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Graph-Theoretic Clustering

Weiming Hu, Senior Member, IEEE, Wei Hu, Nianhua Xie, and Steve Maybank, Senior Member, IEEE

Abstract—Most existing active learning approaches are super-
vised. Supervised active learning has the following problems:
inefficiency in dealing with the semantic gap between the distri-
bution of samples in the feature space and their labels, lack of
ability in selecting new samples that belong to new categories
that have not yet appeared in the training samples, and lack of
adaptability to changes in the semantic interpretation of sample
categories. To tackle these problems, we propose an unsupervised
active learning framework based on hierarchical graph-theoretic
clustering. In the framework, two promising graph-theoretic clus-
tering algorithms, namely, dominant-set clustering and spectral
clustering, are combined in a hierarchical fashion. Our framework
has some advantages, such as ease of implementation, flexibil-
ity in architecture, and adaptability to changes in the labeling.
Evaluations on data sets for network intrusion detection, image
classification, and video classification have demonstrated that our
active learning framework can effectively reduce the workload
of manual classification while maintaining a high accuracy of
automatic classification. It is shown that, overall, our framework
outperforms the support-vector-machine-based supervised active
learning, particularly in terms of dealing much more efficiently
with new samples whose categories have not yet appeared in the
training samples.

Index Terms—Active learning, dominant-set clustering, image
and video classification, network intrusion detection, spectral
clustering.

I. INTRODUCTION

ACTIVE learning [1], [15], [23] is, with a number of
available labeled samples, the automatic selection of

highly informative unseen samples for manual classification
and the automatic classification of other samples. The number
of samples for manual classification should be as small as
possible, and the automatic classification of samples should be
as accurate as possible. Active learning can be applied to many
fields such as image retrieval, video annotation, gene sequence
analysis, audio processing, and network intrusion detection.
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Most existing active learning approaches are supervised [6],
[10], [18], [47]–[49]. They are described in the following as
either uncertainty based or committee based, depending on the
strategy for selecting samples for manual classification [35]:

1) Uncertainty-based approaches [6], [10], [18], [36], [40],
[46] generally use the available labeled samples to con-
struct a classifier. If the uncertainty in classification of a
new sample using this classifier is high, e.g., the sample
falls close to a classification boundary of a support vector
machine (SVM), then the sample is selected for manual
classification. Zhang and Chen [23] use biased kernel
regression to estimate the probability of each unlabeled
sample that has an attribute. Knowledge gain is then
defined to determine the sample that has the highest un-
certainty for the classifier. Lewis and Gale [44] select an
unlabeled sample as the most uncertain one when the pos-
terior probability that the sample with a specific pattern
belongs to a specific category is closest to 0.5. Roy and
McCallum [45] present an active learning algorithm that
selects samples for manual classification such that the ex-
pected future error is minimized. Schohn and Cohn [42]
describe an active learning heuristic that greatly enhances
the generalization behavior of SVMs on several practical
document classification tasks. Campbell et al. [41] pro-
pose an algorithm for the training of SVMs using the ac-
tive selection of samples for manual classification. Tong
and Koller [43] introduce an algorithm for performing ac-
tive learning with SVMs, providing a theoretical motiva-
tion for the algorithm using the notion of a version space.

2) Committee-based approaches [17], [37] repeatedly and
jointly use labeled samples to construct a committee of
classifiers. If a new sample is assigned to quite different
categories by the members of this committee, the sample
is considered to be highly informative and is selected
for manual classification. Tur et al. [17] use the SVM
classifier and an implementation of the AdaBoost algo-
rithm as the members of the committee of classifiers. The
lowest scored sample is selected for manual classifica-
tion. Fine et al. [38] show that recent algorithms for ap-
proximating the volume of convex bodies and uniformly
sampling from convex bodies using random walks can
yield an efficient implementation for committee-based
active learning. Freund et al. [39] show that if the two-
member committee algorithm achieves information gain
with positive lower bound, then the automatic classifi-
cation error exponentially decreases as the number of
manual classifications increases.
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Supervised active learning approaches have the following
problems.

1) These approaches cannot deal effectively with the seman-
tic gap between the distribution of samples in the feature
space and their labels—the relative positions of samples
in the feature space may only be weakly related to their
label information. We use the classification of arthropods
to illustrate this semantic gap. It is known that locusts
and ladybirds are insects and that spiders are arachnids.
Samples of either locust, ladybird, or spider can form a
cluster in the feature space. As the shape of a locust is
very different from the shape of a ladybird and the shape
of a ladybird is similar to the shape of a spider, the clusters
for locusts and ladybirds, which are both insects, are far
apart in the feature space, but the clusters for ladybirds
and spiders, which belong to different categories, are
nearby in the feature space. This is an example of a
semantic gap in that the semantic meanings of categories
are not reflected in their positions in the feature space.
In such cases, supervised active learning that depends on
sample labels in training may fail to identify the highly
informative samples.

2) Supervised active learning cannot select new samples that
belong to new categories that have not yet appeared in
the training samples. Supervised active learning generally
selects, for manual classification, these new samples that
fall close to decision boundaries. It fails to identify new
samples that belong to new categories that have not yet
appeared in the training samples, as such samples are
usually far from the training samples but not near to the
decision boundaries.

3) Supervised active learning cannot adapt to changes in the
labeling, arising from a new semantic interpretation of
sample categories—for example, ladybirds and spiders
could be relabeled as arthropods, belonging to the same
category. Current supervised active learning algorithms
must reconstruct the classifier to take account of such
changes in the labeling.

The first aforementioned problem influences the accuracy of
supervised active learning, and the second and third problems
make supervised active learning difficult to adapt to changing
environments.

To deal with these problems, we propose a novel active learn-
ing framework based on unsupervised learning [50]. Our basic
idea is to ignore the relations between the relative positions
of samples in the feature space and the labeling of samples.
In our unsupervised active learning framework, the available
labeled samples are clustered, and each cluster is given the
label that most of the samples in it share. If a new sample does
not fall into any of these clusters, the sample is considered as
highly informative and thus selected for manual classification;
otherwise, the sample is given the label of the cluster that it
falls into. For the example of classifying arthropods, if the
label of the ladybird cluster is insect, and if a new sample
falls into this cluster, then it is classified as an insect. Different
clusters may have the same label, and the labeling information
is reflected by the distributed labeled clusters. The semantic

gap between the distribution of samples in the feature space
and their labels is then tackled. When the labeling of samples
is changed, corresponding to a new semantic interpretation of
sample categories, it is only necessary to change the labels of
the clusters. Reclustering the samples is not needed. Further-
more, new samples that belong to new categories that have not
yet appeared in the training samples are likely to be selected for
manual classification, because new samples are compared with
the clusters rather than the decision boundaries, and the features
of the samples that belong to new categories are usually quite
different from the features of the clusters.

Selection of a proper unsupervised learning algorithm is
critical for our active learning framework. In unsupervised
learning, graph-theoretic clustering [2], [5], [22] has recently
attracted broad attention due to its clear intuitiveness, strong
theoretical foundations, and successful applications in many
fields such as image segmentation and video analysis [16], [24].
There exist many graph-theoretic clustering algorithms such as
complete link [8], minimum cut [19], information theoretic [9],
normalized cut [16], spectral clustering [21], and dominant-
set clustering [13]. Spectral clustering is one of the most
popular clustering algorithms. It has high accuracy, but its
computational complexity is high, and thus, it is not suitable
for large-scale clustering. Dominant-set clustering is a newly
proposed algorithm that is based on a novel definition of clus-
ters corresponding to dominant sets. It has low computational
complexity, and it is flexible enough to allow online clustering.
Spectral clustering and dominant-set clustering complement
each other, so we combine them in a hierarchical fashion to
construct a hierarchical graph-theoretic clustering-based active
learning framework.

The remainder of this paper is organized as follows.
Section II briefly introduces the two graph-theoretical clus-
tering algorithms: dominant-set clustering and spectral clus-
tering. Section III describes the proposed unsupervised active
learning framework. Section IV shows the experimental results.
Section V concludes this paper.

II. GRAPH-THEORETIC CLUSTERING

A set (V ) of n samples can form the vertices of an undi-
rected edge-weighted graph G = (V,E), where E is the set of
weighted edges that link different vertices. The edge weights
reflect the similarities between samples. Let wij be the edge
weight between samples i and j(wij ≥ 0). A symmetric affinity
matrix A = (aij)n×n is used to represent the graph G, where
aij = wij if (i, j) ∈ E and aii = 0, ∀i ∈ V .

The aim of graph-theoretic clustering is to cluster the vertices
in V according to the affinity matrix A. Concepts and algo-
rithms for dominant-set clustering and spectral clustering are
briefly introduced hereinafter for the convenience of the reader.

A. Dominant-Set Clustering

The dominant set is a novel combinatorial concept proposed
by Pavan and Pelillo [13]. The characteristics of dominant-set
clustering rest with the definition of dominant sets.
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1) Definitions: Let S be a nonempty vertex set, where S ⊆
V . For any vertex i ∈ S, the average weighted degree of i
relative to S is defined as

DS(i) =
1
|S|

∑
k∈S

aik (1)

where |S| is the number of vertices in S. For a vertex j /∈ S,
the similarity φS(i, j) between vertices i and j relative to S is
defined as φS(i, j) = aij − DS(i). Then, the weight wS(i) of
i ∈ S relative to S is defined as

wS(i) =

{
1, if |S| = 1∑
k∈S−{i}

φS−{i}(k, i)wS−{i}(k), otherwise. (2)

Equation (2), which is a recursive definition, indicates that,
to examine the weight of i relative to S, the influence of set
S − {i} on i is examined. The more the influence, the more the
importance of i in S. According to wS(i), the total weight of S

is defined as

W (S) =
∑
i∈S

wS(i). (3)

The set S is defined as a dominant set if it satisfies the follow-
ing conditions: 1) ∀T ⊆ S, W (T) > 0; 2) ∀i ∈ S, wS(i) > 0;
and 3) ∀i /∈ S, wS∪{i}(i) < 0. Condition 1) indicates that
vertices in each subset of S are closely and firmly united.
Condition 2) indicates that S has large attraction to each vertex
in S. Condition 3) indicates that S has no large attraction
to any vertex outside S. Conditions 1) and 2) describe the
internal homogeneity of S. Condition 3) describes the external
heterogeneity of S. Therefore, it is proper that a dominant set is
treated as a cluster of vertices.

2) Algorithm: Depending on the definition of the dominant
set, a dominant set is found from a graph by quadratic program-
ming [13].

Let u be an n-dimensional vector, where n is the number of
vertices in a graph, and let A be the affinity matrix of the graph.
The following quadratic program is considered:

max f(u) = uT Au

s.t. u ≥ 0
n∑

i=1

ui = 1 (4)

where f(u) is the object function of the program. Let u∗ denote
a local maximum of f , and let Ωu∗ be the vertex support set of
u∗ : Ωu∗ = {Vi : u∗

i > 0}. It is proved that the vertex support
set Ωu∗ corresponds to a dominant set in the graph. Then, a
dominant set is found by solving (4). The local maximum value
f(u∗) of the objective function indicates the cohesiveness of the
dominant-set cluster corresponding to u∗.

The following iterative equation is used to solve (4):

ui(t + 1) = ui(t)
(Au(t))i

u(t)T Au(t)
(5)

where t indexes the number of iterations. The solution for (4) is
succinct, and its computational demand is low compared with

that of other graph-theoretic clustering algorithms that rely on
an eigen analysis of A.

Dominant-set clustering is a bipartition procedure. A domi-
nant set is found and then removed from the graph; and then,
a second dominant set is found from the remaining part of the
graph, and so on. The procedure continues until each vertex in
the graph is assigned to a dominant-set cluster. The number of
clusters is automatically determined.

B. Spectral Clustering

Spectral clustering is described in [3], [11], [12], [16],
and [21]. It seeks an optimal partition of the graph G = (V,E),
where the number K of clusters is specified in advance. The
algorithm for spectral clustering is outlined as follows:

Step 1: Calculate the diagonal degree matrix D for the
affinity matrix A by

Dii =
n∑

j=1

Aij , 1 ≤ i ≤ n; Dij = 0, if i 	= j (6)

and construct the matrix L by L = D−1/2AD−1/2.
Step 2: Apply the eigenvalue decomposition to L, and select

the K largest eigenvalues and the corresponding eigenvec-
tors z1, . . . , zK . The eigenvectors are represented as column
vectors. Then, form the matrix Z = [z1, . . . , zK ] ∈ R

n×K , in
which the columns are the K eigenvectors.

Step 3: Normalize each row of Z to unit length:

Z̃ij = Zij

/ (
K∑

k=1

Z2
ik

)1/2

, 1 ≤ i, j ≤ n. (7)

Each row of Z̃ is considered as an embedding of the corre-
sponding original sample.

Step 4: Cluster the n row vectors of Z̃ into K clusters, using
any suitable clustering algorithm. Correspondingly, K clusters
of original samples are acquired.

Ng et al. [34] use K-means clustering to cluster the n row
vectors of Z̃ in Step 4 of the aforementioned algorithm. The
result of K-means clustering depends heavily on the initial-
ization. To handle this problem, Yu and Shi [21] propose an
effective multiclass spectral clustering algorithm. The algo-
rithm inputs the embedding matrix Z̃ and outputs a partition
indication matrix P ∈ R

n×K , where Pik is a measure of the
tendency of sample i to be in cluster k. The algorithm follows.

Step 1: Initialize an orthogonal matrix R = [r1, r2, . . . , rK ]
(ri ∈ R

K×1) by:
Randomly selecting i ∈ {1, 2, . . . , n}, set r1 = [Z̃i1, . . . ,

Z̃iK ]T , and c = 0n×1;
For k = 2, . . . , K do

a) c = c + abs(Z̃rk−1) (8)
b) i = arg minj(cj,1) (9)
c) rk = [Z̃i,1, . . . , Z̃i,K ]T (10)
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Step 2: Find the optimal discrete solution P that is an n × K
matrix by

P = Z̃R, X = 0n×K .
For i = 1, . . . , n, do

a) l = arg maxk P (i, k), k ∈ {1, . . . ,K} (11)
b) Xi,l = 1

Step 3: Find the optimal orthogonal matrix R by:
SVD decomposition for XT P : XT P = UΩV T , produc-

ing three K × K matrices U , Ω, and V , where Ω is a diagonal
matrix.

R = V UT .
Step 4: If the sum of the diagonal elements of Ω converges,

then stop and output P ; otherwise, go to Step 2.

In practice, the aforesaid algorithm converges only after
several iterations. Each sample i is assigned to the cluster k
for which Pik is a maximum.

III. UNSUPERVISED ACTIVE LEARNING FRAMEWORK

A. Overview of the Framework

As discussed in Section I, to solve the problems in supervised
active learning, i.e., inefficiency in dealing with the semantic
gap between the distribution of samples in the feature space and
their labels, failure to identify new samples whose categories
have not yet appeared in the training samples, and lack of
adaptability to changes in the labeling, we propose a novel
active learning framework based on unsupervised learning.
Clustering algorithms are used to cluster the available labeled
samples, and then, the “high-quality” clusters are selected. In
each of these high-quality clusters, the samples are similar, and
most of the samples have the same label. Each high-quality
cluster is given the label that most of the samples in it share. If
a new sample falls into one of the existing high-quality clusters,
it is given the label of that cluster. If the new sample does
not fall into an existing high-quality cluster, it is considered as
highly informative and selected for manual classification. In our
framework, label information is not used for clustering. Thus,
the relation between the distribution of samples in the feature
space and their labels is decoupled, thus avoiding the semantic
gap problem.

Our active learning framework is hierarchical. Two-layer
graph-theoretic clustering is used. Dominant-set clustering and
spectral clustering are chosen for the two layers, because they
complement each other. Dominant-set clustering with a strong
definition of dominant sets can obtain high-quality clusters at
the earlier steps in the bipartition clustering procedure. How-
ever, at the later steps, the quality of the produced clusters goes
down remarkably. If spectral clustering is applied to the sam-
ples that are not clustered at the earlier steps of dominant-set
clustering, better clusters are obtained. Thus, we use dominant-
set clustering for the first layer of clustering and then spectral
clustering for the second layer of clustering.

In our framework, the first layer consists of a set of dominant-
set clustering machines (DSCMs), and the second layer consists
of one spectral clustering machine (SCM). For a DSCM, a set
of high-quality clusters is obtained by dominant-set clustering.

Fig. 1. Initialization phase of our framework.

For an SCM, a set of clusters is obtained by, using spectral
clustering, clustering the samples that are not properly dealt
with in the first layer. When a new sample is input, DSCMs are
used to examine whether it falls into a cluster in the first layer.
If the sample does not fall into any cluster in the first layer, it
is delivered to the second layer and dealt with by the SCM. If
the sample cannot be assigned to any cluster in the SCM, it is
selected for manual classification.

The active learning framework has two phases: the initializa-
tion phase, in which the DSCMs and the SCM are constructed,
and the functioning phase, in which new samples are tested and
the framework is updated.

B. Initialization Phase

Fig. 1 shows the process of initialization. The available
labeled samples are split into D smaller subsets if the set of la-
beled samples is large. This is because the clustering efficiency
is low if the number of samples is large. The number of samples
in a subset is empirically chosen to ensure that the samples
in the subset can effectively be clustered. If the set of labeled
samples is small, it is not needed to split it into subsets. For each
subset d, the corresponding affinity matrix Ad is obtained, and
dominant-set clustering is applied to Ad. As only high-quality
clusters are needed, dominant-set clustering is terminated when
the quality of the most recent dominant set is low (it is noted
that this approach for terminating the dominant-set clustering
is an improvement on the standard termination for which each
vertex in the graph has to be assigned to a dominant set).

To evaluate the quality of clusters, we define the cluster
purity based on the definition of the importance factors of
labels in clusters. Suppose that cluster i contains nl

i samples
with the label l. Let N l be the number of samples with label
l in all the samples for the current clustering and Ni be the
number of samples in cluster i. We define the importance factor
f l

i of label l with respect to cluster i as

f l
i =

nl
i

Ni
× nl

i

N l
. (12)
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This means that the more the proportion of the samples with
label l in cluster i to the total samples in cluster i and the
more proportion of the samples with label l in cluster i to the
total samples with label l in the set of samples for the current
clustering, the more important the label l with respect to cluster
i. Let l1 and l2 be the two labels whose importance factors f l1

i

and f l2
i are the largest and the second to largest with respect

to cluster i, respectively. We define the purity ρi of cluster i as
ρi = f l1

i /f l2
i . This means that if labels l1 and l2 are similarly

important (i.e., ρi is small), cluster i is considered to be impure,
and if ρi is large (i.e., label l1 predominates over cluster i),
cluster i is considered to be pure, and it is labeled as l1.

During the period that dominant-set clustering is carried
out for each subset of labeled samples, the process of
bipartition terminates when the purity of the most recent
cluster is less than a predefined threshold θP . Then, for the
subset d of the labeled samples, Kd dominant-set clusters
{S1

d , S2
d , . . . , SKd

d } with high quality and their corresponding
labels {l1d, l2d, . . . , l

Kd

d } are obtained (in our approach, high
quality means pure). These dominant-set clusters are put
together to form the DSCM d. This way, we obtain D DSCMs
DSCM1, DSCM2, . . . , DSCMD, which are kept in the first
layer.

In each subset of labeled samples, there are a number
of samples that do not fall into the high-quality clusters
constructed by dominant-set clustering. All such unclustered
samples in all the subsets are collected and clustered in the
second layer. The purities of the resulting clusters and the
embedding matrix of the samples in the SCM are calculated
and stored for use in the functioning phase.

C. Functioning Phase

The functioning phase is the core of our active learning
framework. Its task is to decide whether a new sample is
informative. If so, then it is selected for manual classification;
otherwise, it is automatically classified. The DSCMs in the
first layer are used to find the cluster that the new sample best
matches. If the new sample is an outlier to the best-matching
cluster, it is fed to the second layer and dealt with by the SCM.
If the SCM assigns it to a cluster with low purity, the sample
is selected for manual classification and added to its best-
matching cluster in the SCM to improve the SCM’s capability.
If the number of samples in all the clusters in the SCM is large
enough (exceeds a predefined threshold θS), then the samples
in the SCM are promoted to the first layer to construct a new
DSCM. The threshold θS is empirically selected to ensure
that reclustering the samples in the SCM clusters using the
dominant-set clustering can give a good result. Fig. 2 shows an
overview of the functioning phase. In the following, functions
in the first and second layers and framework upgrade in the
functioning phase are detailed.

1) Functions in the First Layer: When a new sample h is
input to the first layer, it is decided whether the sample h falls
into one of the dominant-set clusters in a DSCM d in the first
layer. Referring to [14], the decision algorithm is described as
follows. Let a be the affinity vector describing the similarities

Fig. 2. Functioning phase of our framework.

between h and the existing samples in the kth cluster Sk
d in the

DSCM d. Then, the membership mk
d of h related to cluster k is

defined as

mk
d =

∣∣Sk
d

∣∣ − 1∣∣Sk
d

∣∣ + 1

(
aT uk

f(uk)
− 1

)
(13)

where |Sk
d | denotes the number of samples in Sk

d , f(∗) is the
object function of the program (4), and uk is the vector whose
vertex support set is Sk

d . We find, from all the clusters in all the
DSCMs, the cluster S∗ to which the sample h has the largest
membership m∗

S∗ = argmax
d,k

(
mk

d

)
. (14)

If the membership m∗ corresponding to S∗ is less than or equal
to zero, then h is an outlier for all the DSCMs, and it is fed to
the second layer. Otherwise, h falls into the cluster S∗, and h is
given the same label as the cluster S∗. The aforementioned sam-
ple decision algorithm demands little computational resource,
and it is thus suitable for large-scale online tasks.

2) Functions in the Second Layer: In the second layer, an
embedding for each new sample h fed from the first layer is
constructed referring to [4]. Based on the constructed embed-
ding, it is determined whether h falls into one of the clusters
in the SCM. Let A be the affinity matrix corresponding to the
n samples existing in the SCM. Let a be the affinity vector
describing the similarities between the new sample h and the
samples in the SCM. A vector w ∈ R

n is calculated by

w(i) = a(i)

⎛
⎝ n∑

j=1

Aij + a(i)

⎞
⎠

−1/2

. (15)

A variable r is calculated by

r =
n + 1

n

⎛
⎝ n∑

j=1

a(j)

⎞
⎠

−1/2

. (16)
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Then, the embedding vector y ∈ R
K of the new sample h is cal-

culated by y = rwT Z̃Λ−1, where Λ ∈ R
K×K is the diagonal

matrix consisting of the K largest eigenvalues of the matrix A,
and Z̃ is the existing embedding matrix corresponding to A.
The embedding vector y is added to the existing embedding
matrix Z̃ as the last row of the extended embedding matrix Ẑ.

From the extended embedding matrix Ẑ, an extended par-
tition indication matrix is obtained using the algorithm intro-
duced in Section II-B. The last row of the extended partition
indication matrix indicates the tendencies that the new sample
is clustered into all the clusters in the SCM. Let the last row
of the extended partition indication matrix be vector v. We
find the maximum and the second to maximum components
in the vector v. Let these two components v(I1) and v(I2)
correspond to clusters I1 and I2 in the SCM, respectively. If
v(I1)/v(I2) is small, it is regarded that the new sample h
has no sufficient tendency to fall into cluster I1, and sample
h cannot automatically be classified according to the clusters
in the second layer. Instead, it is regarded as an informative
sample that is suitable for manual classification. If v(I1)/v(I2)
is large, and if the purity of cluster I1 is large, then sample h is
given the label of cluster I1; otherwise, sample h is manually
labeled.

3) Framework Upgrade: After manual classification of a
new sample is complete, it is checked whether the new sample
belongs to a new category that has not yet appeared in the
samples. If so, then a new cluster in the SCM is created, and
the sample is added into the cluster; otherwise, the new sample
with its label is added to the cluster I1 into which the sample
has the maximum tendency to fall, and the purity of cluster I1

is recalculated. This way, the discriminative capability of the
SCM is improved, and new samples whose categories have not
yet appeared in the samples can be dealt with. When the number
of samples in all the clusters in the SCM exceeds the threshold
θS , all of the samples are taken out to construct a new graph to
which dominant-set clustering is applied to obtain a number of
high-quality clusters. These high-quality clusters are promoted
to the first layer and form a new DSCM. The samples that
cannot form high-quality clusters are kept in the second layer
to form a smaller SCM. This way, the discriminative capability
of the first layer of the framework is increased. Thus, with
the development of the active learning process, the framework
is continuously upgraded, and the discriminative capability
of the first layer and that of the second layer both increase
gradually.

D. Discussion

We make the following comments on our framework.
1) The hierarchical architecture, in which dominant-set

clustering and spectral clustering are used in the
first and second layers, respectively, is reasonable.
First, dominant-set clustering can generate clusters of
very high quality at the earlier steps of the clustering
procedure due to the strong definition of dominant
sets. The DSCM clusters are of a much higher quality
than the SCM clusters. The discriminative capability of
DSCMs is higher than that of the SCM. Thus, DSCMs

should be put in the first layer to make the framework
more efficient in dealing with new samples. Second, for
spectral clustering, the number of clusters must be fixed
beforehand, and it cannot be large if the computational
cost has to be kept low. As the number of the samples that
are not clustered into high-quality dominant-set clusters
is relatively small, the number of clusters required for
representing the distribution of these samples is small,
and spectral clustering can generate better clusters for
these samples. Therefore, spectral clustering can be used
as a supplement to dominant-set clustering, and thus it is
put in the second layer.

2) The architecture is very flexible. It can be easily
upgraded online. During the active learning process
in our framework, manually provided valuable labeling
information is frequently added to the framework, and
its discriminative capability is gradually enhanced. In
most previous supervised active learning approaches, the
classifiers have to be entirely retrained from time to time
to make use of the manual labeling information. In our
framework, the DSCMs that were previously constructed
need not be altered at all. The upgrade of the first layer
only adds new DSCMs. Our framework upgrading online
is more flexible and more adaptable to changing environ-
ments than the supervised active learning approaches that
are upgraded offline.

3) Our active learning framework is easily extended. Any
clustering algorithm that produces high-quality clusters
can be introduced into the framework. The dominant-set
clustering algorithm is just one particular choice. The
hierarchical strategy can easily combine different clus-
tering algorithms. As long as the different unsupervised
clustering algorithms complement each other to some
extent, they can be arranged on different layers to deal
with new samples in turn. In our framework, just two
layers are used, but there is no limit to the number of
layers.

4) Our framework can deal with the semantic gap in
active learning. In our unsupervised active learning
framework, the effect of the clustering is to divide the
feature space into many parts among which the labels are
distributed. Samples that are far from each other can have
the same label, while samples that are near to each other
can have different labels. Thus, the semantic gap between
the distribution of samples in the feature space and the
labeling is partly solved.

5) Our framework is adaptable to changes in the
labeling of samples, arising from a new semantic
interpretation. This is demonstrated by the example of
classifying arthropods. If ladybird and spider samples are
given the same label under a new semantic interpretation,
a change in the architecture of the framework is not
needed; the only requirement is to memorize the new
labels of the clusters. However, supervised active learning
needs to reconstruct the classifier according to the new
labeling.

6) New samples whose category has not yet appeared
in the training samples can be dealt with. In our
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TABLE I
NUMBERS OF SAMPLES IN VARIOUS CATEGORIES IN THE KDDCUP99 SET

framework, new samples for manual classification are
selected by contrasting new samples with the current
clusters. The features of the samples belonging to a new
category are usually quite different from the features of
the current clusters. Thus, these samples can be identified.
Once a new category has manually been established,
later samples are automatically classified by the upgraded
framework. The supervised active learning approaches
that select, for manual classification, those new samples
that fall close to decision boundaries may fail to iden-
tify samples from new categories, as they are usually
far from the training samples but not near to decision
boundaries.

IV. EVALUATIONS

We use the data from network intrusion detection, image
classification, and video classification to evaluate the perfor-
mance of our unsupervised active learning framework.

A. Intrusion Detection

Network intrusion detection [7] is particularly suitable for
active learning, because network data are of huge size, and the
network environment is always changing. Batch classification
of a large amount of network data is unable to respond to these
changes.

We use the KDDCUP99 set, which is a standard network
intrusion detection data set, to evaluate our active learning
framework for intrusion detection. In this data set, each TCP/IP
connection was labeled, and 41 features were extracted. There
are attack samples and samples of normal behaviors. The
attack samples are divided into four categories: DOS, U2R,
R2L, and PROBE. Table I shows the numbers of samples in
various categories in the training set and in the test set. For
any two samples with the same category, their similarity is set
to exp(−x), where x is their Euclidean distance. For any two
samples with different categories, their similarity is set to zero.
The threshold θP for cluster purity is set to 100. The number
of clusters for the spectral clustering in the second layer is set
to the number of sample categories. This is because, after the
first layer of clustering, only a small number of samples are
left in the second layer, and only a small number of clusters
are required to represent the distribution of the samples in the
second layer. As there are five categories of network behaviors
in the data set, the number of clusters in the second layer is set
to five. The threshold θS is set to 3000.

1) Initialization: In the initialization phase, we randomly
select five subsets of samples from the training set to construct
five DSCMs. Table II shows the numbers of samples in various

TABLE II
NUMBERS OF SAMPLES IN VARIOUS CATEGORIES

USED IN THE INITIALIZATION PHASE

TABLE III
NUMBERS OF SAMPLES IN DIFFERENT CATEGORIES

SELECTED FOR MANUAL CLASSIFICATION

categories in each of the subsets, the total numbers of samples
in various categories used in the initialization phase, and the
ratio of the number of selected samples in each category to the
number of all the samples in the category in the training set
(the latter number is shown in Table I). The samples of U2R
and R2L have to be repeatedly and jointly used in the sample
subsets, as there are so few samples in these two categories in
the training set. Samples in the other categories in the subsets
are disjoint. In total, 16 178 prelabeled samples, i.e., only 3.3%
of the samples in the training set, are used to initialize the
active learning framework. The initialization algorithm intro-
duced in Section III-B is used to construct the DSCMs and
the SCM.

2) Manual Classification: Samples in the test set are used
to evaluate the active learning capability of our framework. In
the functioning phase, all the 292 300 samples in the test set are
input as new samples into our framework in a random order.
When the manual classification of a sample is requested, the
chosen label is the label of that sample in the test set. Table III
shows the numbers of samples in the different categories se-
lected for manual classification in the whole functioning phase,
and the ratio of the number of selected samples in each category
to the total number of samples in the category in the test set
(the latter number is shown in Table I). It can be seen that
3468 samples are selected for manual classification in all. This
means that our framework reduces human efforts more than 84
(292 300/3468) times for the test set.

From Table III, it can be seen that the categories U2R and
R2L have much higher manual classification ratios than the
other categories. For the category U2R, samples in both the
training set and the test set are too few. This affects sample
clustering in both the layers in our active learning framework.
As for the category R2L, the semantic gap problem is severe.
Table IV shows the number of the samples in each subcategory
of the category R2L in the training and test sets. Although these
samples have a common label R2L, they are widely distributed
in the feature space. For example, the Wareclient samples
are far from the Guess_passwd samples. From the manual
classification rate for the category R2L, it can be seen that
when the semantic gap is large, our active learning framework
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TABLE IV
NUMBERS OF R2L SAMPLES IN SUBCATEGORIES

IN TRAINING AND TEST SETS

TABLE V
CLASSIFICATION RESULTS OF THE INTRUSION DETECTION SAMPLES

THAT OUR FRAMEWORK AUTOMATICALLY CLASSIFIES

may pick out a relatively large number of samples for manual
classification. This is reasonable, because the semantic gap
causes multiple clusters for the samples with the same label,
and the labeled samples used to represent these clusters must
be sufficient.

3) Accuracy: Table V shows the classification results of
the samples that our active learning framework automatically
classifies, i.e., without manual classification, tested on the test
set. In the table, each row (excluding the last row) shows the
number of samples in each category into which our framework
automatically classifies the samples in one category. For ex-
ample, Row 4 shows that 34 U2R samples are automatically
classified into four normal samples, one DOS sample, 23 U2R
samples, four R2L samples, and two PROBE samples. The
last column in Table V indicates each category’s recall that is
the ratio of the number of correctly classified samples in this
category to the total number of samples in this category in the
test set. The last row indicates each category’s precision that
is the ratio of the number of correctly classified samples in
this category to the total number of samples assigned to this
category, consisting of the samples correctly classified as this
category and incorrectly classified as this category from the
other categories. It can be seen that the recall and precision
for all categories except the category U2R are high. The reason
why the recall and precision for the category U2R are low is that
there are few training samples in this category. It is noted that,
although there are large semantic gaps in the category R2L, the
recall and precision for this category are still high. Thus, our
framework deals effectively with the semantic gap problem.

Two measures are commonly used to judge the performance
of network intrusion detection algorithms. One is the detection
rate that is the ratio of the number of attacks correctly detected
to the number of all attacks. The other is the false-alarm rate

TABLE VI
COMPARISON BETWEEN OUR FRAMEWORK AND OTHER ALGORITHMS

TABLE VII
PERFORMANCE OF SPECTRAL CLUSTERING

AND DOMINANT-SET CLUSTERING

that is the ratio of the number of normal network behaviors
incorrectly classified as attacks to the number of all the normal
behaviors. Table VI shows the detection rate and the false-alarm
rate of our framework and other published detection rates and
false-alarm rates tested on the KDDCUP data set. The detection
rate and the false-alarm rate of our framework are 97.25%
and 3.47%, respectively. This result is among the best ones
for intrusion detection. It is significantly better than the result
of the SVM algorithm [27] that is commonly used for active
learning. It is noted that, for our framework, the sum of the
number of samples used for initialization and the number of
samples manually classified is much less than the total number
of samples in the training set. However, the other algorithms
listed in Table VI use all the training samples. Therefore, our
framework has very encouraging performance for intrusion
detection.

Table VII shows the detection and false-alarm rates when
spectral clustering or dominant-set clustering is separately ap-
plied to the KDDCUP data set. It can be seen that the detection
and false-alarm rates of our framework are much better than
those that are separately obtained by spectral clustering or
dominant-set clustering. This is because our hierarchical graph-
theoretic clustering combines the merits of spectral clustering
and dominant-set clustering.

B. Image Classification

Image classification is an important prerequisite for applica-
tions such as image retrieval. In this section, we evaluate the
performance of our active learning framework for classifying
images.

We use color correlograms [31] of images as features for
classification. A color correlogram includes the color histogram
of an image and the distances between pixels, which contain
spatial information about the image. For simplicity, the self-
color correlogram, in which only the distances between pixels
falling into the same bin of the color histogram are included, is
used in our experiments.
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Fig. 3. Categories of images.

TABLE VIII
NUMBERS OF IMAGES IN VARIOUS CATEGORIES

We downloaded, from the Internet, 6500 images that can be
classified into 12 categories: pandas, lions, faces, sunflowers,
homes, red flowers, plat, sky, flags, basketballs, horses, and
dinosaurs. Fig. 3 shows one example image from each category.
Table VIII shows the numbers of various categories’ images
separately used in the initialization phase and in the functioning
phase. No images of horses and dinosaurs are used in the
initialization phase. This is intentional to test our framework’s
ability to identify new images that belong to new categories
that have not yet appeared in the training samples. The second
to the last row, namely, “Total-1,” shows the total numbers of
images for each column, but omitting the images of horses
and dinosaurs, while the last row, namely, “Total-2,” shows
the totals for all the categories. As the number of images used
in the initialization phase is small, the images are not split
into subsets, i.e., only one DSCM is used. The threshold for
cluster purity θP is set to 64. The number of clusters in the
second layer is set to 12, which is equal to the number of image
categories.

In the following, we first evaluate the performance of our
framework for classifying images, calculating the manual clas-
sification rate and the accuracy rate for automatic classification,
and then make a comparison between our framework and the
SVM-based active learning.

TABLE IX
NUMBERS OF IMAGES SELECTED FOR MANUAL CLASSIFICATION

USING OUR FRAMEWORK

1) Performance Evaluation: Table IX shows the numbers of
images that are selected for manual classification in different
categories and, for each category, the ratio of the number of
images selected for manual classification to the total number of
images used in the functioning phase. In the table, the second
to the last row, namely, “Total-1,” shows the total number
of manually classified images for the second column and the
average manual classification rate for the third column, but
omitting the images of horses and dinosaurs, while the last row,
namely, “Total-2,” shows the total and the average for all the
categories.

Table X shows the classification results that are automatically
obtained by our framework, i.e., with manual classification.
In our framework, some samples are classified by dominant-
set clustering, and the other samples are classified by spectral
clustering. The second column in the table shows the numbers
of images that dominant-set clustering correctly and incorrectly
classifies, respectively. The third column shows the numbers
of images that spectral clustering correctly and incorrectly
classifies, respectively. The fourth column gives the classifica-
tion results for all the images in the category indicated by the
leftmost entry of each row. For example, Row 2 shows that our
framework automatically classifies 377 panda images into 375
panda images and two face images. The fifth and sixth columns
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TABLE X
CLASSIFICATION RESULTS OF IMAGES AUTOMATICALLY CLASSIFIED BY OUR FRAMEWORK

show the recall and precision rates for automatically classifying
images in each category. In the table, the second to the last row,
namely, “Total-1,” shows the total numbers of images for the
second and third columns and the average recall and precision
for the fifth and sixth columns, but omitting the images of
horses and dinosaurs, while the last row, namely, “Total-2,”
shows the totals and the averages for all the categories.

From Tables IX and X, the following points are deduced.
1) There are few errors for dominant-set clustering. This

supports the use of dominant-set clustering in the first
layer of the framework.

2) Many images are automatically classified by spectral
clustering, and the corresponding classification accuracy
is high. Therefore, there is good complementarity be-
tween dominant-set clustering and spectral clustering.

3) If the images of horses and dinosaurs are omitted, then the
average accuracy rate for automatically classifying im-
ages is 98.12%; otherwise, it is 96.60%. The performance
of our framework for automatically classifying images
is good.

4) If the images of horses and dinosaurs are omitted, then the
average manual classification rate is 4.73%; otherwise,
it is 8.16%. Our framework efficiently reduces human
burden for manually classifying images.

Furthermore, in the experiments, it is shown that, for the
samples of horses and dinosaurs, almost all such samples that
are input first into our framework are selected for manual
classification, and afterward, most of such new samples are
automatically labeled while a good classification accuracy rate
is maintained. This indicates that our framework effectively
deals with new samples that belong to new categories that have
not yet appeared.

2) Comparison: For classifying images, we made a com-
parison between our framework and the SVM-based active
learning that is the most typical of the existing supervised
active learning approaches. The SVM-based active learning for
classifying images uses the same image features and the same

TABLE XI
NUMBERS OF IMAGES SELECTED FOR MANUAL

CLASSIFICATION USING SVM

images in the initialization phase and the functioning phase as
those in our active learning framework. To implement the SVM-
based active learning, we use LibSVM [32], which is a simple
and efficient software for SVM classification and regression.
In LibSVM, the SVM type is set to “C-svc,” and the kernel
type is set to “radial basis function.” The optimal parameters
of LibSVM can be automatically estimated, and the estimated
optimal values for the parameters are “c = 4 and γ = 0.125.”
For each test image, LibSVM outputs the probabilities that the
test sample is in the various categories. The largest and the
second to the largest probabilities are selected. If the ratio of
these two probabilities is small, the test image is selected for
manual classification.

Table XI shows the numbers of images manually classified
in various categories and the manual classification rates for the
SVM-based active learning. Table XII shows the classification
results of the images that the SVM-based active learning auto-
matically classifies. From the comparisons between Tables IX
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TABLE XII
CLASSIFICATION RESULTS OF IMAGES AUTOMATICALLY CLASSIFIED BY SVM

and XI, and between Tables X and XII, it can be seen that when
only the images whose categories appeared in the initialization
phase are counted, i.e., the images of horses and dinosaurs are
omitted, the recall and precision of our framework are higher
than those of the SVM-based approach, while the manual
classification rate of our framework is also higher than that of
the SVM-based approach. The two approaches have the same
performance in this case. This is because there is almost no
semantic gap between these image samples. The ability of our
framework to deal with the semantic gap does not function
for these image samples. When only the images of horses and
dinosaurs are counted, most of these images are mistakenly
classified by the SVM-based approach, resulting in a much
lower classification accuracy for these images than that of
our framework, while its manual classification rate is higher
than our framework. Therefore, our framework has much more
ability to deal with new images whose categories have not yet
appeared in the training images. Overall, our framework outper-
forms the SVM-based active learning for classifying images.

C. Video Classification

Video classification [20] is an important prerequisite for
vision applications such as video annotation. In this section, we
evaluate our active learning framework for classifying videos.

We use T -bin histograms [33] of videos as features. A
number of images are selected from each video at a uniform
frame interval. For each of these images, a color correlogram
is extracted. The color correlograms are used to cluster these
images into T clusters. For each cluster, we construct a model
that is a weighted sum of the color correlograms of the images
in the cluster. For a given video, the correlogram of each image
frame is compared with each model, and for each model, the
number of images whose correlograms best match the model
is counted. These numbers, i.e., one for each model, form a
T -dimensional vector whose normalized version is used as the
feature for the video.

We collected 740 sports videos from 17 categories: body
mechanics, football, boxing, volleyball, billiards, shooting,
skating, shadowboxing, kickboxing, badminton, weight lifting,
swimming, extreme games, judo, aerobics, tennis, and table
tennis, as shown in Fig. 4, where each category of videos is
represented by one image. Table XIII shows the numbers of
various categories’ videos separately used in the initialization
phase and in the functioning phase. No videos of tennis and ta-
ble tennis are used in the initialization phase. This is intentional
to test our framework’s ability to identify videos that belong
to new categories that have not yet appeared in the training
videos. The second to the last row, namely, “Total-1,” shows
the total number of videos for each column, but omitting the
videos of tennis and table tennis, while the last row, namely,
“Total-2,” shows the totals for all the categories. As the number
of videos used in the initialization phase is small, the videos are
not split into subsets. The threshold θP is set to 16. The number
of clusters in the second layer is set to 17, which is equal to the
number of video categories.

1) Performance Evaluation: Table XIV shows the numbers
of videos selected for manual classification in different cat-
egories and, for each category, the ratio of the number of
videos selected for manual classification to the total number of
videos used in the functioning phase. The second to the last
row, namely, “Total-1,” shows the total number of manually
classified videos for the second column and the average manual
classification rate for the third column, but omitting the videos
of tennis and table tennis, while the last row, namely, “Total-2,”
shows the total and the average for all the categories.
Table XV shows the classification results of the videos that
our active learning framework automatically classifies, i.e.,
without manual classification. The definitions of each column
and the last two rows in the table are the same as those in
Table X. From Tables XIV and XV, the same characteristics
of our active learning framework are deduced, as shown in
classifying images, i.e., there are few errors for dominant-set
clustering; spectral clustering is a good complementarity to
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Fig. 4. Categories of videos.

TABLE XIII
NUMBERS OF VIDEOS IN VARIOUS CATEGORIES

dominant-set clustering; our framework can effectively deal
with new samples whose categories have not yet appeared.
In the experiments, it is shown that the misclassifications in
Table XV are due to similar features extracted from videos in
different categories.

2) Comparison: Our active learning framework for classi-
fying videos is compared with the SVM-based active learning
approach. In the SVM-based active learning for video classi-
fication, the values for the optimal parameters of LibSVM are
automatically estimated as “c = 512 and γ = 0.00048828125.”
As in Section IV-B2, we select the largest probability and the
second to the largest probability from the probabilities that a
test video is classified into various categories, and we check
whether the ratio of these two probabilities is small enough to

TABLE XIV
NUMBERS OF VIDEOS SELECTED FOR MANUAL CLASSIFICATION

USING OUR FRAMEWORK

determine whether the test video is to be selected for manual
classification.

Table XVI shows the numbers of videos selected for manual
classification and the manual classification rates for the SVM-
based approach. Table XVII shows the classification results of
the videos that the SVM-based approach automatically clas-
sifies. From the comparisons between Tables XIV and XVI,
and between Tables XV and XVII, it can be seen that when
the videos of tennis and table tennis are omitted, the average
manual classification rates of the SVM-based approach and
our framework are 10.98% and 9.11%, and the average clas-
sification accuracy rates of the SVM-based approach and our
framework are 89.76% and 89.20%, respectively. Therefore,
when only the videos whose categories have appeared in the
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TABLE XV
CLASSIFICATION RESULTS OF VIDEOS AUTOMATICALLY CLASSIFIED USING OUR FRAMEWORK

TABLE XVI
NUMBERS OF VIDEOS SELECTED FOR MANUAL

CLASSIFICATION USING SVM

initialization phase are counted, the manual classification rate
of our framework is much lower than that of the SVM-based
approach, and the recall and precision of our framework are
slightly lower than those of the SVM-based approach. The rea-
son for this is that our framework deals better with the semantic
gaps existing in the video samples. When only the videos of
tennis and table tennis are counted, most of these videos are

mistakenly classified by the SVM-based approach, resulting
in a much lower classification accuracy of the SVM-based
approach than that of our framework. Thus, our framework
outperforms the SVM-based active learning for classifying
videos, particularly in terms of dealing much more efficiently
with new videos whose categories have not yet appeared in the
training samples.

V. CONCLUSION

In this paper, a new active learning framework based on
unsupervised learning has been proposed. In the framework,
two promising graph-theoretic clustering approaches, namely,
dominant-set clustering and spectral clustering, are applied
in a two-layer structure and complement each other to boost
the active learning capability. Our active learning framework
is flexible to upgrade, adaptable to changes in the labeling,
and easy to implement. Experiments on network intrusion
detection, image classification, and video classification have
shown that our framework can greatly reduce the workload of
manual classification while maintaining favorable accuracy for
the automatic classification of samples. It has been shown that,
overall, our framework outperforms the SVM-based supervised
active learning, particularly in terms of dealing much more
efficiently with new samples whose categories have not yet
appeared in the training samples.

Our future work will focus on the following.

1) We will investigate the merging of clusters with similar
characteristics in the functioning phase—discarding re-
dundant samples in these clusters.

2) We will combine supervised learning and unsupervised
learning to make active learning more efficient.
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TABLE XVII
CLASSIFICATION RESULTS OF VIDEOS AUTOMATICALLY CLASSIFIED BY SVM
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