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The radiative heat transfer in a complex two-dimensional enclosure with obstacles with
participating medium is very important in practical engineering applications. In order
to deal with this problem, in this study the � nite-volume method ( FVM) for radiation
has been derived using the unstructured grid system. A general discretization equation
was formulated by introducing the directional weight and the step scheme for spatial
differencing. For its comparison and validation, two test cases, an equilateral triangular
enclosure and a square enclosure with baf� e, were chosen. Then, more complex and
practical cases, such as a semicircular enclosure with cylinder hole, a square enclosure
with � nned internal cylinder, and a furnace with embedded cooling pipes, were investigated.
All the results obtained by the unstructured FVM agreed very well with the exact
solutions as well as the results obtained by the zone method. Furthermore, the wiggling
behavior occurring in the blocked-of f FVM was not produced by the unstructured FVM.
Three types of manipulation of control angle overlap were also examined here. It was
found that the solutions depended on the type of manipulation of control angle overlap,
especially when the number of control angles was small. Usually, both the pixelation
method and exact treatment introduced here yielded better solutions than the bold
approximation.

INTRODUCTION

It is widely known that a prediction of radiative heat transfer in absorbing,
emitting, and scattering media is one of prerequisite elements in analyzing and
designing high-temperature equipment such as a boiler, furnace, pulverized coal
combustor, or rocket propulsion system, for nowadays less pollutant emission as
well as better ef¢ciency is highly required in these systems to prevent environmental
damage. Environmental regulations on pollutant species have become stricter
due to concerns about acid rain and depletion of stratospheric ozone.

During the past decades, there has been much progress in various numerical
techniques for solving the radiative transfer equation (RTE), which is
integro-differential equation in nature. Among others, there are many recent works
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dealing with the radiation analysis in a complex geometry using the ¢nite-volume
method (FVM) or the discrete-ordinates method (DOM). Compared with the other
methods such as Monte Carlo method, zone method, or PN approximation, these
two methods are known to be more compatible with the numerically discretized
forms of momentum and energy equations in a nonorthogonal structured or
unstructured grid system [1, 2].

The FVM for radiation, which is similar to the DOM, is a kind of £ux method
with £exible applicability to a complex geometry using an arbitrary control angle.
In the FVM, the in£ow and out£ow of radiant energy across control-volume faces
are balanced with attenuation and augmentation of radiant energy within a control
volume and a control angle. Since its ¢rst introduction by Raithby and Chui [3],
numerous applications have been found in two- and three-dimensional Cartesian
and cylindrical coordinates [4].

In the past few years, an unstructured triangular mesh in two dimensions and a
tetrahedral mesh in three dimensions have been widely accepted in computation, due
to the ease of grid generation in complex and realistic geometries and the capability
of grid adaptation [5]. Fiveland and Jesses [6] used the unstructured as well as
the structured mesh to perform DOM as well as ¢nite-element method (FEM)
analysis of radiative heat transfer in a rectangular enclosure containing an
absorbing/emitting medium. Recently, Mathur and Murthy [7] developed the
unstructured FVM for radiation. They studied radiation-affected natural
convection as well as the pure radiation problem using the unstructured grid
system.

In rectangular geometry, the control angle is usually arranged by being laid
tangent to a corresponding control-volume face. However, for the case of compu-

NOM ENCLATURE

Dmn
ci directional weights

êx; êy unit vector in x, y directions
I radiation intensity, W=m2 sr
Ib blackbody radiation intensity

…ˆ sT 4=p†, W=m2 sr
Ny…Nf† total number of polar

(azimuthal) angles
n̂i unit normal vector at i surface
qR

w wall radiative heat £ux, W=m2

b0 extinction coef¢cient …ˆ k ‡ ss†,
m¡1

DAi; DV surface area and volume of the
control volume, respectively

DOmn discrete control angle
ew wall emissivity
y polar angle
k absorption coef¢cient, m¡1

s Stefan-Boltzmann constant
…ˆ 5:67 £ 10¡8 W=m2 K 4†

ss scattering coef¢cient
F scattering phase function
f azimuthal angle

Superscripts
m…n† radiation direction of polar

angle y (azimuthal angle f)
m¡; m ‡ …n¡; n‡†

starting and ending value of
m…n†

Subscripts
i incident quantity, face value
I upwinding nodal point of P
P nodal point in which intensities

are located
w wall
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tation using an unstructured grid system, the control angle becomes overlapped,
which is inevitable as in the nonorthogonal structured grid system. In the overlapped
control angle, there exists a problem of overlapping of incoming and outgoing
radiation so that careful attention must be exercised for accurate computation.
In order to deal with this, Chai et al. [8] proposed a bold approximation, in which
the whole control angle is assumed to be either incoming or outgoing, depending
on the sign of its directional weight. Baek et al. [9] as well as Murthy and Mathur
[7] suggested more accurate treatments. Whereas Baek et al. [9] divided the over-
lapped control angle into two parts by assigning incoming as well as outgoing inten-
sity separately to satisfy the energy balance exactly, Murthy and Mathur [7] resolved
the problem by pixelating the control angle.

In the present study, an extension of previous work by Baek et al. [9], the
unstructured FVM for radiation is considered by adopting the triangular mesh.
It is then validated by application to the analysis of radiative heat transfer in an
irregular two-dimensional enclosure with obstacles such as baf£es, pins, or pipes.
To our best knowledge, the FVM for radiation has not yet been applied to a more
realistic complex geometry as considered here. Furthermore, a more exact treatment
of the control angle overlap is devised here for the application of the unstructured
FVM. Its results are then compared with those obtained by the other two
manipulations of control angle overlap, i.e., bold approximation and pixelation
as mentioned above.

FORMULATIONS AND SOLUTION PROCEDURE

Radiative Transfer Equation (RTE)

The radiation intensity for a gray medium at any position r along a path ŝ
through an absorbing, emitting, and scattering medium is given by

1
b0

dI…r; ŝ†
ds

‡ I…r; ŝ† ˆ …1 ¡ o0†Ib…r† ‡ o0

4p

Z

Oiˆ4p
I…r; ŝi†F…ŝ; ŝi† dOi …1†

where b0 ˆ k ‡ ss is the extinction coef¢cient, o0 ˆ ss=b is the scattering albedo,
and F…ŝ; ŝi† is the scattering phase function for radiation from incoming direction
ŝi to scattered direction ŝ. This equation, if the temperature ¢eld, Ib…r†, and boundary
conditions for intensity are given, provides a distribution of the radiation intensity in
the medium. The boundary condition for a diffusely emitting and re£ecting wall can
be denoted by

I…rw; ŝ† ˆ ewIb…rw† ‡ 1 ¡ ew

p

Z

ŝi ¢n̂w<0
I…rw; ŝi†jŝi ¢ nwj dOi …2†

where ew is the wall emissivity and subscript w denotes the location of the wall, while
n̂w is the unit vector normal to it.

Unstructured Finite-Volume M ethod

To derive the discretized equation, Eq. (1) is integrated over a control volume
(or cell), DV , and a control angle, DOmn , as shown in Figure 1a. By assuming that
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the magnitude of the intensity is constant but its direction varies within the control
volume and control angle given, the following ¢nite-volume formulation can be
obtained:

X

iˆ1;2;3

Imn
i DAi Dmn

ci ˆ b0…¡Imn ‡ Smn
R †p DV DOm …3†

where

Dmn
ci ˆ

Z ym‡

ym¡

Z fn‡

fn¡
…ŝ ¢ n̂i† sin y dy df …4†

ŝ ˆ sin y cos fêx ‡ sin y sin fêy ‡ cos yêz …5†

Figure 1. Schematics of control volume and control angle: (a) control volume; (b) control angle.
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n̂i ˆ nx;i êx ‡ ny;iêy ‡ nz;iêz …6†

Smn
R ˆ …1 ¡ o0†Ib ‡ o0

4p

Z

Oiˆ4p
Imini Fmini!mn dOi …7†

DOmn ˆ
Z ym‡

ym¡

Z fn‡

fn¡
sin y dy df …8†

This equation indicates that a net outgoing radiant energy across the control-volume
faces must be balanced by a net generation of radiant energy within the control
volume and control angle.

The solid angle, 4p steradians, is discretized into …Ny £ Nf† directions, where y
is a polar angle ranging from 0 to p and f is an azimuthal angle ranging from 0 to 2p ,
as shown in Figure 1b. Although the control angle can be placed arbitrarily, usually
it is equally divided such that Dym ˆ ym‡ ¡ ym¡ ˆ p=Ny and
Dfn ˆ fn‡ ¡ fn¡ ˆ 2p=Nf. Once the angular limit for each control angle is ¢xed,
the directional weight, which determines an in£ow or out£ow of radiant energy
across the control-volume face depending on its sign, is evaluated as follows:

Dmn
ci ˆ ‰0:5 Dym ¡ 0:25…sin 2ym‡ ¡ sin2ym¡†Š

£ ‰nx;i…sin fn‡ ¡ sin fn¡† ‡ ny;i…cos fn‡ ¡ cos fn¡†

‡ 0:5nz;i…sin2 ym‡ ¡ sin2ym¡† DfnŠ …9†

Next, a scheme is required that relates a control-volume facial intensity to a
nodal one. Among many others, here is adopted a step scheme in which a
downstream facial intensity is set equal to the upstream nodal value. It not only
ensures the positive intensity, but is also simple and convenient. For this scheme,
a typical relation between facial and nodal intensities is as follows:

Imn
i Dmn

ci ˆ Imn
P Dmn

ci; out ‡ Imn
I Dmn

ci; in …10†

where Dmn
ci; out and Dmn

ci;in are varied depending on the manipulation of the control angle
overlaps, which follows next. The overlaps can occur at interior as well as boundary
face for the unstructured and nonorthogonal structured grid system [10].

Control Angle Overlaps

In order to understand the problem of control angle overlap, for which the
incoming and outgoing intensities exist together for a given control angle, a simple
example is considered. As shown in Figure 2a, control angles of DO2 and DO6

are overlapped so that the intensities in the range of …fA; f2‡† and …f6¡; fB† are
incoming, while those in …f2¡; fA† and …fB; f6‡† are outgoing. In order to manage
this overlapped angle, three types of manipulation are considered here, as depicted
in Figures 2b, 2c, and 2d. While the ¢rst and second ones are named as the bold
approximation [8] and the pixelation method [7] respectively, the third one that
is newly proposed here is termed the exact treatment [9].
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Bold Approximation

Chai et al. [8] performed a bold approximation, in which a solid angle is
assumed wholly either outgoing or incoming depending on the sign of its directional
weight. The schematic of this simple method is presented in Figure 2b. The facial
value is, then, determined as follows:

Imn
i Dmn

ci ˆ Imn
P max…Dmn

ci ; 0† ¡ Imn
I max…¡Dmn

ci ; 0† …11†

or

Imn
i Dmn

ci ˆ Imn
P Dmn

ci;out ‡ Imn
I Dmn

ci;in …12†

where

Dmn
ci;out ˆ max…Dmn

ci ; 0† Dmn
ci;in ˆ ¡ max…¡Dmn

ci ; 0† …13†

Pixelation M ethod

In the pixelation method, only the overlapped control angle is pixelated, while
the other angles still adopt the bold approximation. Within the overlapped angle,
the bold approximation is applied to each pixelated angle. Figure 2c shows a
schematic of this method with three pixelations of the control angle given. Since
the two-dimensional problem is considered in the present study, the pixelation pro-
cess is introduced to the azimuthal angle only. If the number of pixelation is Np,
then the total number of control angle becomes Np ˆ 1. When Np ˆ 1, this becomes
NyXNp that is the bold approximation. This pixelation process is very similar to
the grid adaptation used in computational £uid dynamics (CFD).

Exact Treatment

The common shortcoming for the above two methods is not to keep the energy
balance conserved between energy in£ow and out£ow for the overlapped angle. The
pixelation method satis¢es the energy balance only when the number of pixelation
is very large such that Np ¾ 1.

Figure 2. Manipulations of control angle overlaps: (a) top view of overlapped control angle; (b) bold
approximation; (c) pixelation method (Np ˆ 3); (d) exact treatment.

622 M. Y. KIM ET AL.



Recently, Baek et al. [9] overcame such a shortcoming by dividing the over-
lapped angle into two parts and assigned an incoming or outgoing intensity to each
as shown in Figure 2d. Then, the facial intensity becomes:

Imn
i Dmn

ci ˆ Imn
p Dmn

ci;out ‡ Imn
I Dmn

ci;in …14†

where

Dmn
ci;out ˆ

Z

DOmn
…ẑ ¢ n̂i† dO ŝ ¢ n̂i > 0 …15†

Dmn
ci;in ˆ

Z

DOmn
…ẑ ¢ n̂i† dO ŝ ¢ n̂i < 0 …16†

In this exact method, the total number of control angles becomes Ny…2 ‡ Nf†.

Linear Solver

Considering all the supplementary equations above, Eq. (3) can be recast into
the following linear equation:

amn
p Imn

p ˆ
X

Iˆ1;2;3

amn
I Imn

I ‡ bmn
p …17†

where

amn
I ˆ ¡DAiDmn

ci;in …18†

amn
P ˆ

X

iˆ1;2;3

DAiDmn
ci;out ‡ b0;P DV DOmn …19†

bmn
P ˆ …b0Smn

R †P DV DOmn …20†

The boundary condition in Eq. (2) for a diffusely emitting and re£ecting wall can be
discretized by

Imn
w ˆ ewIbw ‡ 1 ¡ ew

p

X

ŝi ¢n̂w<0

Imini
w jDmini

cw;in j ŝi ¢ n̂w > 0 …21†

where

Dmn
cw;in ˆ

Z

DOmn
…ŝ ¢ n̂w† dO ŝ ¢ n̂w < 0 …22†

is the directional weight at the bounding wall.
The iterative procedure using Eq. (17) is terminated when the following con-

vergence is attained:

max…jImn
P ¡ Imn;old

P j=Imn
P † µ 10¡6 …23†

where Imn;old
P is the previous iteration value of I mn

P . Once the intensity ¢eld is
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obtained, the wall radiative heat £ux can be estimated as follows:

qR
w ˆ

Z

Oˆ4p
I…r̂w; ŝ†…ŝ ¢ n̂w† dO ˆ

XNf

nˆ1

XNy

mˆ1

Imn
w …Dmn

cw;in ‡ Dmn
cw;out† …24†

which is the positive when net heat is transferred from the wall to medium.

Geometric Relations

In order to close the general discretization equation (17), the volume of the
control volume (or cell), DV , surface area, DAi, and outward unit normal vector,
n̂i, have to be provided. According to notations in Figure 1a, the product of the
unit normal vector and surface area can be represented by

DA1n̂1
DA2n̂2
DA3n̂3

0

@

1

A ˆ
y2 ¡ y1
y3 ¡ y2
y1 ¡ y3

0

@

1

Aêx ¡
x2 ¡ x1
x3 ¡ x2
x1 ¡ x3

0

@

1

Aêy …25†

and the volume of the triangular cell can be given by

DV ˆ
�������������������������������������������������������������
s…s ¡ DA1†…s ¡ DA2†…s ¡ DA3†

p
…26†

where

s ˆ
1
2

X3

iˆ1

DAi …27†

RESULTS AND DISCUSSIONS

In the present study, ¢ve test cases are considered. The results obtained are
presented and discussed in separate sections.

An Equilateral Triangular Enclosure

First, the unstructured FVM is applied to an equilateral triangular enclosure
with an absorbing and emitting, but nonscattering, medium maintained at constant
temperature of Tg ˆ 1; 000 K as shown in Figure 3a. The length of each side is
1 m and the walls are held cold …Tw ˆ 0 K † and black …ew ˆ 1:0†. In this case, the
intensity, which is exact at any location within the enclosure, may be obtained
by summing all the intensities from the enclosure wall as well as local emission
by the medium such that

I…s† ˆ Ibwe¡ks ‡ Ib…1 ¡ e¡ks† …28†

where Ib is the local blackbody intensity of the medium and s is the path length. Then,
the exact wall heat £ux can be obtained by numerically integrating I…s†…ŝ ¢ n̂w† over all
incident solid angles via Gaussian quadrature numerical integration [9]. The relative
average error of radiant heat £uxes on a wall is calculated for comparison as

Error ˆ
X

nods

jqcal ¡ qexact j=qexact

number of wall nodes
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where qcal is the calculated value and qexact is the exact value.
Figure 3b shows the spatial grid system consisting of 900 cells and 496 nodes.

The dimensionless incident radiative heat £ux onto the bottom wall is presented
in Figure 4 with the absorption coef¢cient of 1 m¡1. Two kinds of angular dis-
cretization, …Ny £ Nf† ˆ …4 £ 8† and …4 £ 16†, and three types of manipulation of
control angle overlap are examined here. The number of pixelations is chosen to
be 2 when the control angle is pixelated. When the angular discretization is
…Ny £ Nf† ˆ …4 £ 16†, the results well match the exact solution regardless of how
we deal with the problem of control angle overlap. However, for the case of
…Ny £ Nf† ˆ …4 £ 8†, the exact treatment and the pixelation method produce better
results than the bold approximation. The relative average errors and corresponding
computing times for three types of angular manipulations are compared in
Table 1. The values in parentheses represent a computational time required for each
type calculation, for which the unit is not important since it is machine-dependent.
For the case of …Ny £ Nf† ˆ …4 £ 8†, the pixelation method as well as the exact treat-
ment yields 2% increase in accuracy with 22% increase in computational time over
the bold approximation. When the angular discretization is …Ny £ Nf† ˆ
…4 £ 16†, it results in 41% increase in accuracy with 100% increase in computational
time for the bold approximation, and 41% increase in accuracy with 140% increase
in computational time for the pixelation method and the exact treatment.

A Square Enclosure with Baf¯ e

The next topic to consider here is related to a square enclosure with baf£e as
shown in Figure 5a, which has been studied previously by Coelho et al. [11] using
the structured DOM and the discrete transfer method (DTM). The baf£e, suspended
on the top wall, is 0.01 m wide and 0.4 m long. All the surrounding walls as well as a
baf£e exert unit emissive power and are assumed to be blackbodies. The
nonscattering gray medium has an absorption coef¢cient of k ˆ 1 m¡1 and an

Figure 3. An equilateral triangular enclosure: (a) schematic; (b) spatial grid system with 900 cells and 496
nodes.
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emissive power of Ebg ˆ 10 W=m2. The spatial grid system depicted in Figure 5b
consists of 2,208 cells and 1,196 nodes with an angular grid system of
…Ny £ Nf† ˆ …4 £ 32†. The incident heat £ux is calculated along the enclosure in
the direction s using the unstructured FVM with three types of manipulations of
control angle overlap. It is plotted in Figure 6 and compared with the others obtained
by using the zone method and the FVM [12] and DOM [11] which adopted a
structured blocked-off grid system. Hereafter, ``unstructured grid’’ is abbreviated
as ``UNS’’ in the ¢gures for brevity. Compared with the results obtained by the
zone method, the unstructured mesh produces good agreement. As in the previous

Figure 4. Comparison of radiative heat £ux qR
w onto the bottom wall of an equilateral triangular

enclosure.

Table 1. Comparison of relative error and computing time for the equilateral triangular enclosure with
k ˆ 1:0 m¡1

…Nf £ Ny†

…4 £ 8† …4 £ 16†

Bold approximation 0.04819 (22) 0.02844 (44)
Pixelation method (Npix ˆ 2† 0.04709 (27) 0.02838 (66)
Exact treatment 0.04719 (28) 0.02825 (65)

Arbitrary time unit depending on machine.
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equilateral triangle case, different manipulation of the control angle overlap is seen
not to make any difference in the results, since the angular discretization used here
is suf¢ciently ¢ne. Compared with the case without a baf£e, the baf£e reduces
the net heat £ux, for the presence of the baf£e hinders the radiant energy transfer
from the hot medium to the wall boundary.

Figure 5. A square rectangular enclosure with baf£e: (a) schematic; (b) spatial grid system with 2,208 cells
and 1,196 nodes.

Figure 6. Comparison of radiative heat £ux qR
w along the boundary of a square enclosure with baf£e.
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A Semicircle Enclosure with Circular Hole

Based on the validation of the present unstructured FVM solver as above, a
semicircle enclosure with one circular hole as an example of a more complex con-
¢guration, which has not been considered before, is now examined. As presented
in Figure 7, a circular hole 0.2 m in radius is located at y ˆ 0:4 m inside a semicircle
enclosure with R0 ˆ 1 m. The medium enclosed is absorbing as well as emitting with
a uniform temperature of Tg ˆ 1;000 K , while all other boundaries are cold and
blackbody. The spatial grid system used consists of 1,346 cells and 733 nodes with
…Ny £ Nf† ˆ …4 £ 16†.

Figure 8 depicts the incident radiative heat £ux distribution along the bottom
wall for various absorption coef¢cients. For k ˆ 10 m¡1, the dimensionless radiative

Figure 7. A hemispherical enclosure with circular hole: (a) schematic; (b) spatial grid system with 1,346
cells and 733 nodes.

Figure 8. Comparison of radiative heat £ux qR
w onto the bottom wall of a hemispherical enclosure with a

circular hole.
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heat £ux along the bottom wall is near unity except at the center and the side corner,
because the incident radiation on the wall derives mainly from the neighboring hot
medium rather than from the inner medium, away from the wall. Therefore, the
medium temperature near the wall is lower, while the inner medium temperature
is higher. Near the side corner, however, the radiative heat £ux decreases rapidly,
since that is the place where the cold walls meet each other. As the absorption
coef¢cient decreases, the radiative heat £ux at the bottom wall is signi¢cantly
reduced. This is because the emissive power of the medium is reduced since the
absorption coef¢cient is smaller. For this smaller absorption coef¢cient, the tem-
perature is more uniformly distributed from the near wall to the inner medium.
Results obtained by the unstructured FVM as well as the structured multiblock
method are in good agreement with the exact solution.

A Square Enclosure with Finned Internal Cylinder

As a further application of the present unstructured FVM code to a new geo-
metry, a square enclosure with a ¢nned cylinder is now examined. Only a quarter
section of its schematic is shown in Figure 9, where Lx ˆ Ly ˆ 1 m, H ˆ 0:25 m,
W ˆ 0:1 m, and R ˆ 0:5 m. The enclosed medium is in radiative equilibrium with
either b0 ˆ 0:1 m¡1, o0 ˆ 0:7, or b0 ˆ 5:0 m¡1, o0 ˆ 0:7. While the temperature
of the outer square is held at 300 K, the inner ¢nned cylinder temperature is 1,000 K.
All the walls including ¢ns are assumed to be blackbody. The spatial grid system
adopted in this calculation is composed of 2,238 equal-sized triangular cells and
1,206 nodal points. The entire angular domain is discretized into
…Ny £ Nf† ˆ 4 £ 12 control angles with equal Dy and Df.

The results obtained by the bold approximation and exact UNS are compared
with those by the blocked-off ¢nite-volume method (FVM), which is another

Figure 9. A square enclosure with ¢nned internal cylinder: (a) schematic; (b) spatial grid system with 2,238
cells and 1,206 nodes.
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numerical tool for a complex geometry [12]. As depicted in Figure 10, the radiative
heat £ux onto the top wall decreases with increasing extinction coef¢cient, due
to the radiative heat blockage effect of the medium. For the case of
b0 ˆ 0:1 m¡1, the effect of the ¢nned cylinder is apparent in that there is a minor
dent in the radiative heat £ux variation obtained by UNS. The solution obtained
by the blocked-off FVM is seen to be a little poorer than that by UNS. This
can be elucidated in Figure 11, which illustrates isothermal contours for the con-
ditions given above. The isothermal line near the cylinder produced by the
blocked-off FVM is shown to be wiggled. However, for the case of b0 ˆ 5 m¡1,
the effect of the ¢nned cylinder is not clear, since the incident heat £ux is in£uenced
mainly by the radiation ¢eld in the vicinity of the square wall for higher absorption
coef¢cient. In Figure 11 the temperature difference between the adjacent isothermal
lines is 100 K. Therefore, for the case of b0 ˆ 0:1 m¡1 the temperature gradient
is seen to be steep in the vicinity of the square wall. It is also noted that the wiggling
behavior does not occur in the solutions obtained by the UNS.

A Furnace with Embedded Cooling Pipes

Finally, a geometric model of a furnace is considered, which is similar to the
three-dimensional one of Adams and Smith [13], who analyzed the radiative heat
transfer using the discrete-ordinates method. In the present example, however,
the furnace is simpli¢ed as a two-dimensional enclosure 2.0 m in width and 6.29 m

Figure 10. Comparison of radiative heat £ux qR
w onto the top wall of a square enclosure with a ¢nned

internal cylinder.
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in length, as presented in Figure 12. There exist 22 cooling pipes along the top wall
between 2.22 and 6.29 m. The pipe, 0.03 m in diameter, is 0.025 m away from
the top wall. The furnace wall and pipe emissivities are 0.5 and 0.8, respectively.
The furnace wall and gas medium temperatures are obtained from the work by
Michelfelder and Lowes [14], while the cooling pipe temperature is assumed to
be 300 K. It is depicted in Figure 13. At the point where a measured value does
not exist, the temperature is calculated by interpolating the neighboring data.
Gas absorption coef¢cient is set to be 0:2 m¡1. The spatial grid system used has
26,718 cells and 9,207 nodes, while Ny ˆ 2 in polar and Nf ˆ 8 in azimuthal angle
direction for the total 4p steradian solid angle.

Figure 14 shows the incident radiative heat £ux distribution along the top wall.
It is shown to be dramatically £uctuating where the cooling pipes exist, since they
intercept incident radiation coming from the hot medium toward the wall. The heat
£ux along the top wall in the region of 4 m < x < 5 m is enlarged for comparison
of various methods and is drawn in Figure 15. The blocked-off FVM is seen to
be as good as the unstructured FVM. Different types of control angle overlap
manipulation make only a minor difference. This is because the number of control
angles is suf¢cient. As the number of control angles decreases, the effects of different
control angle overlap manipulations would not be negligible.

Figure 11. Isothermal lines.
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CONCLUSIONS

In this study the unstructured ¢nite-volume method has been developed for
more realistic application to analyzing the radiative heat transfer in a more complex
enclosure with obstacles. The ¢nal form of the general discretization equation was
derived here using the directional weight and the step scheme. Simultaneously,
in order to deal with the problem of control angle overlap, three types of man-
ipulation, the bold approximation, the pixelation method, and the exact treatment,
were considered. Since the main objective of this work was to seek the compatibility
of the unstructured FVM for radiation with the other discretized governing
equations such as momentum and energy equations, the nodal points and cells used
therein were chosen. Then, this method was applied to such diverse examples as
an equilateral triangular enclosure, a square enclosure with a baf£e, a semicircular
enclosure with a cylindrical hole, a square enclosure with a ¢nned internal cylinder,
and a furnace with embedded cooling pipes. For the concrete validation for the for-
mer two cases, the current results were compared with exact solutions or those

Figure 12. A furnace with embedded cooling pipes: (a) schematic; (b) spatial grid system with 26,718 cells
and 9,207 nodes; (c) enlarged view of grid system near the cooling pipes.
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Figure 13. Temperature distribution of furnace.

Figure 14. Distribution of the radiative heat £ux qR
w along the top wall of a furnace with embedded cooling

pipes.

UNSTRUCTURED FVM FOR RADIATIVE HEAT TRANSFER 633



obtained by other numerical techniques such as the zone method and the multiblock
or blocked-off FVM with structured mesh. Then, more complex con¢gurations for
the latter three were examined. The unstructured FVM derived here was found
not to show wiggling behavior in the computed results, which occurred in the
blocked-off structured grid system. It was also found that the solutions depended
on the type of manipulation of control angle overlap, especially when the number
of control angles was small. Usually, both the pixelation method and exact treatment
yielded better solutions than the bold approximation.
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