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Abstract

Most 3D shape completion approaches rely heavily on

partial-complete shape pairs and learn in a fully super-

vised manner. Despite their impressive performances on in-

domain data, when generalizing to partial shapes in other

forms or real-world partial scans, they often obtain unsat-

isfactory results due to domain gaps. In contrast to previ-

ous fully supervised approaches, in this paper we present

ShapeInversion, which introduces Generative Adversarial

Network (GAN) inversion to shape completion for the first

time. ShapeInversion uses a GAN pre-trained on complete

shapes by searching for a latent code that gives a complete

shape that best reconstructs the given partial input. In this

way, ShapeInversion no longer needs paired training data,

and is capable of incorporating the rich prior captured in

a well-trained generative model. On the ShapeNet bench-

mark, the proposed ShapeInversion outperforms the SOTA

unsupervised method, and is comparable with supervised

methods that are learned using paired data. It also demon-

strates remarkable generalization ability, giving robust re-

sults for real-world scans and partial inputs of various

forms and incompleteness levels. Importantly, ShapeInver-

sion naturally enables a series of additional abilities thanks

to the involvement of a pre-trained GAN, such as producing

multiple valid complete shapes for an ambiguous partial in-

put, as well as shape manipulation and interpolation.

1. Introduction

3D shape completion estimates the complete geome-

try from a partial shape in the form of a partial point

cloud, and is important to many downstream applications

such as robotics navigation [11, 24] and scene understand-

ing [9, 14]. Most works [27, 21, 15, 29, 31] for shape

completion are trained in a fully supervised manner with

paired partial-complete data. While they obtain promising

results on in-domain data, it is challenging for these meth-

ods to generalize to out-of-domain data, which are real-

world scans or data with different partial forms, as shown

in Fig. 1 (a)-(d).

We take an unsupervised approach in this study. Inspired

by the success of GAN inversion in 2D tasks such as image

restoration and editing, we propose to apply GAN inver-

sion to 3D shape completion for the first time, which we

refer to as ShapeInversion. Specifically, given a partial in-

put, ShapeInversion looks for a latent code in the GAN’s

latent space that gives a complete shape that best recon-

structs the input. By incorporating prior knowledge stored

in the pre-trained GAN, no assumptions on the input partial

forms are made, thus ShapeInversion generalizes well to in-

puts of various partial forms and real-world scans. More-

over, the involvement of GAN in ShapeInversion brings

several side-benefits, including giving multiple reasonable

complete shapes for some partial input, as well as shape jit-

tering and shape manipulation.

While ShapeInversion shares some similarity with GAN

inversion methods for 2D images, the former possesses sev-

eral intrinsic challenges due to the nature of 3D data: (1)

Unlike 2D images that follow a grid-like structure, where

the positions of pixels are well defined, point clouds of dif-

ferent 3D shapes are highly unstructured. Often, GANs

trained on 3D shapes would generate point clouds with sig-

nificant non-uniformity, i.e., points are unevenly distributed

over the shape surface. Such non-uniformity may lead to

shapes with undesired holes, undermining the completeness

of our predictions. (2) The unordered nature of point clouds

makes the completion task significantly different from 2D

image inpainting. In 2D image inpainting, one can easily

measure the reconstruction consistency between the visi-

ble regions of partial input and predicted output given the

lattice-aligned pixel correspondences. Such comparison is

challenging in 3D shape completion since the correspond-

ing regions of two 3D shapes may reside at different loca-

tions in the 3D space. Without accurate point correspon-
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Figure 1. ShapeInversion incorporates the prior captured by a well-trained GAN. It shows exceptional generalization ability for shape

completion: is invariant to partial form changes, i.e., (a) virtual scans, generated by back-projecting 2.5D depth images into 3D, (b)

ball-holed partial shapes, generated by removing points within a random ball from a complete shape (PF-Net [15]), (c) semantic part-

level incompleteness, generated by randomly removing some semantic parts (PartNet [23]); and generalizes well to (d) real-world scans.

Moreover, it can give (e) multiple valid outputs when there is ambiguity in the partial shape

dences, GAN inversion would suffer from poor reconstruc-

tion and in turn jeopardize the shape completion task.

We present two new components to address these unique

challenges. First, to improve the uniformity of estimated

point clouds, we introduce a simple and effective uniform

loss, PatchVariance. The loss samples small patches,

to ensure the planar assumption, over the object surface,

and penalize the variance of average distances between the

patch centers and their respective nearest neighbors. Unlike

existing methods [18, 34] that are typically conducted at the

patch level, ours is a soft regularizer that enhances unifor-

mity at the object level on-the-fly while training GANs. As

a result, we achieve improved uniformity across all cate-

gories, ranging from bulk to fine structures while preserving

the shape plausibility and variety.

Second, we devise an effective masking mechanism, k-

Mask, to estimate the point correspondences between the

partial input and predicted shape. To mitigate the am-

biguous correspondences caused by the unordered nature of

point cloud, our method lets each point in the partial input

look for its k-nearest neighbors from the predicted shape.

The indices of all these k-nearest neighbors define the mask

of the visible regions, from which we can compute for re-

construction loss. Our method is dynamic, thus performing

better than baseline approaches that use predefined voxels

or distance thresholds. It shows high robustness even when

the semantics parts between the partial input and the pre-

dicted shape are not within a close vicinity in the space.

ShapeInversion demonstrates compelling performance

for shape completion in different scenarios. First, on a

common benchmark derived from ShapeNet, it outperforms

the SOTA unsupervised method pcl2pcl [7] by a significant

margin, and is comparable to various supervised methods.

Second, our method shows considerable generalization abil-

ity and robustness when it comes to real-world scans or vari-

ation in partial forms and incompleteness levels, whereas

supervised methods exhibit significant performance drops

due to domain mismatches. Third, given more extreme in-

completeness that causes ambiguity, our method is able to

provide multiple valid complete shapes, all of which remain

faithful to the visible parts presented in the partial input.

2. Related Work

3D Shape Completion. 3D shape completion has played

an important role for robotics [11, 24] and perception [9,

14]. Since the pioneering work PCN [35], point cloud-

based shape completion has seen significant development

compared to other representation forms like meshes and

voxel grids, due to its flexibility and popularity as a raw

data format. Most existing approaches are trained in a

fully-supervised manner with partial shapes of a particular

form [10, 15, 7, 23, 31, 36], and paired complete shapes.

Owing to the coarse-to-fine strategy [27, 21, 15, 29, 33],

they achieve impressive results on in-domain data, but may

fail to sufficiently generalize to real-world scans or par-

tial shapes in other forms. Recently, pcl2pcl [7] proposes

an unsupervised method with unpaired data, e.g., com-

plete shapes obtained from 3D models and real-world par-

tial scans. It trains two separate auto-encoders, for recon-

structing complete shapes and partial ones respectively, and

learns a mapping from the latent space of partial shapes to

that of the complete ones. In view of ambiguity at high in-
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completeness levels, its follow-up work [32] is able to out-

put multiple plausible complete shapes, conditioned by an

additional latent vector drawn from Gaussian distribution.

Our approach also lies in the unsupervised regime, and can

also give multiple reasonable complete shapes thanks to the

involvement of a pre-trained GAN. Moreover, we achieve

more faithful results, particularly for real scans.

GAN Inversion. State-of-the-art GANs, e.g., BigGAN [4]

and StyleGAN [16], are typically trained on a large num-

ber of images and capture rich knowledge of images in-

cluding low-level statistics, image semantics, and high-level

concepts. GAN inversion uses a well-trained GAN as ef-

fective prior to reconstruct images with high-fidelity. This

appealing nature of GAN prior has been extensively ex-

ploited on various image restoration and manipulation tasks

[3, 2, 25, 13]. In general, the method aims to find a la-

tent vector that best reconstructs the given image with a

pre-trained GAN. Typically, the latent vector can be opti-

mized based on gradient descent [22, 20], or projected by

an extra encoder from the image space [38, 17]. More-

over, the introduced encoder can serve as a better initial-

ization prior to gradient descent [2]. Zhu et al. [37] learn

a domain-guided encoder, which is used to regularize the

latent vector optimization for semantically meaningful edit-

ing. While mainstream approaches fix the parameters of the

generator during inversion, recent approaches chose to per-

turb [3] or fine-tune [25] the generator when updating the

latent vector to address the gap between the approximated

manifold and the real one. Our approach is the first to apply

GAN inversion to shape completion. Unlike image-based

tasks where the degradation transform is typically straight-

forward, transforming a complete shape into a partial one in

the 3D space is ill-posed.

3. Method

A GAN that is well-trained on 3D shapes of a particular

category, e.g., chairs or cars, captures rich shape geometries

and semantics of this distribution. In this study, we wish

to incorporate a well-trained GAN as an effective prior for

shape completion, in particular, to handle partial shapes of a

wide range of varieties and to generalize to unseen shapes.

The GAN prior can be exploited through GAN inversion.

Despite its notable success in various image restoration and

manipulation tasks, it has not been explored for shape com-

pletion.

Here, we formally introduce the use of GAN inversion

in our task. After a generator G with parameters θ is trained

on 3D shapes in the form of point clouds, it can generate

a shape xc ∈ R
m×3 from a latent vector z ∈ R

d. GAN

inversion aims to find the latent vector that best reconstructs

a given shape xin using G:

z
∗ = arg min

z∈Rd

L(G(z;θ),xin), x
∗
c = G(z∗;θ) (1)

G(q)

Generation Degradation

D

Supervision

D

xinxpxc

dθdz

z ∈ R
d

LCDM

LFD

Figure 2. GAN inversion for shape completion. A latent vector z

is used by the pre-trained generator G to reconstruct a complete

shape xc. The degradation function M (Sec. 3.2) then transforms

xc into a partial shape xp. The supervision signal includes the

Chamfer Distance and the Feature Distance (Sec. 3.3) between xp

and the input partial shape xin. ShapeInversion looks for a latent

vector z and finetunes the parameters θ of G that best reconstruct

the complete shape corresponding to xin via gradient descent

While mainstream approaches usually fix the generator

during inversion, we follow the very recent approaches [25,

3] to fine-tune the generator while updating the latent vector

on-the-fly, which is shown to improve the results of GAN

inversion. Thus, the formulation becomes:

θ
∗, z∗ = arg min

z,θ

L(G(z;θ),xin) (2)

The inversion process starts with an initialization stage,

in which hundreds of latent vectors are sampled randomly,

and the z with the smallest L value is selected as the ini-

tial value for fine-tuning. Then both z and θ are updated

via gradient descent according to Eq. (2). In the scenario of

shape completion, we aim to infer a complete shape xc from

a given partial shape xin, where the distance is computed at

the observation space, i.e., we would need to transform a

complete shape into a partial form via a degradation func-

tion M , as shown in Eq. (3). Thus, it is essential for M

to provide precise point correspondences for the sake of an

accurate reconstruction loss. The inversion stage is shown

in Fig. 2.

z
∗ = arg min

z∈Rd

L(M(G(z;θ)),xin) (3)

3.1. Enhancing Point Cloud Uniformity

Compared to images where the generated pixels are ar-

ranged in a regular lattice, 3D shapes are represented by

points in a continuous 3D space without a common struc-

ture. As a result, 3D GANs often generate point clouds

with significant non-uniformity, where the points are of-

ten unevenly distributed over the shape surface. Such non-

uniformity is detrimental to shape completion given the

number of points in each point cloud is fixed (typically 2048

for existing GANs): point concentration in one region in-

evitably leads to sparsity or even holes in other regions.

tree-GAN as a Case Study. The latest state-of-the-art

point cloud generation method, tree-GAN [26], employs
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(a) tree-GAN baseline (b) tree-GAN + PatchVariance

branches

869 points 126 points 8 branches
20 branches

Figure 3. Visualization of uniformity with the use of PatchVari-

ance. Darker regions in the grayscale image have a higher density

of points. tree-GAN uses a tree structure to generate 3D shapes.

We group points into branches by their parent nodes: branches that

are more distantly related are further apart on the color spectrum.

For the tree-GAN baseline, nearly half of the points and 20 out

of the 32 branches cluster around the joint of different parts, with

fewer branches to cover the rest of the shape surface

a tree-structured graph convolution network (TreeGCN) as

the generator, where the information passes from the an-

cestor nodes instead of the neighbor nodes. As branch-

ing occurs between every two layers in TreeGCN, the child

nodes sharing the same parent node would be more geomet-

rically related to each other. Although it outperforms pre-

vious approaches [1, 28] in terms of fidelity and coverage,

the non-uniformity issue remains unsolved, as illustrated in

Fig. 3 (a). For a clearer visualization, we colorize the points

based on their relative relationships on TreeGCN. It shows

that points with distant relationships might clutter in the 3D

space. Without a proper regularization, points of different

branches would tend to form a Gaussian-like distribution,

such that more points are gathered around the geometric

center of an object or the joints between different seman-

tic parts, resulting in highly non-uniform shapes.

The non-uniformity of shapes’ point clouds is a long-

standing problem. Studies in point cloud upsampling [18,

34] propose some forms of uniformity losses, such as re-

pulsion loss, on point cloud patches. Besides, MSN [21]

proposes expansion penalty to reduce overlapping of the

surface elements. However, these methods regularize each

part of the shape separately, without enforcing a consensus

across all parts to achieve an overall uniformity. In view of

their weaknesses, we propose a new uniform loss, Patch-

Variance, to regularize the uniformity of the entire shape

during tree-GAN training, in addition to its adversarial loss.

Lpatch = V ar({ρj}
n
j=1

), ρj =
1

k
Σk

i=1
dist2ij (4)

Specifically, we randomly sample n seed positions over

the object surface via Farthest Point Sampling (FPS), and

then form small patches by including the k-nearest neigh-

bors for each seed. Regardless of fine or bulk structure,

these small patches shall scatter similarly. Thus we compute

(a) GT (c)(b) (d) k-Mask 

(k=5)

(e) voxel-Mask 

(103 voxels)

(g) t-Mask 

(t = 0.1)
(h) t-Mask 

(t = 0.03)
(f) voxel-Mask 

(323 voxels)

Figure 4. Better degradation function produces partial shapes xp

that are more similar to the input shape xin. Our proposed k-Mask

provides accurate point correspondence between xin and the gen-

erated complete shape xc. In contrast, voxel-mask and τ -mask

are sensitive to the hyperparameters, i.e., the voxel size or the dis-

tance threshold respectively: large values result in noisy degra-

dation, e.g., the chair’s back has excessive points in (e) and (g);

small values lead to missing parts when correpsonding semantic

parts reside differently in the 3D space, e.g., the chair’s legs are

falsely masked off in (f) and (h). Note that xin has 2048 points

in ShapeNet benchmark, while k-Mask is shown to be robust to

partial shapes of any density

the average distance between each seed and its k-nearest

neighbors and penalize the variance of all patches’ average

distances, as shown in Eq. (4).

As illustrated in Fig. 3 (b), PatchVariance significantly

improves the uniformity of the generated shape. More eval-

uation and comparison with other uniform losses is covered

in the ablation study. Note that the proposed uniform loss is

generic: it directly works on the generated shape and is in-

variant to the GAN architecture. Cross-validation of Patch-

Variance on r-GAN [1] (with MLP-based generator) can be

found in the Supplementary Materials.

3.2. Degradation in the 3D Space

For shape completion, we define a degradation transform

M to best approximate the transformation from a generated

complete shape xc = G(z) to a partial shape xp, such that

the corresponding regions between xc and the given partial

shape xin can be precisely compared. We find that defining

such a degradation function is ill-posed due to the unique

unstructured nature of point clouds.

One may intuitively relate it to the image inpainting task,

where a 2D binary mask m is typically provided to degrade

a complete image to the observation space through element-

wise product: xmasked = x ⊙ m, given that the pixel cor-

respondences between any image pair are consistent with

the pixel locations. In contrast, corresponding regions of

two 3D structures may reside at different locations in the

3D space, while directly voxelizing xin to form a 3D ten-
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sor indicating the voxel occupancy would inevitably lead to

information loss. More importantly, as it is likely that xc is

quite different from xin especially in the early GAN inver-

sion stage, the corresponding semantic parts do not fall in

the same voxels, hence leading to problematic degradation.

See Fig. 4 (e) and (f) for an illustration.

In this work, we introduce an accurate and robust mask

as the degradation function M , which we refer to as k-

Mask. An accurate and robust degradation shall be based

on the knowledge of corresponding points between xin and

a general xc. In fact, point correspondences are ambiguous,

far less straightforward, and variant to different generated

shapes. To this end, we dynamically obtain the point cor-

respondences between xin and a specific xc based on the

Euclidean distance. In view of the correspondence ambi-

guity, we opt for multiple corresponding points for a robust

design. Specifically, for each point pi in xin, we look for

its k-nearest neighbors from xc, denoted as Nxc

k (pi). Con-

sequently, xp can be constructed by the union of these k-

nearest neighbors, as shown in Eq. (5).

xp =

n⋃

i=1

{qj ∈ Nxc

k (pi) | pi ∈ xin} (5)

Alternative Design Variants. We also provide other alter-

native masks for comparison. As stated above, the voxel-

Mask is an intuitive design that directly extends the 2D

binary mask to the 3D domain. Voxelization of xin gives

its voxel occupancy, such that xp simply consists of all the

points of xc that correspond to the occupied voxels in xin.

τ -Mask determines the corresponding regions based on a

predefined threshold. Eq. (6) describes xp, which consists

of all points of xc where the L2 distance from its nearest

neighbor is within a threshold τ .

xp = {q ∈ xc | min
p∈xin

||p− q||2 < τ} (6)

As illustrated in Fig. 4, k-Mask provides an accurate and

robust degradation whereas the other masks fail to achieve

these two goals concurrently. This is because both voxel-

Mask and τ -Mask leverage essentially fixed distance thresh-

olds and are thus unable to adapt to changes in point den-

sity in certain regions. This observation is in line with the

preference of k-NN over ball query in popular point feature

extractors [30, 19].

3.3. Loss Function for Inversion

Chamfer Distance (CD) and Earth Mover’s Distance

(EMD) are the most commonly used structural losses for

shape completion, with the latter being more sensitive to

details and the density distribution [21]. However, unlike

typical training processes of supervised shape completion

that measure the distance between two complete shapes, our

GAN inversion process compares a specific degraded shape

against the given partial shape, which may contain a dif-

ferent number of points, thus making EMD infeasible. We

follow the CD-T variant [29, 27] that computes the squared

L2 distance, as shown in Eq. (7).

LCD(xp,xin) =
1

|xp|

∑

p∈xp

min
q∈xin

||p− q||2
2

+
1

|xin|

∑

q∈xin

min
p∈xp

||p− q||2
2

(7)

As structural losses are typically only concerned about

low-level regularity of the point cloud, we also perform

feature matching at the observation space hoping to align

the geometries more semantically. Following the recent

practice in [25], we make use of the discriminator, a net-

work that is trained together with the generator during pre-

training. We take the feature from the intermediate layer

immediately after max-pooling, which captures more geo-

metric details, and compute the L1 distance as the Feature

Distance loss, as shown in Eq. (8).

LFD = ||D(xp)−D(xin)||1 (8)

The overall loss function is shown in Eq. (9), which is

used in both shape completion and reconstruction of com-

plete shapes.

L = LCD(xp,xin) + LFD(xp,xin) (9)

4. Experiments

We start with an ablation study (Sec. 4.1) and then evalu-

ate ShapeInversion through extensive experiments. Besides

shape completion on the virtual scan benchmark (Sec. 4.2),

we also compare its generalization with other methods on

cross-domain partial shapes (Sec. 4.3) and real-world par-

tial scans (Sec. 4.4). In addition, we also provide qualitative

results on multiple valid output under ambiguity (Sec. 4.5)

and shape manipulation of completed shapes (Sec. 4.6).

Datasets. To facilitate a comprehensive evaluation, we

conduct experiments on both synthetic and real-world par-

tial shapes. The following three forms of synthetic par-

tial shapes are: a) virtual scans (e.g., in PCN [35] and

CRN [29]) b) ball-holed partial shapes (e.g., in PF-Net [15])

and c) semantic part-level incompleteness (PartNet [23]),

as shown in Fig. 1 (a)-(c). They are all derived from

ShapeNet [6]. For real-world scans, we evaluate on objects

extracted from three sources: i) KITTI (cars) [12], ii) Scan-

Net (chairs and tables) [8], and iii) MatterPort3D (chairs

and tables) [5], as shown in Fig. 1 (d). Note that we fol-

low the standard practice in the field of shape completion to

assume the input is always canonically oriented.

Evaluation Metrics. In Sec. 4.1, we evaluate the fidelity

and uniformity of the set of generated shapes against those
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Table 1. Effectiveness of PatchVariance on the shape uniformity. PatchVariance achieves the lowest MMD-EMD ↓ (scaled by 10
3) across

all the eight categories from ShapeNet, indicating the best uniformity and fidelity for the generated shapes

Methods Plane Cabinet Car Chair Lamp Sofa Table Boat Average

tree-GAN baseline 30.7 52.9 38.4 58.6 59.6 41.2 57.1 42.9 47.7

tree-GAN + expansion penality [21] 39.7 68.7 41.0 59.3 66.7 55.4 66.5 40.3 54.7

tree-GAN + repulsion loss [34] 29.8 54.5 36.9 53.2 61.3 44.9 56.1 40.7 47.2

tree-GAN + PatchVariance (ours) 28.1 35.0 30.9 45.9 52.1 35.5 47.7 36.9 39.0

in the test set using Minimum Matching Distance-Earth

Mover’s Distance (MMD-EMD) [1, 26]. EMD is highly

indicative of uniformity as it conducts bijective matching

of points between two point clouds. With ground truth in

Sec. 4.2 and Sec. 4.3, we evaluate the shape completion

performance using CD and F1 score following pcl2pcl [7],

where F1 is the harmonic average of the accuracy and the

completeness. Without ground truth in Sec. 4.4, we use Uni-

directional Chamfer Distance (UCD) and Unidirectional

Hausdorff Distance (UHD) [7, 32] from the partial input

xin to the generated shape xc.

Implementation Details. In all experiments, ShapeInver-

sion uses the same tree-GAN that is pre-trained on the

ShapeNet train set for complete shape generation. Although

tree-GAN is able to generate multi-class 3D point clouds,

we follow pcl2pcl and MPC [32], and train single-class

models for each class for better fidelity. The resolution of

the predicted complete shape is 2048 for all the following

experiments. More details can be found in the Supplemen-

tary Materials.

4.1. Ablation Study

We first investigate the merit of each module in our

framework, covering both the pre-training and the GAN in-

version stage.

Effectiveness of PatchVariance. We compare our Patch-

Variance against expansion penalty [21] and repulsion

loss [34]. As shown in Tab. 1, PatchVariance achieves the

best result across all categories. From Fig. 5, we can ob-

serve that expansion penalty leads to more unevenly dis-

tributed point clouds while it penalizes branch expansion,

and repulsion loss enforces uniformity at local regions only

whereas a global uniformity is obtained with PatchVariance.

Effectiveness of k-Mask and Feature Distance. Tab. 2

shows the ablation study during the GAN inversion stage.

Replacing k-Masks with other alternative degradation func-

tions shows significant degradation. The choice of k-nearest

neighbors of points in the partial shape provides an accurate

and robust degradation, and better adapts to variations in lo-

cal point density. The use of feature distance provides more

semantic information to complement the structural loss, sig-

nificantly boosting the performance.

4.2. Shape Completion on Virtual Scan Benchmark

We compare with existing supervised and unsupervised

methods on the common virtual scan benchmark generated

Figure 5. Visualization of randomly generated shapes using vari-

ous methods for uniformity. Each generated shape contains 2048

points, where darker regions indicates higher point density. Patch-

Variance achieves the best uniformity

Table 2. Effectiveness of various degradation functions and Fea-

ture Distance. Note that the results with these masks are obtained

at their respective optimal hyperparameters: 103 voxels for voxel-

Mask, τ = 0.03 for τ -Mask, and k = 5 for k-Mask

Methods CD (×10
4) ↓ acc. ↑ comp. ↑ F1 ↑

Ours w/ voxel-Mask 19.3 84.7 79.7 81.5

Ours w/ τ -Mask 18.9 82.9 81.6 81.6

Ours w/o LFD 16.3 83.6 81.7 81.9

Ours 14.9 85.0 84.0 83.9

from ShapeNet, first proposed by PCN [35]. For a fair com-

parison, all the baseline methods are trained with virtual

scans provided by CRN [29] (with corresponding complete

shapes from ShapeNet train set). Tab. 3 shows that ShapeIn-

version outperforms the other unsupervised method pcl2pcl

by a large margin across all the eight categories, and is com-

parable to the various supervised methods. Note that the

impressive performance of various supervised methods is in

part attributed to the coarse-to-fine strategy, some of which

even calibrates the coarse output with the partial input dur-

ing the refining stage [21, 29]. ShapeInversion, in contrast,

performs completion in a single stage and achieves compa-

rable results. Besides Fig. 1 (a), more qualitative results can

be found in the Supplementary Materials.

4.3. Robustness to Varying Partial Forms

To mimic various causes of partial shapes such as occlu-

sion and self-occlusion, various partial forms such as ball-

holed partial shapes and virtual scans are considered in dif-

ferent works. We demonstrate the robustness of ShapeIn-

version under three different partial forms in Tab. 4. Su-
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Table 3. Shape completion results on ShapeNet benchmark. The numbers shown are [CD ↓ / F1 ↑], where CD is scaled by 10
4. ShapeIn-

version outperforms pcl2pcl by a large margin, and is comparable to the various supervised methods. sup.: supervised methods; unsup.:

unsupervised methods

Methods Plane Cabinet Car Chair Lamp Sofa Table Boat Average

sup. PCN [35] 3.5/96.5 11.3/86.4 6.4/94.0 11.0/86.0 11.6/84.6 11.5/85.2 10.4/89.4 7.4/91.7 9.1/89.2

TopNet [27] 4.1/96.0 12.9/84.1 7.8/91.3 13.4/82.3 14.8/79.4 16.0/80.8 12.9/85.7 8.9/89.3 11.4/86.1

MSN [21] 2.9/97.4 12.5/85.5 7.1/92.3 10.6/86.8 9.3/88.6 12.0/83.3 9.6/91.3 6.5/93.1 8.8/89.8

CRN [29] 2.3/98.3 11.4/86.2 6.2/93.8 8.8/89.7 8.5/90.2 11.3/85.1 9.3/92.9 6.1/94.2 8.0/91.3

unsup. pcl2pcl [7] 9.8/89.1 27.1/68.4 15.8/80.0 26.9/70.4 25.7/70.4 34.1/58.4 23.6/79.0 15.7/77.8 22.4/74.2

Ours 5.6/94.3 16.1/77.2 13.0/85.8 15.4/81.2 18.0/81.7 24.6/78.4 16.2/85.5 10.1/87.0 14.9/83.9

Figure 6. Visualization of cross-domain validation. Different par-

tial forms of the same object are tested. In-domain results are in

green whereas out-of-domain ones are in purple. Supervised meth-

ods, CRN and PF-Net, show significant performance drop with do-

main change; unsupervised methods pcl2pcl and MPC show rela-

tively better results for out-of-domain inputs. In contrast, ShapeIn-

version constantly provides plausible and accurate outputs for all

partial forms. Note that CRN leverages the partial input during the

refinement stage; PF-Net only predicts the missing regions and

combines the partial input as the final output

pervised methods may bias towards the partial forms seen

in the training pairs and in turn give poor results on out-

domain data, even with auxiliary adversarial loss (e.g.,

CRN). The unsupervised pcl2pcl performs better than the

supervised methods. For ShapeInversion, the GAN is pre-

trained with complete shapes only, and the degradation via

k-Mask during the inversion stage is invariant to partial

form changes. In this way, ShapeInversion achieves the best

results across almost all the domains. See Fig. 6 and Fig. 1

(a)-(c) for qualitative results.

Note that PF-Net is trained to generate missing regions

only for the ball-holed partial shape, which is not compati-

ble with other partial forms with multiple missing regions;

although MPC is able to give multiple outputs in view of

ambiguity in the partial shape, we report results from its

single output for a fair comparison. To further ensure fair-

ness, we remove the shapes from the PartNet test split that

are present in the ShapeNet train set.

4.4. Completion of Real­World Scans

We investigate the generalization of ShapeInversion fur-

ther on real-world data extracted from MatterPort3D, Scan-

Table 4. Cross-domain validation. We follow the literature to train

each method on a certain partial form (source) and cross-validate

on other partial forms (targets). For each target domain, the SOTA

in-domain results are listed at the first line for reference. Meth-

ods, especially supervised ones, usually perform well on the in-

domain data but suffer large performance drops on the out-of-

domain data, whereas ShapeInversion gives the best results for

almost all the cross-domain tests, highlighting its robustness to

partial form changes. The metric is CD↓ (×10
4)

Target Methods Source Chair Table Lamp

Virtual scan

CRN Virtual scan 8.8 9.3 8.5

MPC [32] PartNet 45.9 88.9 63.0

Ours - 15.4 16.2 18.0

Ball-holed

PF-Net [15] Ball-holed 11.9 9.9 23.1

MSN Virtual scan 79.6 46.6 55.4

CRN Virtual scan 44.7 52.9 52.1

pcl2pcl Virtual scan 18.6 18.5 21.2

MPC PartNet 44.7 28.9 69.5

Ours - 10.1 16.0 17.3

PartNet

MPC PartNet 40.0 51.0 82.0

MSN Virtual scan 198.0 143.2 229.9

CRN Virtual scan 177.4 140.6 185.9

pcl2pcl Virtual scan 51.0 76.6 111.2

Ours - 36.8 77.8 100.8

Net, and KITTI. Besides the domain gap from virtual scans,

these real scans tend to be noisier and more incomplete,

e.g., KITTI cars. We quantitatively evaluate the perfor-

mance of ShapeInversion and pcl2pcl in Tab. 5 using UCD

and UHD. Despite that pcl2pcl is retrained with real-world

scans, our approach significantly outperforms pcl2pcl in

terms of UCD and achieves comparable UHD given that

pcl2pcl is trained via UHD. With the further addition of

UHD into the loss function, ShapeInversion achieves better

UHD results with a small compromise on the UCD perfor-

mance. The completion results in Fig. 8 reveals that pcl2pcl

tends to ignore the geometric details in the partial shape,

whereas our results remain highly plausible and faithful.

4.5. Multiple Valid Outputs under Ambiguity

With more severely incomplete input, there is more than

one complete shape that makes sense. Our framework can

naturally give multiple valid and diversified outputs, as we

can inverse from multiple initial values of z, which are se-
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Figure 7. ShapeInversion enables manipulation of complete shapes: (a) changing an object into other plausible shapes of different geome-

tries; (b) making a sound transition from one shape to another

Table 5. Shape completion results on the real scans. As there is no

corresponding ground truth, we evaluate the results using [UCD ↓
/ UHD ↓], where UCD is scaled by 10

4 and UHD is scaled by 10
2

Methods
ScanNet MatterPort3D KITTI

Chair Table Chair Table Car

pcl2pcl 17.3/10.1 9.1/11.8 15.9/10.5 6.0/11.8 9.2/14.1

Ours 3.2/10.1 3.3/11.9 3.6/10.0 3.1/11.8 2.9/13.8

Ours+UHD 4.0/9.3 6.6/11.0 4.5/9.5 5.7/10.7 5.3/12.5

Figure 8. Shape completion on real-world partial scans. Note that

pcl2pcl is retrained with real-world partial shapes (together with

synthetic complete shapes in an unpaired manner [7]). In contrast,

ShapeInversion does not use any real scans, yet, reconstructs high-

fidelity shapes that are more faithful to the partial input

lected from hundreds of initial values via FPS, subject to the

loss L being smaller than a threshold τL. As demonstrated

in Fig. 1 (e) and Fig. 9, ShapeInversion provides multiple

reasonable outputs, where each of them faithfully reflects

the details in the partial shape.

There exists a trade-off between the diversity and fidelity

of the output shapes. In contrast to MPC [32] where the

trade-off is predefined during the training by the weights

of different losses, our framework offers a more flexible

diversity-fidelity trade-off, e.g., we can opt for higher di-

versity for a particular partial shape by simply choosing a

large τL and reducing the number of iterations of inversion.

4.6. Shape Manipulation

Shape manipulation enables interesting applications

such as generative design. We show that ShapeInversion

can be readily extended to random jittering and morph-

ing, giving plausible new shapes and sound transition from

one shape to another respectively, as shown in Fig. 7. These

Figure 9. ShapeInversion can give multiple valid outputs when

higher incompleteness level of partial shapes impose ambiguity

can be realized efficiently upon shape reconstruction: jitter-

ing of a given shape is achieved by introducing perturbation

in the latent space; morphing between two given shapes is

achieved by interpolation between their corresponding la-

tent vectors z and generator parameters θ.

5. Conclusion

We introduce ShapeInversion for unsupervised point

cloud completion. ShapeInversion addresses the domain

gaps between virtual and real-world partial scans, and

among various simulated partial shapes through GAN in-

version. As the very first GAN inversion approach for 3D

shape completion, we introduce two new components to ad-

dress the unique challenges posed by the nature of points

clouds: an effective uniform loss, PatchVariance, and an ac-

curate and robust degradation function, k-Mask. With the

incorporation of rich knowledge of shape geometries and

semantics captured in a well-trained GAN, it achieves re-

markable generalization for real-world scans and partial in-

puts of various forms and incompleteness levels. Moreover,

our framework also brings several side-benefits, including

giving multiple reasonable complete shapes for one partial

input, as well as shape jittering and shape interpolation.

So far, both shape completion and manipulation are con-

ducted on a model pre-trained with a single category. Fu-

ture works can focus on improving the fidelity of multi-

class models, which could provide more possibilities such

as cross-category shape completion via a conditional GAN.
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Alexei A Efros. Generative visual manipulation on the natu-

ral image manifold. In ECCV, 2016.

1777


