
Unstructured Tree Search on SIMD Parallel Computers:

Experimental Results *

George Karypis and Vipin Kumar

Department of Computer Science

University of Minnesota

Minneapolis, MN 55455

Abstract
In this paper, we present new methods for load

balancing of unstructured tree computations on large-
scale SIMD machines, and analyze the scalability of
these and other existing schemes. An efficient formu-
lation of tree search on a SIMD machine comprises of
two major components: (i) a triggering mechanism,
which determines when the search space redistribu-
tion must occur to balance search space over proces-
sors; and (ii) a scheme to redistribute the search space.
We have devised a new redistribution mechanism and
a new triggering mechanism. Either of these can be
used in conjunction with triggering and redistribution
mechanisms developed by other researchers. We an-
alyze the scalability of these mechanisms, and verify
the results experimentally. The analysis and experi-
ments show that our new load balancing methods are
highly scalable on SIMD architectures. Their scalabil-
ity is shown to be no worse than that of the best load
balancing schemes on MIMD architectures. We verify
our theoretical results by implementing the 15-puzzle
problem on a CM-21 SIMD parallel computer.

1 Introduction

Tree search is central to solving a variety of problems
in artificial intelligence [11, 25], combinatorial opti-
mization [10, 20], operations research [24] and Monte-
Carlo evaluations of functional integrals [30]. The
trees that need to be searched for most practical prob-

*This work was supported by IST/SDIO through the Alany
Research Office grant ~28408-MA-SDI and by the Alany High
Performance Computing Research Center at the University of
Minnesota.

1CM-2 is a registered trademark of Thinking Machines
Corporation.

lems happen to be quite large, and for many tree
search algorithms, different parts can be searched rel-
atively independently. These trees tend to be highly
irregular in nature and hence, a naive scheme for par-
titioning the search space can result in highly un-
even distribution of work among processors and lead
to poor overall performance. The job of partition-
ing irregular search spaces is particularly difficult for
SIMD parallel computers such as the CM-2, in which
all processors work in lock-step to execute the same
program. The reason is that in SIMD machines, work
distribution needs to be done on a global scale (i.e. if
a processor becomes idle, then it has to wait until the
entire machine enters a work distribution phase). In
contrast, on MIMD machines, an idle processor can re-
quest work from another busy processor without any
other processor being involved. Many efficient load
balancing schemes have already been developed for dy-
namically partitioning large irregular trees for MIMD
parallel computers [1, 3, 5, 22, 28, 31, 32], whereas
until recently, it was common wisdom that such irreg-
ular problems cannot be solved on large-scale SIMD

parallel computers [20].
Recent research has shown that data parallel SIMD

architectures can also be used to implement parallel
tree search algorithms effectively. Powley, Korf and
Ferguson [26, 27] and Mahanti and Daniels [2, 21]
present parallel formulations of a tree search algorithm
IDA*, for solving the 15 puzzle problem on CM-2.
Frye and Myczkowski [4] presents an implementation
of a depth-first tree search algorithm on the CM-2 for
a block puzzle.

The load balancing mechanisms used in the imple-
mentations of Frye, Powley, and Mahanti are different

113

From: AAAI Technical Report SS-93-04. Compilation copyright © 1993, AAAI (www.aaai.org). All rights reserved.

from each other. From the experimental results pre-
sented, it is difficult to ascertain the relative merits of
these different mechanisms. This is because the perfor-
mance of different schemes may be impacted quite dif-
ferently by changes in hardware characteristics (such
as interconnection network, CPU speed, speed of com-
munication channels etc.), number of processors, and
the size of the problem instance being solved [16].
Hence any conclusions drawn on a set of experimental
results may become invalid by changes in any one of
the above parameters. Scalability analysis of a parallel
algorithm and architecture combination is very useful
in extrapolating these conclusions [8, 16, 18]. The iso-
efficiency metric has been found to be quite useful in
characterizing sealability of a number of algorithms
[7, 19]. In particular, it has helped determine optimal
load balancing schemes for tree search for a variety of

MIMD architectures [18, 6, 15].
In this paper, we present new methods for load bal-

ancing of unstructured tree computations on large-
scale SIMD machines. The experiments show that
our new load balancing methods are highly scalable
on SIMD architectures. In particular, from the analy-
sis presented in [12], their sealability is no worse than
that of the best load balancing schemes on MIMD ar-
chitectures.

Section 2 provides a description of existing load bal-
ancing schemes and the new schemes we have devel-
oped. Section 3 and 4 present the experimental eval-
uation of static and dynamic triggering. Section 5
comments on other related work in this area.

2 Dynamic Load Balancing Algorithms

for Parallel Search

Specification of a tree search problem includes a de-
scription of the root node of the tree and a successor-
generation-function that can be used to generate suc-
cessors of any given node. Given these two, the entire
tree can be generated and searched for goal nodes. Of-
ten strong heuristics are available to prune the tree at
various nodes. The tree can be generated using dif-
ferent methods. Depth-first method is used in many
important tree search algorithms such as Depth-First
Branch and Bound [14], IDA* [13], Backtracking [10].
In this paper we consider parallel depth-first-search on

SIMD machines.
A common method used for parallel depth-first-

search of dynamically generated trees on a SIMD ma-
chine [26, 21, 4] is as follows. At any time, all the

processors are either in a search phase or in a load
balancing phase. In the search phase, each processor
searches a disjoint part of the search space in a depth-
first-search (DFS) fashion by performing node expan-
sion cycles in lock-step. When a processor has finished

searching its part of the search space, it stays idle until
it gets additional work during the next load balancing
phase. All processors switch from the search phase to
the load balancing phase when a triggering condition
is satisfied. In the load balancing phase, busy proces-
sors split their work and share it with idle processors.
When a goal node is found, all processors quit. If the
search space is finite and has no solutions, then even-
tually all the processors would run out of work, and
parallel search will terminate.

Since each processor searches the space in a depth-
first manner, the (part of) state space to be searched
is efficiently represented by a stack. The depth of the
stack is the depth of the node being currently explored;
and each level of the stack keeps track of untried alter-
natives. Each processor maintains its own local stack
on which it executes depth-first-search. The current
unsearched tree space, assigned to any processor, can
be partitioned into two parts by simply partitioning
untried alternatives (on the current stack) into two
parts. A processor is considered to be busy if it can
split its work into two non empty parts, one for itself
and one to give away. In the rest of this paper, a pro-
eessor is considered to be busy if it has at least two
nodes on its stack. We denote the number of idle pro-
cessors by 1, the number of busy processors by A and
the total number of processors by P. Also, the terms
busy and active processors will be used interchange-
ably.

2.1 Previous Schemes for Load Balanc-

ing

The first scheme we study is similar to one of the
schemes proposed in [21]. In this algorithm, the trig-
gering condition is computed after each node expan-
sion cycle in the search phase. If this condition is
satisfied, then a load balancing phase is initiated. In
the load balancing phase, idle processors are matched
one-to-one with busy processors. This is done by enu-
merating both the idle and the busy processors; then
each busy processor is matched with the idle proces-
sor that received the same value during this enumer-
ation. The busy processors split their work into two

114

parts and transfer one part to their corresponding idle
processors2. If I > A then only the first A idle proces-
sors are matched to busy ones and the remaining 1-A
processors receive no work. After each load balancing
phase, at least one node expansion cycle is completed
before the triggering condition is tested again.

A very simple and intuitive scheme [26, 4] is to
trigger a load balancing phase when the ratio of ac-
tive to the total number of processors falls below a
fixed threshold. Formally, let x be a number such
that 0 < x < 1, then the triggering condition for this
scheme is:

A < xP (1)

For the rest of this paper we will refer to this trig-
gering scheme as the static triggering scheme with
threshold x (in short the SS-triggering scheme).

Active
Processors

P

A

R1 = w-A*t

R2 =A*L

L time

Active
Processors

P

A

Ra = Widle

(b) t

R2 =L*P

--.......~.

time

Figure 1: A graphical representation of the trigger-
ing conditions for the DR-triggering and for the DK-
triggering schemes.

An alternative to static triggering is to use a trigger
value that changes dynamically in order to adapt itself
to the characteristics of the problem. We call this kind

2Thls is done using the rendezvous allocation scheme de-

scribed in [9].

of triggering scheme dynamic triggering D. A dy-
namic triggering scheme was presented and analyzed
by Powley, Korf and Freguson in [26]. For the rest
of this paper we will refer to it as the DR-triggering
scheme. The DR-triggering works as follows: Let w
be the sum of the time spent by processors, let t be
the elapsed time since the beginning of the current
search phase and let L be the time required to per-

form the next load balancing phase. After every node

expansion cycle, the ratio~w is compared against the
number of active processors A, and a load balance is
initiated as soon as that ratio is greater or equal to
A. In other words the condition that triggers a load
balance is:

W

t +---~ >- A (2)

Because the value of L cannot be known (it requires
knowledge of the future), it is approximated by the
cost of the previous load balancing phase. De is a
locally greedy approach that tries to maximize the av-
erage rate of work over a search and load balancing
phase. Polwey et. al. also describe variants of DP-

triggering in [26].
Another way of stating the triggering condition for

DP is to rewrite eqn (2) as:

w-A*t> A.L (3)

From this equation and Fig. l(a) we see that the R-

triggering scheme will trigger a load balancing phase
as soon as the area R1 is greater or equal to area R2.

2.2 Our New Schemes for Load Bal-
ancing

We have derived a new matching scheme for mapping
idle to busy processors in the load balancing phase.
This method can be used with either the static or the
dynamic triggering schemes. We have also derived a
new dynamic triggering scheme.

The new mapping algorithm is similar to the one
described earlier but with the following modification.
We now keep a pointer that points to the last pro-
cessor that gave work during the last load balancing
phase. Every time we need to load balance, we start
matching busy processors to idle processors, starting
from the first busy processor after the one pointed by
this pointer. When the pointer reaches the last pro-
cessor, it starts again from the beginning. For the rest

115

of this paper we will call this pointer global pointer
and this mapping scheme GP. Also, due to the ab-
sence of the global pointer we will name the mapping
scheme of Section 2.1, nGP.

Figure 2 illustrates the GP and the nGP match-
ing schemes with an example. Assume that at the
time when a load balancing phase is triggered, proces-
sors 6 and 7 are idle and the others are busy. Also,
assume that the global pointer points to processor 5.
Now, nGP will match processors 6 and 7 to processors
1 and 2 respectively, whereas GP will match them to
processors 8 and I respectively and it will advance the
global pointer to processor 1. If after the next search
phase, processors 6 and 7 are idle again and the oth-
ers remain busy, then nGP will match them exactly
as before where GP will match them to processors 2
and 3. The above example also provides the motiva-

Processors 1 2 3 4 5678
example 1

state BBBBBIIB
global pointer T
n GP enumeration of busy processors 1 2 3 4 5 6
GP enumeration of busy processors 2 3 4 5 6 1
enumeration of idle processors 12

example 2
state BBBBBIIB
global pointer l
n GP enumeration of busy processors 1 2 3 4 5 6
GP enumeration of busy processors 6 1 2 3 4 5
enumeration of idle processors 12

Figure 2: Illustration of the GP and nGP matching
schemes. B is used to denote busy processors while I
is used to denote idle ones.

tion behind GP, which is to try to evenly distribute
the burden of sharing work among the processors. As
shown in [12] the upper bound on the number of load
balancing phases required for GP is much smaller than
that for nGP. When x < 0.5 both schemes are similar.

Our new dynamic triggering, scheme, called DK-

triggering, takes a different approach than the DP-

triggering scheme. Formally, let Widt~ be the sum of

the idle time of all the processors since the beginning
of the current search phase and let L * P be the cost
of the next load balancing phase, then the condition
that will trigger a load balance is:

Wldle >_ L * P (4)

Fig. l(b) illustrates this condition, R1 is Widle and

R2 is L ¯ P. This scheme will trigger a load balancing
phase as soon as R1 ~ R2. Note that if triggering takes

place earlier than this point, then the load balancing
overhead will be higher than the overhead due to idling
and vice versa. Thus, our triggering scheme balances
the idle time of the processors during the search phase
and the cost of the next load balancing phase.

3 Static Triggering: Experimental R.e-

suits

We solved various instances of the 15-puzzle problem
[23] taken from [13], on a CM-2 massively parallel
SIMD computer. 15-puzzle is a 4 x 4 square tray
containing 15 square tiles. The remaining sixteenth
square is uncovered. Each tile has a number on it. A
tile that is adjacent to the blank space can be slid into
that space. An instance of the problem consists of an
initial position and a specified goal position. The goal
is to transform the initial position into the goal posi-
tion by sliding the tiles around. The 15-puzzle prob-
lem is particularly suited for testing the effectiveness
of dynamic load balancing schemes, as it is possible to
create search spaces of different sizes (W) by choosing
appropriate initial positions. IDA* is the best known
sequential depth-first-search algorithm to find optimal
solution paths for the 15-puzzle problem [13], and gen-
erates highly irregular search trees. We have paral-
lelized IDA* to test the effectiveness of the various
load balancing algorithms. The same algorithm was
also used in [26, 21]. Our parallel implementations of
IDA* find all the solutions of the puzzle up to a given
tree depth. This ensures that the number of nodes
expanded by the serial and the parallel search is the
same, and thus we avoid having to consider superlin-
ear speedup effects [29, 26, 21].

We obtained experimental results using both the
nGP and the GP matching schemes for different val-
ues of static threshold x. In our implementation, each
node expansion cycle takes about 10ms while each load

balancing cycle takes about 34ms. Every time work is
split we transfer the node at the bottom of the stack.
For the 15-puzzle problem, this appears to provide a
reasonable alpha-splitting mechanism. In calculating
efficiencies, we used the average node expansion cycle
time of parallel IDA* as an approximation of the se-
quential node expansion cost. Because of higher node
expansion cost associated with SIMD parallel com-
puters [26], the actual efficiencies are lower by a con-
stant ratio than those presented here. However, this
does not affect the relative comparison of any of these
schemes.

116

Static Tri~er 0.50 0.60 0.70 0.80 0.90
w Metric hOP GP nG.P GF nUF GP n GP GF nG.P GP

,N’e~opo nd 547 547 479 483 438 438 400 406 384 379
2488958 NIb 62 62 105 69 179 78 309 102 376 154

E 0.41 0.41 0.37 0.43 0.29 0.43 0.21 0.41 0.19 0.35
Ne~pand 1957 1957 1708 1730 1520 1563 1364 1429 1320 1325

9076121 Ntb 72 72 245 84 56O 102 1095 134 1317 226
E 0.51 0.51 0.43 0.55 0.32 0.58 0.22 0.59 0.19 0.54
Ne~pand 4629 4629 4O78 4091 3588 3687 3234 3376 3104 3113

21540929 N~b 73 73 407 90 1251 107 2339 151 3044 250
E 0.54 0.54 0.48 0.60 0.33 0.65 0.24 0.68 0.20 0.67
Nexpand 9510 9510 8457 8450 7565 6881 7009 6475 6494

45584793 N~b 73 73 515 84 1880 3636 150 5911 260
E 0.57 0.57 0.54 0.64 0.39 0.70 0.29 0.74 0.21 0.76

Table h Experimental results obtained using 8192 CM-2 processors. Ne~va,d is the number of node expansion
cycles, Nzb is the number of load balancing phases and E is the efficiency.

Some of these results are shown in Table 1. All the
timings in this table have been taken on 8k proces-
sors. From the results shown in this table, we clearly

see how GP and nGP relate to each other. When
x = 0.50 both algorithms perform similarly, where,
as predicted by our theoretical analysis presented in

[12], the difference between the performance of GP
and nGP increases as x increases. From the results
shown in Table 1, we also see that the relative perfor-
mance of GP versus nGP increases as W increases.
The reason for that is explained in [12].

4 Dynamic Triggering, Experimental Re-

suits
We implemented all four combinations of the two dy-
namic triggering schemes DP and DK, and the two
matching schemes nGP and GP, in the parallel IDA*
to solve the 15-puzzle problem on CM-2. In all cases,
the root node is given to one of the processors and
static triggering with x = 0.85 is used until 85% of the
processors became active. Thus in the initial distribu-
tion phase, each node expansion cycle was followed
by a work distribution cycle until 85% of the proces-
sors had work. After the initialization phase, trigger-
ing was done using the respective dynamic triggering
schemes. The results are summarized in Table 2.

From the results shown in this table we can see
that for the nGP matching scheme, the DK-triggering
scheme performs slightly worse than the DP-triggering
scheme for larger problems. For the GP match-
ing scheme, DK-triggering performs consistently bet-
ter that DP-triggering for all problems. Also the
GP matching scheme constantly outperforms nGP for
both dynamic triggering schemes as it does for static
triggering. Comparing the two dynamic triggering
schemes in Table 2, with the static triggering scheme
in Table 1, we see that GP-DK performs as good as

the GP-S~ schemes using optimal trigger values for

Dynmnic Trigger DY-trlggering D1~-triggering

W Metric nGP GP nGP GP
Nexpand 685 596 552 500

2488958 *N(b 137 100 83 68
E 0.29 0.34 0.37 0.42
Nexpand . 2002 1778 1758 1467

9076121 *N~b 161 110 186 114
E 0.45 0.52 0.46 0.60
Nexpand 4436 3894 4002 3200

21540929 *Nzb 214 116 378 183
E 0.52 0.62 0.49 0.69
Nexpand 8682 7517 8014 6406

45584793 *Nib 314 137 669 279
E 0.57 0.70 0.54 0.77

Table 2: Experimental results obtained using 8192
CM-2 processors using various dynamic triggering
schemes. Ner.par, d is the number of node expansion
cycles, *Ntb is the number of work transfers and E is
the efficiency. Note that for the DK-triggering scheme
*NIb is equal to the number of load balancing phases.

each problem.

5 Related Work

Powley, Korf and Ferguson [26, 27] present load bal-
ancing algorithms which have different triggering and
matching schemes. Their matching scheme, min-f or-
dering, is identical to nGP or GP when the num-
ber of active processors is less than the number of

idle ones; but when the active processors are more
than the idle ones, work is given out from processors
that have nodes with smaller f-value (i.e., the lower
bound on the cost of the node). The primary moti-
vation behind the min-f ordering is that nodes with
smaller f-values are likely to represent more work than

those with larger f-values. Clearly, the min-f order-
ing should lead to no more load balancing phases than
nGP. It may even lead to fewer number of load bal-
ancing phases than GP depending upon how good a
predictor the f-value is of the overall load. But unlike
GP, it is difficult to put an upper bound on the number

117

of load balancing phases for the min-fordering scheme.
Also, implementation of min-f requires a sorting step
which is more time consuming than simple enumera-
tion required by GP. This will become important if
the cost of sorting is high compared with the rest of
the load balancing phase. In our experiments with the
15-puzzle problem, we found min-f and GP to require

about the same number of load balancing phases. But,
in our experimental setup, the load balancing cost for

min-f is about 2.5 times that of GP. Hence GP leads
to somewhat higher efficiencies. Powley eL al. also re-
port experimental results for a matching scheme which
randomly matches idle processors to busy processors,
and point out that its performance is similar to the
min-f scheme.

Powley eL al. present three different triggering
schemes: static triggering, DP-triggering and a varia-
tion of DP-triggering with the following modifications:
A load balancing cycle is triggered when either the
DP-triggering condition holds or when the number of
active processors is less than P/2 and the time spent
searching is at least half of the time spent in load bal-
ancing. These modifications to DP guarantee that at
least one third of the total time is spent searching, and
alleviate many of the drawbacks of the original DP-

triggering scheme. Besides load balancing within iter-
ations of IDA*, Powley et.al, perform load balancing
during the initial work distribution and between iter-
ations of IDA*. These steps may not be applicable, in
general, to dynamic distribution of unstructured trees
on parallel computers.

Mahanti and Daniels proposed two dynamic load
balancing algorithms, FESS and FEGS, in [21, 2]. In
both these schemes a load balancing phase is initi-
ated as soon as one processor bdcomes idle and the
matching scheme used is similar to nGP. The differ-
ence between FESS and FEGS is that during each
load balancing phase FESS performs a single work
transfer while FEGS performs as many work trans-
fers as required so that the total number of nodes is
evenly distributed among the processors. As our anal-
ysis has shown the FESS scheme has poor scalability
and because this scheme usually performs as many
load balancing phases as node expansion cycles, its
performance depends on the relative costs of commu-
nication and node expansion. FEGS performs better
work distribution thus requires fewer number of load
balancing phases. Hence it has better performance
than FESS, and its scalability may be close to the

GP matching scheme. The memory requirements of
FEGS is unbounded, and modifications to handle this
problem are discussed in [21].

Frye and Myczkowski proposed two dynamic load
balancing algorithms in [4]. The first scheme is similar
to nGP-Sx with the difference that each busy proces-
sor gives one piece of work to as many idle processors
as many pieces of work it has. Clearly this scheme
has a poor splitting mechanism. Extending this algo-
rithm in such a way so that the total number of nodes
is evenly distributed among the processors results in
a scheme similar to FEGS of Mahanti eL al.. The
second algorithm is based on nearest neighbor com-
munication. In this scheme after each node expansion
cycle the processors that have work check to see if their

neighbors are idle. If this is the case then they transfer
work to them. This scheme is similar to the nearest
neighbor load balancing schemes for MIMD machines
thus as shown in in [17] it is sensitive to the quality
of the work splitting mechanism. Hence, this algo-
rithm is sensitive to the quality of the alpha-splitting
mechanism.

References
[1] S. Arvindam, Vipin Kumar, V. Nageshwara Rao, and Vi-

neet Singh. Automatic test Pattern Generation on Multi-

processors. Parallel Computing, 17, number 12:1323-1342,

December 1991.

[2] M. Evett, James Hendler, Ambujashka Mahanti, and Dana

Natl. PRAY: A Memory-Limlted Heuristic Search Proce-

dure for the Connection Machine. In Proceedings of the

third symposium on the Frontiers of Massively Parallel

Computation, pages 145-149, 1990.

[3] Raphael A. Finkel and Udi Manber. DIB - A Distributed

implementation of Backtracking. ACM Trans. of Progr.

Lang. and Systems, 9 No. 2:235-256, April 1987.

[4] Roger Frye and Jacek Myczkowski. Exhaustive Search of

Unstructured Trees on the Connection Machine. In Think-

ing Machines Corporation Technical Report, 1990.

[5] M. Furuichi, K. Taki, and N. Ichiyoshi. A Multi-Level Load

Balancing Scheme for OR-Parallel Exhaustive Search Pro-

grams on the Multi-PSI. In Proceedings of the 2nd AC~

SIGPLAN Symposium on Principles and Practice of Par-

allel Programming, 1990. pp.50-59.

[6] Ananth Grams, Vipin Kumar, and V. Nageshwara Rao.

Experimental Evaluation of Load Balancing Techniques for

the Hypercube. In Proceedings of the Parallel Computing

91 Conference, 1991.

[7] Anshul Gupta and Vipin Kumar. The sealability of FFT

on Parallel Computers. In Proceedings of the Frontiers 90

118

Conference on Massively Parallel Computation, October
1990. An extended version of the paper will appear in

IEEE Transactions on Parallel and Distributed Systems,

1993.

[8] John L. Gustafson, Gary R. Montry, and Robert E. Benner.

Development of Parallel Methods for a 102~-Processor Hy-

percube. SIAM Journal on Scientific and Statistical Com-

puting, 9 No. 4:609-638, 1988.

[9] W. Daniel Hillis. The Connection Machine. MIT Press,

1991.

[10] Ellis Horowitz and Sartaj Sahni. Fundamentals of Com-

puter Algorithms. Computer Science Press, Rockville,

Maryland, 1978.

[11] Laveen Kanal and Vipin Kumar. Search in Artificial In-

telligence. Springer-Verlag, New York, 1988.

[12] George Karypis and Vipin Kumar. Unstructured Tree

Search on SIMD Parallel Computers. Technical Report

92-21, University of Minnesota, 1992.

[13] Richard E. Korf. Depth-First Iterative-Deepcning: An

Optimal Admissible Tree Search. Artificial Intelligence,

27:97-109, 1985.

[14] Vipin Kumar. DEPTH-FIRST SEARCH. In Stuart C.

Shapiro, editor, Encyclopaedia of Artificial Intelligence:

Vol ~, pages 1004-1005. John Wiley a~td Sons, Inc., New

York, 1987. Revised version appears in the second edition

of the encyclopedia to be published in 1992.

[15] Vipin Kumar, Ananth Grams, and V. Nageshwara Rao.

Scalable Load Balancing Techniques for Parallel Comput-

ers. Technical report, Tech Report 91-55, Computer Sci-

ence Department, University of Minnesota, 1991.

[16] Vipin Kumar and Anshul Gupta. Analyzing Scalability of

Parallel Algorithms and Architectures. Technical report,

TR-91-18, Computer Science Department, University of

Minnesota, June 1991. A short version of the paper appears

in the Proceedings of the 1991 International Conference on

Supercomputing, Germany, and as an invited paper in the

Proc. of 29th Annual Allerton Conference on Communnica~

tion, Control and Computing, Urbana,IL, October 1991.

[17] Vipin Kumar, Dana Nau, and Laveen Kanal. General

Branch-and-bound Formulation for AND/OR Graph and

Game Tree Search. In Laveen Kanal and Vipin Kumar,

editors, Search in Artificial Intelligence. Springer-Verlag,

New York, 1988.

[18] Vipin Kumar and V. Nageshwara Rao. Parallel Depth-

First Search, Part II: Analysis. International Journal of

Parallel Programming, 16 (6):501-519, 1987.

[19] Vipin Kumar and Vineet Singh. Scalability of Parallel

Algorithms for the All-Pairs Shortest Path Problem: A

119

Summary of Results. In Proceedings of the International

Conference on Parallel Processing, 1990. Extended version

appears in Journal of Parallel and Distributed Processing

(special issue on massively parallel computation), Volume

13, 124-138, 1991.

[20] Karp R. M. Challenges in Combinatorial Computing. To

appear January 1991.

[21] A. Mahanti and C. Danlels. SIMD Parallel Heuris*ic

Search. To appear in Artificial Intelligence, 1992.

[22] V. Nageshwara Rao and Vipin Kumar. Parallel Depth-

First Search, Part I: Implementation. International Jour-

nal of Parallel Programming, 16 (6):479-499, 1987.

[23] Nils J. Nilsson. Principles of Artificial Intelligence. Tioga

Press, 1980.

[24] Christos H. Papadimltriou and Kenneth Steiglitz. Combi-

natorial Optimization, Algorithms and Complexity. Pren-

tice Rail, 1982.

[25] Judea Pearl. Heuristics - Intelligent Search Strategies

for Computer Problem Solving. Addison-Wesley, Reading,

MA, 1984.

[26] C. Powley, R. Korf, andC. Ferguson. IDA* on the Connec-

tion Machine. To appear in Artificial Intelligence, 1992.

[27] Curt Powley and Richard E. Koff. SIMD and MIMD Par-

allel Search. In Proceedings of the AAAI Spring Sympo-

sium, pages 49-53, 1989.

[28] Abhiram Ranade. Optimal Speedup for Backtrack Search

on a Butterfly Network. In Proceedings of the Third

ACM Symposium on Parallel Algorithms and Architec-

tures, 1991.

[29] V. Nageshwara Rao and Vipin Kumar. On the E~cicency

of Parallel Backtracking. IEEE Transactions on Parallel

and Distributed Systems, (to appear), 1992. available as
teclmical report TR 90-55, Computer Science Department,

University of Minnesota.

[30] Jasec Myczkowski Roger F~’ye. Load Balancing Algorithms

on the Connection Machine and their Use in Monte-Carlo

Methods. In Proceedings of the Unstructured Scientific

Computation on Multiprocessors Conference, 1992.

[31] Wei Shu and L. V. Kale. A Dynamic Scheduling Strategy

for the Chafe-Kernel System. In Proceedings of Supercom-

puting 89, pages 389-398, 1989.

[32] Benjamin W. Wah and Y. W. Eva Ms. MANIP -

A Multicomputer Architecture for Solving Combinatorial

Extremum-Search Problems. IEEE Transactions on Com-
puters, c-33, May 1984.

