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Abstract—Cyberthreats are a permanent concern in
our modern technological world. In the recent years,
sophisticated traffic analysis techniques and anomaly
detection (AD) algorithms have been employed to face
the more and more subversive adversarial attacks. A
malicious intrusion, defined as an invasive action in-
tending to illegally exploit private resources, manifests
through unusual data traffic and/or abnormal connectiv-
ity pattern. Despite the plethora of statistical or signature-
based detectors currently provided in the literature,
the topological connectivity component of a malicious
flow is less exploited. Furthermore, a great proportion
of the existing statistical intrusion detectors are based
on supervised learning, that relies on labeled data. By
viewing network flows as weighted directed interactions
between a pair of nodes, in this paper we present a
simple method that facilitate the use of connectivity graph
features in unsupervised anomaly detection algorithms.
We test our methodology on real network traffic datasets
and observe several improvements over standard AD.

Index Terms—anomaly detection, graph embedding,
egonet features, traffic analysis

I. INTRODUCTION

Nowadays computer security has become a necessity
brought by the fast evolution of information tech-
nologies. The expansion of the network architectures,
such as cloud computing, revealed increasingly higher
number of threats than before. According to 2021
Cyberthreat Defense Report [1], the percentage of or-
ganizations compromised by successful attacks rose by
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5.5 %, which seems to be the largest in the last 7 years.
These attacks include malware, ransomware, Denial-of-
Service (DoS) and Advanced Persistent Threats (APT).
Despite the fact that security research investments are
on a positive trend, alleviation of these threats is not
optimistic [1]. However, the constant progress and
performance of the recent Intrusion Detection Systems
(IDS) bring a positive light on the subject.

One side of the modern IDSs approaches the in-
trusion detection as an anomaly detection problem.
Detecting outliers in finite samples of data is an old
statistical topic, alongside with the design of robust
estimators that are resistant to corrupted data points
[2]. From this viewpoint, detecting a network intrusion
reduces to learning a statistical estimator that is capable
to distinguish between normal and abnormal traffic.
However, there are two obvious issues to address.
Related to first, one could find a plethora of results
in the literature that confirm the efficiency of this
statistical approach for usual attacks such as DoS,
Probe, User to Root, Remote to User etc. However, in
large networks, there is often the case when the attacker
uses a stolen set of credentials to obtain data (or access)
from (to) multiple nodes of the networks. In this case,
while the traffic parameters may seem close to normal,
the change in the graph connectivity pattern could
reveal an abnormal behavior. In his malicious pursuit,
the attacker will probably walk from node to node,
through lateral movement, on paths that a normal user
would never follow. Therefore, the underlying graph
representation of the network traffic, where the nodes
are the computers and the edges are the traffic sessions,
becomes necessary. Secondly, the real network traffic is
by nature not labeled. Although the most challenging,
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unsupervised AD methods seems the most intuitive
approach of an intrusion detection task.

In this paper we bring a preliminary evidence show-
ing that the graph connectivity may be an important
asset in some cases for unsupervised intrusion detec-
tion. We design a simple processing strategy of given
flow data that enrich the feature vectors with additional
graph embeddings. Our graph embedding method is
based on computing egonets of each network node
and extract their key features. After training on the
extended features, the accuracy of several unsupervised
AD algorithms shows slight improvements.

A. Related work

Several wide-range anomaly detection techniques
that are often used in network IDSs are listed as
follows: Statistical Profiling with Histograms [3], [4],
Parametric and Non-parametric Statistical Modeling
[5], [6], (Deep or Shallow) Artificial Neural Networks
and Autoencoders [7]–[10], (One-Class) Support Vec-
tor Machines [11], [12], Reconstruction methods [13]–
[15], Clustering methods [16], [17]. However, generally
most of these learning systems detect abnormal data
flows or packets based on their features and characteris-
tics. Besides the track imprinted in these features, many
attacks manifest their tracks into anomalous underlying
connection graph, and therefore graph anomaly detec-
tion techniques become an important tool for more
insight [18].

Graph embedding is used in [19], where the flow
data is viewed as an entropy time series, whose features
are mapped as nodes in an undirected graph. Here,
after computing weights on edges based on covariance
between features, the authors devise an algorithm that
assign an anomaly score on each flow. Spectral de-
composition methods are applied in [20] to intrusion
detection problem. Their method keeps only statistical
and spectral features of a given connectivity graph to
detect traffic anomalies. In [21] are used attack graphs
to analyze the state evolution of multi-layered attacks
in a vulnerable system. We mention that the vertices
in these graphs are the attack states and actions, since
they serve to modeling of the causality of vulnerability
exploitation.

In [22] the authors devise an IDS that, based on
a double graph embedding, expand an original set of
features into a new one containing graph embedding
information. Their overall approach is vaguely sim-
ilar to ours, however the embedding procedure and

classification algorithms are not related. In the final,
they used supervised learning algorithms to classify
enhanced features of datasets CIDDS-001 and CIC-
IDS2017.

Paper structure. In the following Section we describe
our graph embedding and feature expansion proce-
dures. We evaluate the empirical performance of these
embedding procedures, in Section III, by comparison
with the application of traditional anomaly detectors
onto several well-known datasets. Lastly, we discuss
and interpret our result in Section IV.

II. METHODOLOGY

As presented in the introduction, the main steps of
our method reduce to: (i) embedding of the network
flows into a directed graph; (ii) extraction of several
statistical node features from the graph and expand the
original feature set. We use notation X ∈ Rm×N for
flow data, where m is the number of features of a given
flow and N the number of flows.

First, given a set of fixed IPs within a network,
mapping them into integers set [n] := {1, 2, · · · , n},
where n is the number of machines in the net-
work, is straightforward. Now we further consider the
graph G = {V,E,W}, where the set of vertices
V = {1, 2, · · · , n}, E is the set of edges between
nodes, corresponding to connections between pairs of
IPs, and W is a weight matrix. For instance, given
a flow representation between two IPs let (i, j) ≡
(source IP, destination IP ), then (i, j) ∈ E if there
exists a flow between IPs mappings (i, j) and the value
wij on ith column and jth line in matrix W defines
some summable feature, for example the number of
packets transmitted between source and destination.

An egonet of node i is defined as the subgraph
formed by all neighbors linked to node i [18], as
described by Figure 1. Notice that egonets associated
to different nodes may have different dimensions, de-
pending on the degree of each node.
Mainly, our scheme consists of the following three
steps:

I. Flow-to-graph. The first step performs the conver-
sion of data from flow format into graph format, by
retaining source, destination addresses (i, j) and a par-
ticular attribute which represents the weight wij . This
particular attribute may be any real-valued summable
feature in the original data X . Since multiple flows may



Fig. 1. Subgraph enclosed by dashed line represents the egonet of
node 1.

occur multiple times between the same pair of nodes,
we get multiple weights wt

ij , where t is time counter.
We sum over t these weights in order to obtain a final
weight: wij =

∑
t w

t
ij .

Based on the obtained graph features and weights,
we form the directed graph associated with our data.

II. Graph-to-features. Now on this resulted graph we
perform the following operations:

1) Extract all the egonets and stack them into E ,
where each Ei ∈ E is the egonet associated to
node i ∈ V .

1’) Extract a random-walk of size ` for each node.
Denote Ei ∈ E as the random-walk associated
to node i in V . Starting at node i, for at most
` iterations, a neighbor of the current node is
randomly chosen (w.r.t. a uniform probability
distribution) and its associated edge is added to
the subset Ei. The new chosen node becomes the
current node and a new iteration is performed. If
either the node i or the walk length ` are reached,
the process terminates and outputs the walk.

2) For any i ∈ [n], extract p features of the
egonet/random walk instance Ei. Denote zi ∈ Rp

the vector of these features.
3) Output matrix Z ∈ Rp×n, as the array containing

all egonet features.
First we perfom only once a single step of the two
alternatives 1) or 1′). Notice that the random-walk
Ei computed in scenario 1′) is not limited to the
egonet neighborhood of node i. The statistical features
computed in step 2), after step 1), include: dimension
of egonet, the number of out-links, the number of in-

links. In alternative scenario 1′) they include the weight
on the first leg of the walk or the weight transferred all
the way from the first node to the last one of the walk.
The full description of all features can be find in [23].

III. Feature expansion. Lastly, we expand the original
data by adding the columns of Z as prolongation of
columns in X . Thus, for a given flow xt ∈ X from
source i to destination j, we form:

x̂t =

xt

zi
zj

 ∈ Rm+2p.

The matrix X̂ containing columns x̂t for t ∈ [N ] is the
output of our scheme.
First, notice that the graph embedding at step II maps
the flows from X with size m×N into a final matrix
Z with size p×n. By comparison, a column sample of
X corresponds to an edge/flow in the graph, while in
Z a column associates with a node. In the next section,
we show the performance of AD tools in detecting
anomalous nodes.

Second, the step III is equivalent with inserting local
topological information into flow features. Therefore
the attacks that forces anomalous connections between
machines are likely to be reflected into graph features
{zi, zj} and detected by an usual anomaly detection.

We further test the performance of several anomaly
detections such as: One Class-SVM, Isolation Forests
and Local Outlier Factor, onto the data output of the
above processing procedure.

III. EXPERIMENTS

In this section we are interested in seeing numerical
results of enhancing data with graph specific features.
In our simulations we use One-Class SVM (OC-
SVM) [11], [12], Local Outlier Factor (LOF) [24],
Isolation-Forest (IForest) [25], and an ensemble [26]
that includes the above. In the implementation of the
latter we use voting methods [27]. In our tables and
figures, ”standard” denotes the results on the plain data
from the public datasets, ”graph” denotes the results
on the data aggregated in the form of a graph, and
”mixed” the results on the plain data with the added
graph features.

Even though we focus here on shallow machine
learning methods, which we prefer for their perfor-
mance, speedy results, and known theoretical prop-
erties, we also performed preliminary tests with au-



TABLE I
MAXIMUM BALANCED ACCURACY AND RUNNING TIMES WHEN TUNING PARAMETERS ON 1% OF THE AVAILABLE DATA.

Dataset Method (m,N ,outliers) OC-SVM LOF IForest Ensemble

CIC-
IDS2017

standard (87, 4588, 5) 0.8751 0.81s 0.9751 0.01s 0.8751 0.07s 0.9152
graph (48, 382, 1) 0.9252 0.02s 0.9685 0.01s 0.4738 0.04s 0.8972
mixed (183, 4588, 5) 0.8167 5.55s 0.9755 2.23s 0.9010 0.07s 0.8698

UNSW-
NB15

standard (59, 4400, 321) 0.5831 2.43s 0.8663 0.46s 0.9584 0.70s 0.9511
graph (48, 42, 4) 0.7829 0.01s 0.7763 0.01s 0.6053 0.03s 0.5
mixed (155, 4400, 321) 0.5831 3.81s 0.8037 9.73s 0.9216 0.14s 0.9123

TABLE II
BALANCED ACCURACY AND RUNNING TIMES WHEN TRAINING ON 10% OF THE DATA FROM THE UNSW-NB15 AND CIC-IDS2017

DATASETS WITH THE PARAMETERS OBTAINED IN TABLE I

Dataset Method (m,N ,outliers) OC-SVM LOF IForest Ensemble

CIC-
IDS2017

standard (87, 45883, 928) 0.3724 242.30s 0.4811 529.12s 0.4132 0.35s 0.4996
graph (48, 1999, 1) 0.4997 0.43s 0.4705 0.07s 0.4750 0.06s 0.4874
mixed (183, 45883, 928) 0.5955 601.00s 0.4805 86.42s 0.4222 0.32s 0.4821

UNSW-
NB15

standard (59, 44004, 5148) 0.6542 358.21s 0.5096 147.76s 0.7259 5.09s 0.5474
graph (48, 46, 4) 0.7829 0.01s 0.6382 0.01s 0.3289 0.03s 0.5119
mixed (155, 44004, 5148) 0.6619 579.19s 0.5775 750.70s 0.7926 0.82s 0.9103

tonecoder and variatonal autoencoder architectures that
have not yet shown promising results on the experimen-
tal setup presented here.

The experiments were performed using public
datasets. It contains different features of the flows
which have been generated using the IBM QRadar
appliance. CIC-IDS20171 is created by the Canadian
Institute of Cyber Security simulating the benign be-
havior of 25 users and replicating a series of attacks.
Flows extracted from this traffic contain 85 features.
UNSW-NB15 2 is a dataset which contains 49 features
for the flows extracted using Bro-IDS and Argus tools.
Here, IXIA PerfectStorm tool was used to generate the
underlying network traffic.

In order to run the experiments a dedicated station
with 32 AMD Ryzen Threadripper PRO 3955WX
CPUs was used. Our implementation relied on the
following software packages, among others: pyod 0.9.6
[28], scikit-learn 1.0.2, tensorflow 2.7.0, graphomaly
0.1.

In line with our methodology, we assume that we
have access to a small initial dataset depicting the
normal state of the computers nodes inside the network
through their recorded traffic layer-3 traffic. Thus,

1https://www.unb.ca/cic/datasets/ids-2017.html
2https://research.unsw.edu.au/projects/unsw-nb15-dataset

in our experiments, we only extract the first 1% of
samples from each dataset and assume that this is
known data with known labels on which we can
initially train our models. Even though we are only
interested in the unsupervised setting, the labels help
us tune the parameters through grid-search techniques.
The datasets are laid out as time series, meaning that
the first selected samples reflect exactly the scenario
described above. We denote with m the number of
features and with N the number of samples.

IV. RESULTS

In Table I we present the grid-search results on 1%
of the data for both databases when using the standard,
graph and mixed features. The two columns underneath
each method represent the balance accuracy (BA) and
the training execution time. We can see that standard
and mixed methods are giving similar BA results,
identical even for OC-SVM with UNSW-NB15, but
the standard ensemble performing better in both cases.
The execution times are lower for the graph methods,
where there is fewer data to process, and longer for
mixed methods where the graph features are added to
the standard data. The experiment objective is to obtain
proper parameters to be used in future model training
on data where labels are not available.

https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset


TABLE III
TYPES OF ATTACKS DETECTED ON THE UNSW-NB15 DATASET

WITH THE ENSEMBLES FROM TABLE II (DOES NOT APPLY TO THE
GRAPH METHOD)

Dataset Attack Detected Total

standard

Exploits 163 2088
DoS 79 1014
Fuzzers 29 516
Worms 0 7
Backdoor 11 138
Analysis 9 123
Shellcode 2 52
Reconnaissance 31 548
Generic 256 662

mixed

Exploits 1933 2088
DoS 911 1014
Fuzzers 502 516
Worms 7 7
Backdoor 124 138
Analysis 109 123
Shellcode 47 52
Reconnaissance 506 548
Generic 644 662

Table II uses the parameters obtained in Table I
to train the models on the next 10% of available
data from the time-series. We see a clear degradation
in the balanced accuracy compared to the tuned ex-
periments: the dataset is larger and new attacks are
present and the model parameters are not optimal.
For CIC-IDS2017 all three approaches provide similar
results for the methods and the ensemble. Instead,
on UNSW-NB15 we see an improvement offered by
the graph-based approaches. We assume that this is
due to the richer summable attributes in UNSW-NB15
compared to CIC-IDS2017 where most of the attributes
are either existing statistics (already summed) or flags
information. In terms of execution times, we see a
proportional increase corresponding to the ten-fold
increase in analyzed data-points.

We further investigate the UNSW-NB15 results in
Table III where we compare the standard and mixed en-
sembles for their capability of identifying specific types
of attacks. By identifying more attack samples, the
mixed method clearly outperforms the standard one in
all scenarios. Worm attacks are not even detected by the
standard model. We now use the models form Table I
as predictors for the rest of the data samples from the
UNSW-NB15 dataset. Figure 2 depicts the performance
for different test dataset sizes: 10%, 30%, 50%, 70%
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Fig. 2. Test results for the models from Table I on the UNSW-
NB15 dataset. For graphical purposes, for each row the number of
false positives (FP) are scaled in the [0, 1] interval.

and 100%. The True Positive Rates (TPR) and True
Negative Rates (TNR) are analyzed together with the
number of False Positives (FP) for all models, depicted
on the columns, and for all approaches, depicted on
the rows. For each row, the number of false positives
were scaled such that the reader can see the relative
differences between each method. As expected, model
performance degrades with time as normal behaviour
evolves and new types of attacks arrive. We observe
that OC-SVM is the most sensible to these changes,
while IForest seems more robust. Ensembles tend to
attenuate false positives and promote good TPR rates.

V. CONCLUSIONS

In this paper we studied the performance of un-
supervised machine learning methods when analyzing
computer networks by starting from a small dataset
of known labeled packet samples that we use to tune
model parametrization which we then use to investigate
their performance for further unsupervised learning
on new incoming unlabeled data. Data is augmented
through graph feature extraction techniques, such as
egonets and random walks, in order to improve the
robustness of our models.
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