at approximately 20% chord. Instantaneous pressures
obtained using the modified theory agree very well with the
experimental data in the suction region, 0.0 < x/c < 0.2, and
show accurate prediction of shock location and strength. The

shock is sharply captured and is located slightly downstream
of the experimental location. Near the minimum pitch angle
(Fig. 5(b)), the shock wave on the upper surface disappears
and the calculated pressures again agree well with the data.
The modified theory is therefore capable of treating time-
dependent cases involving strong shocks and large shock
motions.

ONERA M6 Wing Resuits

To test the entropy and vorticity modifications to TSD
theory for three-dimensional applications, steady and
unsteady caiculations were performed for the ONERA M6
wing.18 The M6 wing has an aspect ratio of 3.8, a leading
edge sweep angle of 300, and a taper ratio of 0.562. The

TSD + entropy + vorticity Experimert

Upper surface © Upper surface
~ =~ - Lower surface 0O Lower surface

(a) near the maximum pitch angle {(a (t) = 6.97°,
kt = 60°).

TSD + entropy + vorticity Experiment
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24

-16

16 1 1 | 1 j

{b) near the minimum pitch angle (a (1) = 2.43°,
kt = 273°).

Fig. 5 Comparison of instantaneous pressure distributions
for the NACA 0012 airfoil at M = 0.599, ao =

4.86°, a1 = 2.44°, and k = 0.081.



airfoil section of the wing is the ONERA *D* airfoil which is a
10% maximum thickness-to-chord ratio symmetlric section.
Pressures were calculated at M « 0.92 with the wing at 00
mean angle of attack. These conditions correspond to an
AGARD test case for assessment of inviscid flow field
methods2! and were selected for comparison with the
tabulated Euler results of Rizzi contained therein.

Steady Flow, - Calculations were performed for the
ONERA M6 wing using: (a) unmodified TSD theory, (b) TSD
with entropy effects, and (c) TSD with entropy and vorticity
effects. For each of these methods, steady pressure
distributions along three span stations (1) = 0.08, 0.47, and
0.82) of the wing are presented in Fig. 6. For this case, the
flow is symmetric above and below the wing with shocks on
the upper and lower surfaces. As shown in Fig. 6(a), the
results from the unmodified TSD theory compare well with
the Euler results in predicting the leading edge suction peak
and the overall pressure levels. However, when compared
with the Euler calculations, the shock is located too far aft
and is too strong outboard near the tip. When the entropy
effects are included in the calculation, a considerable
improvement 15 obtained in both the shock location and
strength, as shown in Fig. f(b). The shock is still located
slightly downstream of the Euler shock position, along the
span. When vorticity effects are also included in the
calculation, the shock is displaced slightly forward from the
previous sclution, as shown in Fig. 6(c). rizre the shock
location is in very good agreement with the Euler
calculations along the span. Consequently, the steady
pressure dislributions from the modified TSD theory now
compare very well with the Euler pressures, which verifigs
the moditied theory for three-dimensional applications.

Unsteady Flow, - Unsteady results also are presented for
the ONER ving at 4 - 0.92 and «o = 00 o fturther
demonstrate aj,licator ot the moditied TSD theory to a
time-dependent problem. Calculatio: . were performed for
the wing pitching harmonically about a line perpendicular to
the rout at the ront quarter-chord The amplitude of the
motion was selected as ay = 2.519 and the reduced frequency
was k = 0.0814, which are the same parameters as those
used in the first of the unsteady cases for the NACA 0012
airfoil. The .esults were obtained using 360 steps per cycle
of motion which corresponds to a step size of At = 0.1072.
Three cycles of motion were computed to obtain a periodic
solution. There are no experimental unsteady data for the
M6 wing to validate the caiculated resuits.

Unsteady pressure distributions are shown in Fig. 7 for
the same three span stations as the steady pressure
distributions of Fig. 6. The results are presented as real and
imaginary components of the unsteady lifting pressure
coelficient, normalized by the amphitude of motion. Two sels
ot calculated pressures are compared corresponding to
unmodified TSD theory and TSD with entropy and vorticity
effects. As shown in Fig. 7, there is a shock pulse of
moderate strength in both the real and imaginary parts
which is produced by the motion of the shock wave. The
shock pulse computed using the modified theory is located
upstream of that predicted by the unmoditied theory,
corresponcing to the forward displacement of the
steady state shock when the entropy and vorticity effects
were included in the calculation (Fig. 6). In both cases
shown in Fig. 7, the shock oscillates over 10-15% of the
chord during a cycie of motion, and the modified theory has
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(c) TSD + entropy + vorticity.

Fig. 6 Comparison of steady pressure distributions for the
ONERA M6 wing at M « 0.92 and ao = 0°.



no difficulty in computing this unsteady transonic flow.
Furthermore, the differences between the two sets of results
in Fig. 7 emphasize the importance of including the entropy
and vorticity effects in the TSD calculation for unsteady
aerodynamic and aeroelastic analysis. Preliminary
applications of the modified TSD theory for aeroelastic
analysis including the effects of entropy and vorticity on
flutter have been reported in Ref. 22.

Concluding Remarks

Modifications to unsteady transonic small-disturbance
theory to include entropy and vorticity effects were
described. The modifications have been implemented in the
CAP-TSD (Computational Aeroelasticity Program -
Iransonic Small Disturbance) code, which was recently
developed for aeroelastic analysis of complete aircraft
configurations in the flutter critical transonic speed range.
Entropy and vorticity effects have been incorporated within
the solution procedure to more accurately treat cases with
strong shock waves. The modified CAP-TSD code includes
these effects while retaining the relative simplicity and cost
efficiency of the TSD formulation.

Steady and unsteady results were presented for the NACA
0012 airfoil and the ONERA M6 wing to demonstrate
application of the modified theory. Comparisons were made
with Euler calculations and with experimental data to assess
the accuracy of the entropy and vorticity modifications. For
the NACA 0012 airfoil, steady pressures computed using the
modified theory were in very good agreement with the Euler
calcutations. For cases involving strong shock waves, both
entropy and vorticity corrections were required to give
Euler-like accuracy. Instantaneous pressure distributions
obtained using the modified theory for the NACA 0012 airfoil
pitching about the quarter chord compared well with
experimental data. For the ONERA M6 wing, comparisons of
steady pressures from the modified theory with Euler
results also showed very good agreemenmt. Therefore, the

M=092 |
> Lo

—— TSD + entropy
+ vorticity

——=TsD

Fig. 7 Comparison of unsteady pressure distributions for
the ONERA M6 wing at M = 0.92, ao = 0°, a1 =
2.51°, and k = 0.0814.

present method provides the aeroelastician with an
affordable capability to analyze relatively difficult transonic
flows without having to solve the computationally more
expensive Euler equations.
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