
Vol.:(0123456789)

Machine Learning (2022) 111:1377–1408
https://doi.org/10.1007/s10994-022-06129-4

1 3

Unsupervised anomaly detection in multivariate time series 
with online evolving spiking neural networks

Dennis Bäßler1 · Tobias Kortus1 · Gabriele Gühring1 

Received: 20 December 2020 / Revised: 17 December 2021 / Accepted: 24 December 2021 /  
Published online: 10 March 2022 
© The Author(s) 2022

Abstract
With the increasing demand for digital products, processes and services the research area 
of automatic detection of signal outliers in streaming data has gained a lot of attention. The 
range of possible applications for this kind of algorithms is versatile and ranges from the 
monitoring of digital machinery and predictive maintenance up to applications in analyz-
ing big data healthcare sensor data. In this paper we present a method for detecting anoma-
lies in streaming multivariate times series by using an adapted evolving Spiking Neural 
Network. As the main components of this work we contribute (1) an alternative rank-order-
based learning algorithm which uses the precise times of the incoming spikes for adjusting 
the synaptic weights, (2) an adapted, realtime-capable and efficient encoding technique for 
multivariate data based on multi-dimensional Gaussian Receptive Fields and (3) a continu-
ous outlier scoring function for an improved interpretability of the classifications. Spiking 
neural networks are extremely efficient when it comes to process time dependent informa-
tion. We demonstrate the effectiveness of our model on a synthetic dataset based on the 
Numenta Anomaly Benchmark with various anomaly types. We compare our algorithm to 
other streaming anomaly detecting algorithms and can prove that our algorithm performs 
better in detecting anomalies while demanding less computational resources for processing 
high dimensional data.

Keywords Anomaly detection · Outlier detection · Evolving Spiking Neural Networks · 
Online learning · Streaming multivariate time series · Machine learning

Editor: Joao Gama.

 * Gabriele Gühring 
 gabriele.guehring@hs-esslingen.de

 Dennis Bäßler 
 debait01@hs-esslingen.de

 Tobias Kortus 
 tokoit02@hs-esslingen.de

1 Hochschule Esslingen, Flandernstr. 101, 73732 Esslingen, Baden-Württemberg, Germany

http://orcid.org/0000-0003-3926-7872
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06129-4&domain=pdf


1378 Machine Learning (2022) 111:1377–1408

1 3

1 Introduction

Detecting outliers in time series data, especially streaming data, has gained significant rel-
evance due to the recent exponential growth in the amount of data captured in big-data and 
IoT applications (Ahmad et al. 2017; Munir et al. 2019; Macia̧g et al. 2021). Particularly 
the detection of anomalies in streaming time series data places high demands on the devel-
opment of effective and efficient algorithms (Ahmad et al. 2017). Real-time capable algo-
rithms are required for many applications in order to process these generated or recorded 
data. In many cases it is not easy to collect sufficient training data with marked anomalies 
for the supervised training of an anomaly detector to identify anomalies in data streams 
(Macia̧g et al. 2021). It is therefore particularly important to design anomaly detectors that 
can correctly classify anomalies from data where none of the input values need to be clas-
sified. Ideally, the designed anomaly detector should learn in an online mode in which the 
current input values adjust the parameters of the detector for better anomaly detection of 
future input data. Since conventional machine learning algorithms are in many cases una-
ble to cope with these requirements or can only handle them with a large expenditure of 
resources, there is a great interest in new efficient solutions. Spiking neural networks have 
the capability for processing information in a fast way, both in terms of energy and data, 
due to their functional similarity to the brain (Bing et al. 2018a; Gerstner and Kistler 2002; 
Lobo et al. 2018) thus they are particularly well suited for online detection of anomalies. 
Although they are one of the major exponents of the third generation of artificial neural 
networks, it took a while till they were applied to an online learning approach (Lobo et al. 
2018, 2020).

In this paper, we extend an existing algorithm for anomaly detection by Maciąg et al. 
(2021) from the field of evolving Spiking Neural Networks, in which learning processes, 
neural communication and classification of data instances are based exclusively on spike 
exchange between neurons. The approach by Maciąg et  al. (2021) is however solely 
designed for univariate time series. Since multivariate data streams are in practice quiet 
common we contribute in this work several appropriate measures to make the algorithm 
work for multivariate data. Here, we focused both on the runtime and real-time capability 
of the algorithm as well as the general performance for the detection of different types of 
anomalies which are presented in appendix A.1. Our results can be summarized in the fol-
lowing way:

– We present an online capable encoding technique for multivariate times series data. Our 
method is based on the work of Panuku and Sekhar (2008). It provides a significant per-
formance boost to a parallel execution of several univariate versions of the algorithm of 
Maciąg et al. (2021).

– We use a new continuous outlier score, which is adapted from Ahmad et  al. (2017). 
This outlier score can be executed in an online manner and provides significantly better 
results as the currently used technique in Maciąg et al. (2021).

– We apply the SpikeTemp learning approach by Wang et al. (2017) as an improvement 
for the existing technique and therefore getting better and faster results for anomaly 
detection even in the univariate case.

Compared to deep learning models the main advantage of our model is, that it needs no 
time for training and less memory space, while its performance is in a similar range (see 
Geiger et al. 2020 and Sect. 5). In the following we use outlier for anomalous data points as 



1379Machine Learning (2022) 111:1377–1408 

1 3

well as anomaly. The difference between an outlier and an anomaly is small (see Aggarwal 
2013) and some authors use both expressions as well, i.e. Shukla and Sengupta (2020).

2  Related work

Due to the extensive demand for efficient and versatile algorithms for outlier detection a 
wide variety of approaches has been studied in the existing literature. Depending on the 
application domain, different kinds of algorithms and techniques have been used. In the fol-
lowing section we present a general review of currently available related literature sources 
regarding to either univariate or multivariate unsupervised and semi-supervised outlier 
detection in time series given the applicability of these techniques in a streaming scenario.

One of the most commonly used technique for detecting outliers in a wide variety of 
different application domains is the Local Outlier Factor (LOF) as proposed by Breunig 
et al. (2000). This technique uses a density measure which describes how isolated a given 
instance is with regards to its neighborhood. Pokrajac et al. (2007) proposed an incremen-
tal version of this algorithm that makes it suitable for an efficient detection of outliers in 
data streams. Both the static as well as the incremental LOF algorithm are not designed for 
high dimensional data as well as for temporal relationships in the input data (Gühring et al. 
2019; Pokrajac et al. 2007), thus making it unapplicable for those specific applications.

Statistical autoregressive (AR) models such as ARIMA, VAR, VARIMA have also been 
extensively studied in the past for detecting outliers in both univariate and multivariate 
time series (Hau and Tong 1989; Moayedi and Masnadi-Shirazi 2008; Li et  al. 2019b). 
These kinds of models particularly excel by their simplicity and the lack of an initially 
required training phase and are therefore also suitable for streaming data processing. How-
ever, since ARIMA models can barely handle nonlinear relationships, their approach to 
complex real-world problems is not always satisfactory (Zhang 2003).

Recent advances in deep learning like natural language processing (NLP) or speech rec-
ognition have caused an increasing utilization of various network architectures in outlier 
detection research (Chalapathy and Chawla 2019). These range from Convolutional Neural 
Networks (CNN), Long Short Term Memory (LSTM) Networks, Autoencoders up to Gen-
erative Adversarial Networks. Both discriminative and generative models are used in this 
context. However, due to the pronounced class imbalance and the associated lack of appro-
priate data labels, discriminative models are used far less often. Fu et al. (2019) proposed 
a CNN based denoising autoencoder architecture for detecting outliers in time series data. 
The autoencoder structure is used for unsupervised feature learning of variable groups 
and is complemented by a classification layer that distinguishes normal from abnormal 
samples. Another time series anomaly detection method based on deep learning was pro-
posed by Mahotra et al. (2016). With their EncDec-AD LSTM architecture they propose 
an encoder decoder scheme for reconstructing the given input signal using the compressed 
vector representation of the decoder. In order to compute the likelihood of an anomaly 
they model a normal distribution over the determined error vectors. Generative Adversarial 
Networks are also extensively present in current research. Geiger et al. (2020) and Li et al. 
(2019a) both use an adversarial minimax training approach on an LSTM architecture in 
order to detect outliers in time series. Both use the discriminative and the reconstructive 
components of the architecture in order to distinguish fake from real data using a multi 
component outlier scoring system. Deep learning based architectures, however, require for 



1380 Machine Learning (2022) 111:1377–1408

1 3

training and inference a vast amount of computing power, making an application of these 
approaches in a streaming context especially on low power devices infeasible.

To exploit the advances from both, the traditional approaches for outlier detection and 
deep neural networks there is currently an increased use of hybrid models that are either 
used in order to improve the quality, the speed or the scalability of the algorithm. Munir 
et  al. (2019) uses a combination of an ARIMA model and a two layered Convolutional 
Neural Network in a residual learning scheme for the prediction of a given time series 
where both models complement each other for optimal results. This information is then 
further utilized for detecting existing outliers in the signal using the Euclidean distance 
between the real and predicted time step. Another hybrid model is proposed by Shukla and 
Sengupta (2020). They use a combination of hierarchical clustering and a Long Short Term 
Memory Network (LSTM) where the hierarchical clustering condenses similar correlat-
ing input data which are then fed into a LSTM network enabling the architecture to scale 
well for high dimensional data. Papadimitriou et al. (2005) proposed a neural network type 
architecture (SPRIT) for detecting outliers in data streams by reconstructing a given time 
series using a dynamic repository of incrementally estimated principal components which 
are approximated by the weights of a hidden neuron. The number of required eigencom-
ponents is determined by a heuristic, which compares the energy of the input data and the 
estimated eigencomponents. Since each additional added principal component can sum-
marize further aspects of the signal which cannot be explained by the previous principal 
components, an increase of the repository indicates the existence of an outlier in the cur-
rent time step.

Advances in neuroscientific disciplines produced a large number of novel approaches of 
biological plausible learning algorithms for the detection of anomalies in signals. A heav-
ily biologically inspired learning approach used in current anomaly detection research are 
Spiking Neural Networks (SNN). Xing et al. (2019) proposed a hybrid learning approach 
using a combination of an evolving Spiking Neural Network architecture as well as 
a restricted Boltzmann machine for detecting outliers in time series. The concept of an 
evolving Spiking Neural Network architecture for the efficient processing of data streams 
is used in several other publications. Demertzis et al. (2017, 2019) use in multiple papers 
an evolving Spiking Neural Network approach based on a simplified Leaky Integrate and 
Fire model (LIF) and a Rank Order Coding scheme in a semi-supervised learning scenario. 
Maciąg et al. (2021) use a similar architecture for an Online evolving Spiking Neural net-
work to detect signal outliers in time series data in an online mode using the error between 
the reconstructed and the given time series. The evolving architecture used by the previ-
ously mentioned approaches enable a continuous adaption to changing statistics of input 
data, making them well suited for online learning (Wysoski et al. 2006).

3  Pattern discovery in multivariate time series

In this paper we present an online capable algorithm, which is able to detect anomalies 
in multivariate time series. The detection of anomalies in multivariate times series is not 
the same as detecting anomalies in a single valued time series, since also correlations 
between the different dimensions have to be taken into account. Since this is also one of 
the main differences between our paper and the work of Macia̧g et  al. (2021), we here 
present as a benchmark algorithm the SPIRIT algorithm, another algorithm focusing on 
outlier detection of streaming multivariate time series. Streaming Pattern dIscoveRy in 



1381Machine Learning (2022) 111:1377–1408 

1 3

multIple Time-series (SPRIT) by Papadimitriou et al. (2005) is a fast online capable mul-
tivariate time series algorithm. It is according to Aggarwal (2013) one of the most well 
known unsupervised algorithms which is designed to work not only on single data streams 
but takes into account a global direction of correlation between different simultaneous data 
streams. In order to evaluate multivariate time series for anomaly detection most of the 
time a method for dimensionality reduction is used. The SPIRIT algorithm uses an online 
principal component analysis for this task. We explain it here in more detail.

The goal of the SPIRIT algorithm is to approximate a representation of the input signal 
with the smallest possible number of principal components. The algorithm does not require 
an initial training phase as the principal components are continuously updated with incom-
ing data points �t =

[

xt,1,… , xt,n
]T of the n-dimensional data stream.

The principal components matrix of the form W ∈ ℝ
n×k where n is the number of 

dimensions of the incoming signal and k is the number of the current principal components 
are initially represented by the conical unit vector � =

[

u1 … uk
]

 . For each time step the 
eigencomponents making up the matrix W are updated. Therefore the current data point �t 
is used to initialize the temporary variable �́1 which is used to calculate the projection � of 
�́i on the eigencomponents of Wi according to yi = WT

i
�́i . On the basis of this projection, 

the energy di ← �di + y2
i
 is updated and the reconstruction error �i = �́i − yiWi of the ith 

projection is calculated. Papadimitriou et al. (2005) introduce in this context the exponen-
tial forgetting factor � as a hyperparameter for the model. This makes it possible to control 
the influence of time-dependent trends. Values between 0.96 and 0.98 are suggested in 
Papadimitriou et al. (2005). Based on the reconstruction error �i , the eigencomponents are 
optimized using gradient descent with a learning rate of � =

1

di
 . The previously mentioned 

steps are iteratively repeated for i ≤ k for the next eigencomponents with a new 
�́i+1 = �́i − yiWi to reduce the remaining reconstruction error.

To estimate the required number of principal components, two additional metrics are 
used:

– The continuous average energy Et on the input data at time t.
– The average total energy of the eigencomponents Ẽ(k) , which is calculated from the sum 

of the individual energies of the eigencomponents Ẽi,t at time t, obtained from Eq. (2).

Two further hyperparameters, an upper energy limit FE and a lower energy limit fE are 
used to determine whether the existing number of principal components k is sufficient or 
surplus. If Ẽ(k) < fEEt , a further principal component is required to sufficiently represent 
the data i.e. k ← k + 1 . However, if Ẽ(k) > FEEt applies, k − 1 principal components are suf-
ficient to represent the data with appropriate quality, i.e. k ← k − 1 . Based on the previous 
result, either the k-th eigencomponent is removed from the matrix W or, if the increased 

(1)Et =
�(t − 1)Et−1 + ‖�t‖

2

t

(2)Ẽi,t =
𝜆(t − 1)Ẽi,t−1 + y2

i,t

t

(3)Ẽ(k) =

k
∑

i=1

Ẽi,t



1382 Machine Learning (2022) 111:1377–1408

1 3

number of eigencomponents k is smaller than the dimension of the data, a new eigencom-
ponent in the form of the canonical unit vector uk+1 is added to the matrix W.

According to Papadimitriou et  al. (2005), the number of eigencomponents k or the 
reconstruction error e can be used as a metric to determine the affiliation of the data point 
to the class of outliers. In this paper we use the SPIRIT algorithm as a comparison model 
to benchmark the performance of our model. In order to provide comparable values we 
extend the outlier detection from Papadimitriou et al. (2005) by the same continuous out-
lier score that we use for our anomaly detection model (see Sect. 4.5).

4  Spiking Neural Networks for outlier detection

4.1  Spiking neural networks

The notion of Spiking Neural Networks is used to describe a group of artificial neural net-
works that have their origins in the field of neuroscience. These neuron models, also known 
as the third generation of neural networks (Maas 1997), provide a plausible model of the 
neuroscientific processes of information processing in biological neurons via the coding 
of sensory information in spikes. They encode information from preceding neuron layers 
by generating time-varying pulses caused by the counteraction of excitatory and inhibitory 
potentials of preceding layers  (Gerstner and Kistler 2002). The timing of a spike is for-
mally determined by the positive crossing of a threshold value � of the potential u, caused 
by an excitatory signal of a preceding neuron (Gerstner and Kistler 2002).

For the mathematical approximation of these complex process, different models exist. But 
usually only the Integrate and Fire model of Louis Lapicque (1907) and its variations (Ger-
stner and Kistler 2002) in conjunction with the Rank Order Coding (ROC) model accord-
ing to Thorpe et al. (1998) are of high relevance in technical applications, especially with 
regard to the low complexity and the potential to process large amounts of data.

This new type of artificial, biologically inspired networks is characterized, especially 
with respect to their structural differences, by their high performance compared to con-
ventional neural networks (Maas 1997). Due to the high potential of Spiking Neural Net-
works, they can be found in research projects of different disciplines such as signal pro-
cessing  (Amirshahi and Hashemi 2019), speech recognition  (Wu et  al. 2020) or control 
engineering (Bing et al. 2018b).

4.2  Online evolving Spiking Neural Networks

Evolving Spiking Neural Networks (eSNN) (Wysoski et al. 2008) and their variation of 
Online evolving Spiking Neural Networks (OeSNN) represent a subcategory of Spik-
ing Neural Networks. The neural activities are commonly modeled by a simplified 
Leaky Integrate and Fire (LIF) neuron model  (Schliebs and Kasabov 2013; Wysoski 
et al. 2008). Whereas the topology of the adaptive evolving layer changes continuously 
with new incoming data from the previous input layer  (Watts 2009). In this paper we 
use a OeSNN model for anomaly detection developed by Maciąg et al. (2021) as base-
line architecture, which consists exclusively of an input and an output layer without any 

(4)t(f ) ∶ u(t(f )) = 𝜗 and
du(t)

dt

|

|

|

|t=t(f )
> 0



1383Machine Learning (2022) 111:1377–1408 

1 3

hidden layers. The output layer is a dynamically growing repository of neurons with a 
limitation of the maximum number of neurons in the repository. The number of input 
neurons is fixed and is determined by the user-defined parameter NIsize , while the maxi-
mum number of output neurons is specified by NOsize . The continuously incoming input 
data of a univariate input data stream is buffered in a sliding window W of size Wsize for 
internal processing. The values inside the window are encoded to spike times for the 
input neurons using a fixed number of evenly distributed overlapping Gaussian Recep-
tive Fields (GRF) which are further described in Sect. 4.3. For the output layer a simpli-
fied neural LIF model (Schliebs and Kasabov 2013; Wysoski et al. 2008) is applied. In 
this model, the postsynaptic potential (PSP) is accumulated at the output neuron based 
on the input signals from the preceding neural layer until it reaches its post-synaptic 
potential threshold � as in Eq. (4). Reaching the PSP threshold causes the output neuron 
to fire and its PSP value is reset to 0 (Macia̧g et al. 2021).

Based on the error of the output layer, either a new neuron is added to the existing 
output layer or the parameters of an existing neuron are updated (Kasabov 2006). At 
first a new output neuron is created for each value xt of the univariate input data stream. 
The corresponding weights for the newly created neuron are initialized according to the 
spike order of the input neurons as described in Wysoski et al. (2006). Each newly cre-
ated output neuron is then either added as a new instance to the output neuron reposi-
tory or merged with an existing output neuron in the output repository. This behavior is 
controlled by a user-defined parameter sim, which is located in the (0, 1] range. For this 
purpose, the similarity between the newly created output neuron k and each of the other 
output neurons in the repository is calculated. The similarity is defined as the reciprocal 
of the Euclidean distance between the weights of the newly added output neuron and the 
other output neurons. If the similarity to one of the existing neurons exceeds the prede-
fined threshold value sim, then the newly added neuron will be merged with the most 
similar neuron as in Maciąg et al. (2021). If no existing output neuron is similar enough 
for the defined threshold sim, the new output neuron is added to the output repository. 
If the repository has reached its maximum size, the oldest neuron in the output layer is 
replaced by the newly created neuron (Macia̧g et al. 2021).

For anomaly detection a vector of error values is calculated between predicted and 
observed values of the window W. Therefore for every predicted scalar value yt and 
observed scalar value xt of the window W the absolute difference et = |xt − yt| is calcu-
lated, which results in an error vector � of the dimension Wsize . Based on this vector, the 
mean value x̄e and the standard deviation s2

e
 of the error values of � are used to classify xt 

either as normal or anomalous. If the difference between et and x̄e is greater than � ⋅ s2
e
 , 

where � is a user-defined threshold, then xt is classified as an anomaly (Macia̧g et  al. 
2021).

In summary, each scalar time series value xt goes through the following steps to gen-
erate a prediction and gets classified as normal or anomalous: 

1. The input window W is updated with the value xt and the GRF of the input neurons are 
initialized.

2. The value xt is encoded by the GRF into spike times (see Sect. 4.3).
3. The coded spike times are then used to determine the spike order of the input neuron.
4. Based on the spike order of the input neuron, the PSP of the output neuron is accumu-

lated in the same order.
5. The output neuron that reaches its PSP threshold first generates the prediction yt.



1384 Machine Learning (2022) 111:1377–1408

1 3

6. The new prediction yt is compared to the actual value xt and classified as normal or 
anomaly.

7. If no anomaly is detected, the output neuron that generated the prediction yt is corrected 
according to the deviation from the input value xt.

8. In parallel to steps 6 and 7, a new output neuron is generated independently of the 
anomaly classification. This neuron is then merged or added to the repository depending 
on the similarity threshold sim as described before.

Originally, the model by Maciąg et  al. (2021) with the name OeSNN-UAD according 
to Online evolving Spiking Neural Networks for Unsupervised Anomaly Detection was 
designed for univariate data processing only. For anomaly detection in multivariate time 
series, one instance of the model can be executed per dimension, but then no correlation 
between the dimensions is considered as shown in Sect. 5. We therefore develop an appro-
priate measure to improve the processing of multivariate data as described in Sect. 4.3. Our 
focus is primarily on the runtime and real-time capability as well as the general perfor-
mance of the detection of different types of anomalies. When talking about detection it is 
important to look at the the correctly classified outliers, the unrecognized outliers and the 
data instances which are incorrectly classified as outliers. We deal with this in Sect. 5.4, 
where we define the F1 score as an appropriate metric to compare our results to other result 
in the literature. Additionally, we improve the anomaly detection by extending the model 
with an anomaly probability score (see Sect. 4.5) and reduce the computing costs through 
an improved learning approach which is described in Sect. 4.4.

4.3  Efficient encoding of multivariate data with Gaussian Receptive Fields

The biological inspired structure of receptive fields and especially the Gaussian Receptive 
Fields plays an elementary role in the efficient processing of data in SNN. In the biologi-
cal context, a receptive field is defined as a spatially limited area of interconnected sensory 
receptors that convert incoming visual, auditory or similar stimuli into electrical stimulus 
potentials (Lindeberg 2013). The incoming visual stimuli are encoded by receptive fields 
into electrical signals that are further processed by subsequent neuron layers. Due to the 
sparse interaction of receptive fields with subsequent neurons, this coding can be used 
to efficiently process the information in the subsequent neuron layers  (Lindeberg 2013). 
This biological concept is applied in different types of artificial neural networks, such as 
the Convolutional Neural Networks  (Goodfellow et al. 2016) or the Spiking Neural Net-
works (Macia̧g et al. 2021; Panuku and Sekhar 2008; Hopkins et al. 2018).

The encoding of the input data is performed in Maciąg et al. (2021) using a one dimen-
sional Gaussian Receptive Field, where multiple Gaussian distributions are placed equally 
over the input window W. This approach however limits the algorithm to one dimensional 
input data. The parallel execution of several OeSNN instances for processing multivari-
ate data in each dimension entails several limitations which affect the performance of the 
model in terms of runtime and the identification of complex outliers. In order to eliminate 
these limitations or to minimize them in their manifestation, we examine in the following 
an efficient modeling technique for multidimensional Gaussian Receptive Fields. It is sum-
marized at the end of this subsection with points 1. to 4.

We use multidimensional Gaussian distribution functions on multidimensional clus-
ters Ci , which we obtain from the input data via a k-Means clustering. For the two-
dimensional case the clustering algorithm is illustrated in the upper left-hand side of 



1385Machine Learning (2022) 111:1377–1408 

1 3

Fig. 4. We do the clustering based on the work of Panuku and Sekhar (2008) in which 
they model a defined number of multivariate Gaussian distributions over the incom-
ing data. The placement of the receptive fields differs here from the one-dimensional 
variant of the OeSNN-UAD architecture. In contrast to the OeSNN-UAD architecture, 
the placement of the receptive fields is not evenly distributed over the incoming data, 
instead it is placed specifically in those regions where clusters appear (cf. Fig. 1). This 
approach can significantly reduce the required number of receptive fields on the input 
data, which in turn yields a positive effect on the runtime of the algorithm.

The excitation factor of the following input neurons is calculated for each input neu-
ron in the same manner as in the one-dimensional approach via the normal distribu-
tion function of the respective cluster Ci , as it is illustrated in Fig. 4 in the upper right-
hand side. It is defined, as shown in Eq. (5), by the center �i ∈ ℝ

n and the covariance 
Σi ∈ ℝ

n×n of the cluster Ci.

From the excitation factor fCi
(x) the spike time ti is calculated by

as it is shown in Fig. 4 by moving from the upper right-hand side to the lower left-hand 
side. However, the variant as proposed by Panuku and Sekhar (2008) is primarily intended 
for an offline setting, in which the receptive fields are initialized in an initial training phase. 
In order to preserve the online character of the anomaly detection component, both the 
k-Means clustering and the calculation of the covariance of the clusters for each incoming 
data point are calculated recursively.

For the clustering of the incoming data, an online-capable version of the Lloyd 
k-Means algorithm (King 2012) is used, which can perform the adjustment of the clus-
ters in a streaming based application with constant runtime. Here, all Ci clusters are 
initiated by the incoming data and all further data points are assigned to the existing 
cluster with the smallest Euclidean distance.The associated cluster center �i as well as 
the covariance Σi is recursively estimated for each data point �t belonging to the cluster 
using Eqs. (7) and (8).

(5)fCi
(x) = exp

[

−
1

2

(

� − �i

)T
Σ−1
i

(

� − �i

)

]

(6)ti = 1 − fCi
(x)

Fig. 1  Visualization of the estimated clusters (k = 2) using the online version of the GRF algorithm for a 
two-dimensional time series of the Numenta dataset with anomaly



1386 Machine Learning (2022) 111:1377–1408

1 3

In summary the calculation of the encoding of multivariate data streams is done via the 
following iterative algorithm. It differs from Maciąg et  al. (2021) not only in the usage 
of multivariate Gaussian distributions but even more by the clustering of the data points, 
which makes it possible to reduce the number of Gaussian distributions and obtain better 
results: 

1. Calculate a predefined number of multivariate clusters Ci with center �i and covariance 
matrix Σi via k-Means clustering with the data already obtained.

2. Place a multidimensional Gaussian distribution with mean �i and covariance matrix Σi 
over each of the clusters Ci.

3. For each incoming data point xt calculate the excitation factors fCi
(xt) for each of the 

cluster Ci according to Eq. (5).
4. Assign each incoming data point xt to the nearest cluster Ci and update the mean �i and 

covariance matrix Σi of this cluster as in Eqs. (7) and (8) and start again with 1.

In order to verify the effectiveness of the changes made for the online-capable opera-
tion in comparison to the standard algorithms, we execute both versions of the algo-
rithms for a signal with 10,000 data points and compare the results.

In a subsequent step, as shown in Fig. 2, we determine the absolute distances (Man-
hattan distance) of the vector or matrix components between the cluster center �i and 
the estimated covariance matrices Σi for the time series shown in Fig. 1.

We observe that both the cluster center and the covariance matrices asymptotically 
converge to the results of the offline algorithm. The estimated cluster center converge 
significantly faster than the covariance matrices. Nevertheless, in the evaluation of the 
algorithm, we could not detect any negative influence due to the slightly inaccurate 
covariance estimation.

(7)�i =�i,l = �i,l−1 +
1

l

(

�t − �i,l−1

)

(8)Σi =Σi,l =

(

1 −
1

l

)(

Σi,l−1 +
1

l

(

�t − �i,l−1

)(

�t − �i,l−1

)T
)

Fig. 2  Comparison of the convergence properties of cluster centers (a) and cluster covariances (b) of the 
online-capable adaptation and the offline reference algorithm according to Panuku and Sekhar (2008)



1387Machine Learning (2022) 111:1377–1408 

1 3

4.4  Learning capabilities with dynamic weight adaption

The architecture by Maciąg et al. (2021) uses a learning method adopted from Wysoski 
et  al. (2006) in order to calculate the networks weights. This online learning method 
uses the ranking of the occurring spikes to update the weights. The weight change is 
calculated with

where �wji is the change in weight wji between neuron j in the input layer and neuron i in 
the output layer. The constant mod represents the modulation factor, which is in the range 
of (0, 1). The order(j) parameter corresponds to the index for the neuron j in a list sorted 
by spike time. The exact time information is discarded and not included in the calculation 
of the weights. Wang et al. (2017) published an improved Rank-Order-Based learning pro-
cedure for SNN, which is called SpikeTemp. In SpikeTemp the spike time is used directly 
to update the weights. Equation (10) describes the change in the weights wji of the synapse 
that connects a neuron j to an output neuron i, where tj represents the spike time of the 
neuron j and � is a constant scaling factor used as a hyperparameter (see Sect. 5.3) (Wang 
et al. 2017).

In this learning procedure, the available time information is used directly and not only 
the order of the spike times as in Eq. (9), so that the time interval influences the weight 
change. When using the Rank-Order-Based approach of Wysoski et al. (2006) the learn-
ing algorithm only provides a constant weight update. Therefore, the postsynaptic potential 
(PSP) for this output neuron is always identical for an input pattern that may have differ-
ent spike times but produces the same fire order. With the SpikeTemp approach, different 
spike times always lead to different weight changes and a different PSP as determine in Eq. 
(11). Consequently, the weight changes and the PSP correlate better with the input pattern, 
which contributes to improved learning performance. Since the SpikeTemp approach also 
eliminates the need to order all spikes in a window, it also reduces the computational effort 
(Wang et al. 2017).

The following steps describe the customized learning procedure with SpikeTemp for our 
online evolving SNN model. It is also illustrated in the lower right hand side of the over-
view picture Fig. 4 explaining our model. 

1. For each input value an output neuron is generated as described in Maciąg et al. (2021). 
However, the weights to the input neurons are now initialized to a constant value. Wang 
et al. (2017) determined the experimental value of 0.1 for a SNN classification model. 
We change this constant initialization factor for the online evolving SNN to a hyperpa-
rameter in the model, using 0.1 as a reference value (see Sect. 5.3). The weight change 
from Eq. (10) is then added to the initial base weight.

(9)�wji = modorder(j)

(10)�wji = exp

(

−
tj

�

)

(11)PSP(i, t) =
∑

j∈[1..N]

wji ⋅ exp

(

−
tj

�

)



1388 Machine Learning (2022) 111:1377–1408

1 3

2. The PSP for an additional neuron in the output layer is now calculated using Eq. (11). 
The calculation of the neuron fire threshold remains unchanged and is adapted from the 
architecture of Maciąg et al. (2021).

Fig. 3  Calculation of the outlier score: Input and the prediction by the OeSNN model (left); The resulting 
quadratic reconstruction error (middle); The Outlier score given by the complement of the Q-function on 
the squared reconstruction error (right)

dynamic output
neuron repository

Gaussian receptive field

cluster 

ex
ci

te
m

en
t -

 
w

he
re

 
cluster

cluster

cluster

 - 
co

or
di

na
te

 - coordinate

update clusters for
each incoming 

Online evolving Spiking Neural Network

input
neurons

up
da

te
re

po
si

to
ry

No anomaly
detected

classify
anomaly

error
correction

sp
ik

e 
tim

es
 - 

cluster 

Fig. 4  Illustration of multivariate online evolving SNN model (OeSNN-D)



1389Machine Learning (2022) 111:1377–1408 

1 3

3. The addition of the new output neuron to the output neuron repository remains 
unchanged to Maciąg et al. (2021). If the similarity to one of the existing output neurons 
is greater than a predefined threshold, the newly added output neuron is merged with 
the most similar output neuron, otherwise the output neuron is added to the repository.

4.5  Anomaly detection using a continuous outlier score

The architecture of Maciąg et  al. (2021) uses the difference between the prediction and 
the actual value and compares the deviation to the previously determined deviations. As 
soon as this exceeds a user defined threshold value, the data point is classified as an outlier. 
However is not unusual to have occasional jumps in a time series, which lead to prediction 
errors, because of a slight time shift between prediction and input data (see Fig.  3). To 
handle these scenarios we replace the outlier detection function by the Numenta scoring 
function of Ahmad et al. (2017). This makes it possible to determine for each data point by 
use of the reconstruction error a probability with which a data point belongs to the outlier 
category. For this purpose, the squared reconstruction error (see Fig. 3 middle) for each 
step t is assumed to be a representation of a continuous normal distribution function. To 
calculate the distribution the continuous mean �t and variance �t are calculated based on 
the squared reconstruction error. The exact procedure is shown in Fig. 3. The green area 
marks the initialization phase of the algorithm.

The left picture shows the time series and the prediction of our new algorithm. Here the 
anomaly consists of a missing amplitude starting at the index 1200. From this the squared 
reconstruction error is calculated, which is shown in the center. The outlier probability is 
given by the complement of the Q-function on the squared reconstruction error as shown 
in Eq. (12):

The variable 𝜇t represents the mean value of the squared reconstruction error of a defined 
time window W. The mean �t and the variance �t are calculated using the Welford online 
algorithm (Welford 1962). The outlier score in Eq. (12) is calculated for each dimen-
sion separately on the corresponding reconstruction error and is then combined into one 
score by just taking the highest value of the outlier score over all dimensions at time step 
t. Replacing the outlier detection with the Numenta scoring function allows our newly 
adapted model to output a continuous outlier probability, whereas the architecture of 
Maciąg et al. (2021) only outputs a binary classification of outliers. However, when com-
paring our algorithm with other anomaly detection algorithms in Sect. 5 we clearly need 
to identify whether a single multivariate data point belongs to an anomaly or not, so that a 
binary classification is needed. We therefore classify every data point with an outlier score 
above the threshold of 0.8 as an outlier and every data point with an outlier score below 0.8 
not as an outlier as it is also indicated in Fig. 3 (right).

Papadimitriou et al. (2005) use the number of eigencomponents k as an anomaly indica-
tor in the SPIRIT algorithm to determine the outlier class. To achieve a better comparabil-
ity between the reference algorithm and the modified OeSNN, the outlier score in Eq. (12) 
is also used in the SPIRIT data processing pipeline. For this purpose, the reconstruction 
error per dimension is used as an input. The outlier scores of the individual dimensions are 
then merged into one outlier score using the respective maximum value, which makes both 
models easily comparable.

(12)Lt = 1 − Q

(

𝜇t − 𝜇t

𝜎t

)

.



1390 Machine Learning (2022) 111:1377–1408

1 3

5  Experimental evaluation

5.1  Overview of models

For the following evaluation of the performance of algorithms, we combined the adjust-
ments in Sects. 4.3, 4.4 and 4.5 of the initial algorithm according to Maciąg et al. (2021) 
incrementally as shown in Table 1. Therefore we address all models based on the initial 
OeSNN-UAD algorithm with prefix OeSNN. In addition, we add letters A-D consecutively 
according to the integrated extensions. Here the model OeSNN-A represents the version 
in the paper of Maciąg et al. (2021), which is extended with each following letter by the 
adaptations shown in Table 1. For a general overview of our final model OeSNN-D we also 
refer to Fig. 4.

The models were implemented with Cython (Behnel et al. 2011). Wrapping the exter-
nal C++ library as a Python extension allows an accelerated execution compared to a 
Python native implementation, which is especially beneficial for online and real-time data 
processing.

5.2  Evaluation benchmark

We use the Numenta Anomaly Benchmark (NAB) (Ahmad et al. 2017) to analyze the pre-
sented modifications of the OeSNN and to identify strengths and weaknesses of the adjust-
ments. NAB consists of over 50 labeled real and artificial time series. All data including 
a comprehensive documentation are available as open source.1 Much of the data consists 
of real time series data and comes from a variety of sources such as AWS server metrics, 
Twitter volumes, web click metrics, traffic data and more. These time series are mainly uni-
variate records, which means that they are not suitable for our multivariate comparison and 
evaluation. Furthermore, the synthetic dataset contains only a few anomaly types. In order 
to allow a differentiated comparison of the performance of the different OeSNN modifica-
tions on the largest possible number of different outlier species, we added additional outlier 
types to the synthetically generated part of the Numenta dataset. Our extended benchmark 
data set, which is also shown in appendix A.1, contains outliers of the following catego-
ries: signal dropouts, signal drift, lower amplitude, higher amplitude, cycle dropout, single 
peaks, change of frequency, increase in noise and increase in amplitude. For the evaluation 
of multivariate time series the synthetic datasets are combined so that one outlier is present 
in one dimension, while the other dimensions use the anomaly-free synthetic signal.

Table 1  Model overview

Function OeSNN-A OeSNN-B OeSNN-C OeSNN-D

Numenta outlier score (see Sect. 4.5) No Yes Yes Yes
Multivariate GRF (see Sect. 4.3) No No Yes Yes
SpikeTemp learning (see Sect. 4.4) No No No Yes

1 https:// github. com/ numen ta/ NAB.

https://github.com/numenta/NAB


1391Machine Learning (2022) 111:1377–1408 

1 3

5.3  Hyperparameter optimization

In the literature a wide range of different algorithms for the optimization of hyperparam-
eters is presented (Yu and Zhu 2020; Bergstra et  al. 2011). Many of these algorithms, 
such as grid search, use a relatively naive approach for the selection of hyperparameter 
optimization, which means that the effort for the optimization of the given parameters for 
high dimensional optimization problems can only be realized with massive computational 
resources. Furthermore, since the number of outliers in both the given artificially generated 
and real data belong to the minority class, it is not possible to fall back on a large data pool 
for hyperparameter optimization here. Therefore, it cannot be guaranteed that there is no 
overfitting of the parameters to a certain type of outlier, which could influence the generali-
zation ability of the algorithms. In addition, in many real-world applications, outliers of the 
signal are not present for optimization, which presents further difficulties.

Due to the high number of hyperparameters of the OeSNN (see Appendix A.2) as well 
as the low number of test and validation data, we present in the following sections a tech-
nique to effectively select the hyperparameter candidates as well as an approach to opti-
mize the hyperparameters without prior knowledge of the signal-specific outlier types.

5.3.1  Generation of validation data

In order to avoid overfitting of the model due to the small size of the data instances of the 
NAB dataset and to enable a method for optimizing the algorithm without prior knowledge 
of the signal-specific outlier types we investigate a method of optimization using only an 
artificially generated anomaly. For this purpose, we replace in one dimension of the anom-
aly-free signal a window slightly larger than one cycle with an artificially generated noise 
as illustrated in Fig. 5.

For the optimization of the model, we use the reconstruction error of the predicted sig-
nal on the artificially generated anomaly signal and the anomaly-free signal as a quality 
measure. In comparison to an optimization with only one real outlier type, this method 
provides consistently comparable or better generalization results (see A.5).

5.3.2  Efficient hyperparameter selection

In order to reduce the required number of hyperparameters to be tested and to minimize the 
required time for hyperparameter optimization we used the tree-structured parzen estima-
tor (TPE) approach (Bergstra et al. 2011, 2013). We implement the optimization with the 
Python framework Optuna (Akiba et al. 2019). Here we optimize the hyperparameters in 
1500 trials as shown in Table 2, of which 20% are initialized with random parameters. For 
the selection of the next parameters, 50 possible parameter configurations are randomly 
chosen per iteration, which is represented by the EI-candidates value in Table 2. On the 

Fig. 5  Signal of the Numenta Anomaly Benchmark without anomaly (left) and the corresponding generated 
data (right) with inserted artificial noise, which is used for hyperparameter optimization



1392 Machine Learning (2022) 111:1377–1408

1 3

basis of these configurations the expected improvement of the model is calculated. We run 
all iterations of the optimization algorithm sequentially on one thread to obtain reproduc-
ible results. We also initialize a random generator, which is used for the selection of the 
parameter candidates, with a constant seed. We consider the selection of the optimal hyper-
parameters ( �∗ ) as an optimization problem with constraint (cf. Eqs. (13) and (14)). The 
aim is to minimize the mean squared error between the reconstruction output ( ̂�i ) of the 
OeSNN algorithm with the artificially generated outlier ( ̃�i ) as input and the original signal 
without outlier ( �i ) under the constraint that for less than 1% of the data instances k none of 
the output neurons fires. Constraint Eq. (14) is necessary, since otherwise the best hyperpa-
rameters are found by simply reproducing the original data, which leads to an overfitting. 
Instead of 1% any small value can be used to prevent overfitting.

We perform this optimization task for each of the described OeSNN for the two-dimen-
sional case. The respective search space for the hyperparameters can be looked up in the 
appendix A.2. The optimization results are then transferred to all other dimensions. Since 
the defined optimization criterion does not allow direct optimization of the window size 
parameter of the outlier score, we adjusted this parameter manually after the optimization. 
Here we selected a value as a trade off between a high sensitivity to changes in the signal 
and an overall low variance of the score.

5.4  Model evaluation

To evaluate the algorithms for detecting anomalies in a streaming context we perform four 
quantitative benchmarks for the created variations of the OeSNN algorithm. They consist 
of a runtime analysis of the models, which will be examined in the following with regard 
to an increasing number of data points as well as an increasing number of dimensions. In 
addition, we investigated the anomaly detection with regards to the suitability for detecting 
anomalies in high-dimensional data as well as the detection of various types of anomalies. 
The exact configuration of the benchmarks is shown in Table 3.

To estimate the performance of the OeSNN in the context of online anomaly detection 
algorithms we used the SPIRIT algorithm according to Papadimitriou et al. (2005) as refer-
ence algorithm. In order to compare the OeSNN-D algorithm with deep learning methods 
as in Munir et al. (2019), we also evaluated the OeSNN-D algorithm on a different dataset, 

(13)
𝜃∗= argmin𝜃

1

k

∑k

i=1

�

�̂i − �i

�2

= argmin𝜃
1

k

∑k

i=1

�

OeSNN
�

𝜃, �̃i
�

− �i

�2

(14)subject to tnot fired < 0.01 ⋅ k

Table 2  Parameters of the TPE algorithm for hyperparameter search

Parameter Description Value

Trials Number of iterations of the TPE algorithm 1500
Startup-trials Number of initially randomly determined parameters 300
EI-candidates Number of candidates for the calculation of the expected improve-

ment
50



1393Machine Learning (2022) 111:1377–1408 

1 3

the Yahoo Webscope dataset and compare it to the results obtained in Munir et al. (2019). 
For all experiments the hyperparameters, as determined in the previous section, are pro-
vided in the appendix A.3.

Selecting a suitable metric for the evaluation of the anomaly recognition rate of the 
algorithms is an important component. The goal is to select a suitable metric that is invari-
ant with respect to an imbalance between normal data points and outliers and provides a 
suitable basis for comparing the model with other algorithms. For the quantitative determi-
nation of the performance of the algorithms we use the F1 score [Eq. (15)] on the bench-
mark datasets. Although it is used much less frequently in the scientific literature than the 
accuracy score (Hossin and Sulaiman 2015), it is especially suitable for classifications with 
unequally weighted classes (Jeni et al. 2013). In addition, the F1 score can be found in a 
number of other publications in the field of anomaly detection (Macia̧g et al. 2021; Däu-
bener et al. 2019; Munir et al. 2019), which facilitates a comparison of the algorithms:

The F1  score is calculated on the basis of the fraction of correctly predicted positive 
instances from all positive predictions P (Precision) and the fraction of correctly predicted 
positive instances from all positive instances R (Recall) (Hossin and Sulaiman 2015):

where tp are the correctly classified outliers, fn unrecognized outliers and fp data instances 
which were incorrectly classified as outliers.

5.5  Experimental determination of runtimes

To analyze runtime, we make use of an experimental evaluation instead of a theoreti-
cal analysis of the runtime of the algorithm via O-notation. To ensure the comparability 
of the results, we executed the tests sequentially one after the other on a defined system 
(i9-9900k, 32 GB DDR4 RAM, Ubuntu 20.04.1 LTS) without any additional load that 
could have a negative impact on the results. In order to obtain the most precise results 
possible, the selection of the timer module also has an important role. Special attention 
should be paid to a high temporal resolution. For this purpose, we use the process_time_ns 

(15)F1 = 2 ⋅
P ⋅ R

P + R

(16)Precision(P) =
tp

tp + fp

(17)Recall(R) =
tp

tp + fn

Table 3  Configuration of benchmarks to evaluate the algorithms

Experiment Dataset Data points Dimension

Runtime data points Randomly generated 103–106 2
Runtime dimensionality NAB ∼ 2500 2–4
Anomaly detection dimensionality NAB ∼ 2500 2–4
Anomaly detection types NAB ∼ 2500 2–4



1394 Machine Learning (2022) 111:1377–1408

1 3

function from standard Python library (Stinner 2017) which has the highest temporal reso-
lution with 1 nano second. To compensate the inaccuracies due to the parallel occurring 
load or further inaccuracies in the determination of the runtime, all experiments for the 
analysis of the running time are performed with a sample size of m = 20.

5.5.1  Influence of number of data points

Based on the tests performed regarding the change in runtime with increasing number of 
data points, it can be determined that the OeSNN-D version of the algorithm scales best 
with new incoming data points when only 2 clusters are required for the distribution of the 
multivariate Gaussian recipe fields as shown in Fig. 6. The runtime of the algorithm for 
106 data points is only 40% of that of OeSNN-A. Also compared to the SPIRIT reference 
algorithm as well as the other variants of the OeSNN, the runtime of the algorithm is in a 
very good range. Especially noticeable is the improvement of the OeSNN from variant C to 
variant D. The Spiking Neural Network with preceding multivariate GRF requires a mul-
tiple of the runtime of the final model. This reduction of the runtime is described by Wang 
et al. (2017) and is also reinforced by the reduced number of input neurons.

Moreover, we observe that the adapted scoring system, which enables a real-value clas-
sification of outliers, can achieve a significant improvement in runtime (cf. OeSNN-A and 
OeSNN-B).

5.5.2  Influence of dimensionality of the input data

As the dimensionality of the data increases, the number of processing points also increases, 
which makes preserving real-time capability almost impossible. Among the algorithms as 
well as their variations we could prove that the variants (OeSNN-A; OeSNN-B) that allow 
processing of multivariate data only by executing several instances with increasing dimen-
sionality do not benefit from the correlation of the data dimensions (see Fig. 7). With the 
OeSNN-B variant of the algorithm, which uses an adapted online-capable variant of the 
Numenta outlier score. However, we could observe a significant improvement compared to 
variant OeSNN-A.

All other variants of the algorithm (OeSNN-C, OeSNN-D), which are based on cod-
ing multivariate data using the multidimensional GRF, scale significantly better with 

Fig. 6  Runtime of the investigated algorithms with increasing number of data points



1395Machine Learning (2022) 111:1377–1408 

1 3

increasing dimensionality as can be seen from Fig. 7. The runtime of the OeSNN-D from 
the one-dimensional to the twenty-dimensional input signal increases by a factor of about 
3.5, whereas the runtime of the initial OeSNN-A increases by a factor of 21.

5.6  Anomaly detection of different algorithms

In addition to the runtime, a high detection rate of anomalies in time series is a fundamen-
tal requirement. In the following, this will be analyzed and discussed with regard to the 
general detection rate for several dimensions and the average detection rate of different 
types of anomaly in the NAB dataset. For the evaluation, we used the F1 score described 
in Sect. 5.4. The complete results of the evaluation are provided in Appendix A.5. Further-
more in order to evaluate the new OeSNN-D algorithm on a different dataset we inves-
tigate in Sect.  5.6.3 its performance on the Yahoo webscope dataset, which consists of 
four groups of benchmark datasets A1, A2, A3, A4. These datasets are also investigated in 
Munir et al. (2019) with a deep learning algorithm.

5.6.1  Anomaly detection and increasing dimensionality of the data

Our analysis show that the average F1 score of the OeSNN-D model for the tested 
NAB dataset with dimensions (2–4) gives better results than all compared models (see 
Table 4). Remarkable is the increase of the average F1 score compared to the initial model 

Fig. 7  Runtime of the investigated algorithms with increasing number of dimensions

Table 4  Average F1 score of the 
models for detecting anomalies 
across all anomaly types of the 
NAB dataset

Highest F1 score values are given in bold

Dimension F1 score over all time series of the NAB

SPIRIT OeSNN-A OeSNN-B OeSNN-C OeSNN-D

1 – 0.22 0.47 0.26 0.47
2 0.42 0.22 0.44 0.61 0.61
3 0.32 0.22 0.44 0.60 0.62
4 0.31 0.22 0.44 0.57 0.62
Average 0.35 0.22 0.45 0.51 0.58



1396 Machine Learning (2022) 111:1377–1408

1 3

(OeSNN-A) by 0.36, due to the different outlier score calculation. Furthermore, we show 
that by coding the multidimensional data for the models OeSNN-C and OeSNN-D, the rec-
ognition rate of the algorithms can be further improved.

Comparing the models OeSNN-B, OeSNN-C and OeSNN-D as in Table 4, we notice 
that the F1 score increases with each version. The results in Table  4 are in some cases 
also astonishing since with the implementation of the GRF the higher dimensional cases 
do have a better F1 score than the one dimensional case. The reason is that several out-
lier types as for example cycle dropouts and change of frequency perform really bad when 
calculating the F1 score in the one dimensional case for OeSNN-C and OeSNN-D (see 
Sect. A.4). But they perform really good in the higher dimensional case, when the anomaly 
occurs only in one and not in all dimensions. In this case the multidimensional data points 
of the anomalies lie in another region than the normal data points, which makes it easier 
for the GRF to detect them. This of course shows that our OeSNN-D model has its real 
strength in the multivariate case.

5.6.2  Detection of different outlier types in the NAB dataset

As shown in Table 5, the OeSNN-D model achieves the highest F1 score for most anomaly 
types in the NAB dataset. This includes all categories except for the outlier types cycle 
dropouts, increase in noise and increase in amplitude (see Appendix A.5). However, for 
the categories cycle dropouts and increase in amplitude, the model is with a deviation of 
0.01 and 0.05, respectively, very close to the highest achieved F1 score. We identify a defi-
cit of the OeSNN-D model compared to the reference algorithm (SPIRIT) in the outlier 
category increase in noise.

As previously with the analysis of the recognition rate in Sect. 5.6.1, we also see a step-
by-step improvement with increasing dimensionality of the data for the models OeSNN-C 
and OeSNN-B, whereby we could also prove the positive influence of the individual modi-
fications on the performance of the final model (OeSNN-D). For the case of increase in 
noise the principal component in the SPIRIT algorithm is not able to converge, therefore 
the algorithm detects an anomaly. Whereas in the OeSNN algorithms the increasing noise 
oscillates around the mean value of a Gaussian receptive field which leads to similar spike 

Table 5  Average F1 score of the models for detection of the anomaly types of the NAB dataset averaged 
over the dimensions 2-4

Highest F1 score values are given in bold

Anomaly F1 score over all dimensions of a time series

SPIRIT OeSNN-A OeSNN-B OeSNN-C OeSNN-D

Signal dropouts 0.65 0.01 0.62 0.54 0.78
Signal drift 0.41 0.02 0.51 0.66 0.73
Lower amplitude 0.15 0.60 0.62 0.69 0.95
Higher amplitude 0.35 0.87 0.78 0.90 0.90
Cycle dropout 0.12 0.26 0.57 0.67 0.66
Single peaks 0.00 0.09 0.00 0.16 0.16
Change of frequency 0.50 0.16 0.46 0.46 0.51
Increase in noise 0.92 0.00 0.00 0.09 0.09
Increase in amplitude 0.04 0.01 0.49 0.42 0.44



1397Machine Learning (2022) 111:1377–1408 

1 3

values such that no anomaly is detected.This also illustrates the different nature of both 
algorithms. Whereas SPIRIT detects outliers, whenever the principal component of a mul-
tivariate data stream changes, our OeSNN-D algorithm detects outliers if the clusters of 
multidimensional datasets change in length or form.

5.6.3  Anomaly detection in the Yahoo Webscope dataset

The main focus of the newly developed anomaly detection algorithm OeSNN-D is to detect 
online anomalies in multivariate time series of periodic or seasonal processes i.e. in pro-
duction processes. The results in Sect. 5.6.2 show that the performance of the OeSNN-D 
algorithm is very good if structural anomalies are considered. In this section we evalu-
ate the Yahoo Webscope dataset, a publicly available data set released by Yahoo Labs. It 
consists of 367 real and synthetic time series with point anomaly labels. Each time series 
contains 1420 to 1680 instances. It is divided into four sub-benchmarks namely A1 Bench-
mark, A2 Benchmark, A3 Benchmark and A4 Benchmark. Most of the anomalies in the 
Yahoo Webscope datasets are point anomalies, which means there is only one anomalous 
time series index in a certain neighbourhood. The Yahoo Webscope dataset was also con-
sidered in Munir et al. (2019), where deep learning methods were applied to detect anoma-
lies. We evaluated the anomalies of the Yahoo Webscope dataset as it was done in Munir 
et al. (2019) by determining the hyperparameter for every sub benchmark A1, A2, A3, A4 
seprately (see Appendix A.3) the results can be seen in Table 6.

Although the F1 score of the OeSSN-D algorithm can not compete with the deep learn-
ing models of DeeptAnT, it is obtains most of the time better results than other none deep 
learning algorithms. Since the main focus of our algorithm lies in the online detection of 
anomalies without a training phase, the results are very promising also for this data set.

However, since most of the anomalies in the Yahoo Webscope dataset are point anom-
alies, a separate algorithm for point anomalies can be developed and, in the best case, 
put into parallel operation with the OeSNN-D algorithm. Most point anomalies can be 
detected by an algorithm which calculates the differences of successive times series values 
�xt = xt − xt−1 in a certain sliding window w1 with length |w1| and compare them to the 
directly following differences of a very small sliding window w2 of length |w2| . Thus,

Table 6  Average F1 score for the Yahoo Webscope dataset in comparison with the results in Munir et al. 
(2019)

Table entries marked with * are the results of Munir et al. (2019)

Data
category

Yahoo
EGADS*

Twitter 
Anomaly 
Detection,
� = 0.05*

Twitter 
Anomaly 
Detection,
� = 0.2*

DeepAnT
(CNN)*

DeepAnT
(LSTM)*

OeSNN-D

A1 0.47 0.48 0.47 0.46 0.44 0.405
A2 0.58 0 0 0.94 0.97 0.451
A3 0.48 0.26 0.3 0.87 0.72 0.110
A4 0.29 0.31 0.34 0.68 0.59 0.147



1398 Machine Learning (2022) 111:1377–1408

1 3

A point anomaly is detected whenever

where �w1
 denotes the standard deviation and w1 the mean of w1 . The parameters �, |w1| and 

|w2| are hyperparameters, which are set to � = 4.5 , |w1| = 32 and |w2| = 4 . Evaluating the 
Yahoo Webscope with this algorithm detects most of the point anomalies. The reuslts are 
shown in Table 7.

6  Conclusion

In this paper we introduce an online capable algorithm to efficiently detect anomalies in 
multivariate time series. We therefore use an online Spiking Neural Network architecture 
with a data efficient technique for coding higher-dimensional data using Multidimensional 
Gaussian Receptive Fields (GRF) as well as advanced learning methods for improved mul-
tidimensional anomaly detection.

In the evaluation of several versions of multidimensional online Spiking Neural Net-
works (OeSNN-A; OeSNN-B; OeSNN-C; OeSNN-D) using the Numenta Anomaly 
Benchmark (NAB) and the Yahoo Webscope dataset we prove that several modifications 
of the initial OeSNN algorithm according to Maciąg et al. (2021) significantly improve the 
general suitability for outlier detection in higher dimensional ( n ≥ 2 ) data and the detection 
of specific outlier types while requiring consistently less runtime than the initial algorithm. 
In addition, we determine a better detection result for almost all outlier types compared to 
the reference SPIRIT algorithm. Our new algorithm shows deficits only in the outlier types 
increase in noise and individual peaks. Individual peaks or point anomalies are hard to 
detect with our algorithm, but they can be detected with a different algorithm as we showed 
in Sect. 5.6.3.

To assess the suitability of the adapted OeSNN further, we will investigate more com-
plex signal types from different application domains. Thus, we also check whether our 

w1 ={�xt−|w1|−|w2|
,�xt−|w1|−|w2|+1

, ..., xt−|w2|
} and

w2 ={�xt−|w2|
,�xt−|w2|+1

, ..., xt}.

|𝛥xt − w1| ≥ 𝜎w1
⋅ 𝜖 and |

∑

v∈w2

v| < |𝜎w1
⋅ (𝜖 − 0.5)|,

Table 7  Average F1 score for the point anomaly detector on the Yahoo Webscope dataset in comparison 
with the results in Munir et al. (2019)

Table entries marked with * are the results of Munir et al. (2019)

Data
category

Yahoo
EGADS*

Twitter 
Anomaly 
Detection,
� = 0.05*

Twitter 
Anomaly 
Detection,
� = 0.2*

DeepAnT
(CNN)*

DeepAnT
(LSTM)*

OeSNN-
D 
and Point 
Anomaly
Detector

A1 0.47 0.48 0.47 0.46 0.44 0.405
A2 0.58 0 0 0.94 0.97 0.543
A3 0.48 0.26 0.3 0.87 0.72 0.639
A4 0.29 0.31 0.34 0.68 0.59 0.609



1399Machine Learning (2022) 111:1377–1408 

1 3

algorithm meets the requirements of Wu and Keogh (2021). The authors there question 
the usage of deep learning models for anomaly detection in time series. That is why we 
believe that spiking neural networks and specifically our OeSNN-D model might be one 
of the best ways to detect anomalies, which are not trivial and can be weed out with two 
lines of code, in multivariate streaming times series. As pointed out in this paper and in 
Wu and Keogh (2021) as well, a lot of the point anomalies of the Yahoo Webscope data-
set can be detected with a really simple algorithm. The focus in this paper is however to 
detect structural changes in multivariate times series and also to categorize the different 
type of anomalies whether they are detectable by our algorithm or not. In order to further 
strengthen the online capability of our algorithm the number of required hyperparameters 
must be reduced in further work or some new insights for transferring existing hyperpa-
rameters between different application domains must be established.

A Appendix

A.1 Signal categories of the extended Numenta Anomaly Benchmark

For adding additional anomalies which are not contained in the original NAB dataset, we 
used the time series of the NAB dataset and modified it in an adequate way. The time series 
signal dropouts, higher amplitude, lower amplitude and cycle dropout are from the original 
NAB dataset. For signal drift we added a linear function to the original time series from 
a certain time step onwards, for single peaks we added a few peaks to the time series, for 
change of frequency we divided the frequency of the original NAB time series by two from 
a certain time step onwards, for increase in noise we added an additional gaussian noise to 
the original NAB dataset and for increase in amplitude we added a rectangle function with 
increasing amplitude from a certain time point onwards (Fig. 8).

Fig. 8  Signal categories of the extended Numenta Anomaly Benchmark



1400 Machine Learning (2022) 111:1377–1408

1 3

A.2 Hyperparameter search space

See Table 8.

A.3 Determined hyperparameters for the evaluation of the datasets

See Tables 9, 10, 11, 12, 13 and 14.

Table 8  Hyperparameter search space with p as number of data points for a signal period

Parameter Search Description
Space

Wsize [NIsize, 4p] Input window size
InitPhase [NIsize, 4p] Initialization time steps
NIsize [1, p) Number of input neurons
NOsize [1, p) Maximum number of output neurons
sim (0, 1] Similarity threshold value to merge output neurons
mod (0, 1) Modulation factor for the Rank-Order-Based learning
C [0, 1] Output neuron activation factor
errorCorrection [0, 1] Correction factor for the deviating prediction
anomalyFactor (1, 20) Threshold value to classify an anomaly
scoreWindowSize [1, 4p] Window size for the Numenta outlier score
� [0.1, 10] Time constant of the SpikeTemp learning approach
weightBias [0, 0.5] Initial bias on weights between neurons

Table 9  Hyperparameters on the modified NAB dataset for the OeSNN-A model

Parameter Value Description

Wsize 157 Input window size
NIsize 13 Number of input neurons
NOsize 74 Maximum number of output neurons
sim 0.42 Similarity threshold value to merge output neurons
C 0.26 Output neuron activation factor
mod 0.63 Modulation factor for the Rank-Order-Based learning
errorCorrection 0.94 Correction factor for the deviating prediction
anomalyFactor 8.93 Threshold value to classify an anomaly

Table 10  Hyperparameters on the modified NAB dataset for the OeSNN-B model

Parameter Value Description

Wsize 165 Input window size
NIsize 10 Number of input neurons
NOsize 36 Maximum number of output neurons
sim 0.45 Similarity threshold value to merge output neurons
C 0.40 Output neuron activation factor
mod 0.73 Modulation factor for the Rank-Order-Based learning
errorCorrection 0.94 Correction factor for the deviating prediction
scoreWindowSize 10 Window size for the Numenta outlier score



1401Machine Learning (2022) 111:1377–1408 

1 3

Table 11  Hyperparameters on the modified NAB dataset for the OeSNN-C model

Parameter Value Description

InitPhase 59 Initialization time steps
NIsize 5 Number of input neurons
NOsize 8 Maximum number of output neurons
sim 0.23 Similarity threshold value to merge output neurons
C 0.15 Output neuron activation factor
mod 0.61 Modulation factor for the Rank-Order-Based learning
errorCorrection 0.94 Correction factor for the deviating prediction
scoreWindowSize 10 Window size for the Numenta outlier score

Table 12  Hyperparameter on the modified NAB dataset for the OeSNN-D model

Parameter Value Description

InitPhase 97 Initialization time steps
NIsize 3 Number of input neurons
NOsize 2 Maximum number of output neurons
sim 0.25 Similarity threshold value to merge output neurons
C 0.12 Output neuron activation factor
� 3.29 Time constant of the SpikeTemp learning approach
weightBias 0.25 Initial bias on weights between input and output neurons
errorCorrection 0.94 Correction factor for the deviating prediction
scoreWindowSize 10 Window size for the Numenta outlier score

Table 13  Hyperparameter on the 
Yahoo Webscope dataset for the 
OeSNN-D model

Parameter A1 A2 A3 A4

InitPhase 200 400 300 350
NIsize 65 100 94 92
NOsize 128 82 49 53
sim 0.021 0.009 0.069 0.060
C 0.026 0.163 0.074 0.126
� 2.9 2.2 1.8 1.6
weightBias 0.00 0.05 0.10 0.10
errorCorrection 0.96 0.94 0.70 0.71
scoreWindowSize 2 2 2 2

Table 14  Hyperparameters on the modified NAB dataset for the SPIRIT model

Parameter Value Description

scoreWindowSize 60 Window size for the Numenta outlier score



1402 Machine Learning (2022) 111:1377–1408

1 3

A.4 Anomaly detection results

See Tables 15, 16 and 17.

Table 15  Average F1 score to detect the anomaly types of the NAB dataset for one dimension

Highest F1 score values are given in bold

Anomaly SPIRIT OeSNN-A OeSNN-B OeSNN-C OeSNN-D

Signal dropouts – 0.01 0.64 0.00 0.86
Signal drift – 0.02 0.51 0.49 0.72
Lower amplitude – 0.61 0.66 0.00 0.96
Higher amplitude – 0.88 0.83 0.92 0.88
Cycle dropouts – 0.27 0.62 0.00 0.00
Single peaks – 0.09 0.00 0.18 0.11
Change of frequency – 0.15 0.46 0.00 0.04
Increase in noise – 0.00 0.00 0.31 0.20
Increase in amplitude – 0.00 0.49 0.48 0.47
Average 0.22 0.47 0.26 0.47

Table 16  Average F1 score to detect the anomaly types of the NAB dataset for two dimensions

Highest F1 score values are given in bold

Anomaly SPIRIT OeSNN-A OeSNN-B OeSNN-C OeSNN-D

Signal dropouts 0.70 0.01 0.61 0.72 0.77
Signal drift 0.34 0.02 0.50 0.75 0.74
Lower amplitude 0.46 0.60 0.61 0.96 0.93
Higher amplitude 0.19 0.86 0.76 0.92 0.89
Cycle dropouts 0.36 0.26 0.55 0.91 0.86
Single peaks 0.00 0.09 0.00 0.19 0.16
Change of frequency 0.64 0.16 0.46 0.54 0.66
Increase in noise 0.93 0.00 0.00 0.04 0.07
Increase in amplitude 0.13 0.01 0.49 0.45 0.41
Average 0.42 0.22 0.44 0.61 0.61

Table 17  Average F1 score to detect the anomaly types of the NAB dataset for four dimensions

Highest F1 score values are given in bold

Anomaly SPIRIT OeSNN-A OeSNN-B OeSNN-C OeSNN-D

Signal dropouts 0.58 0.01 0.61 0.70 0.76
Signal drift 0.44 0.02 0.50 0.66 0.73
Lower amplitude 0.00 0.60 0.61 0.88 0.95
Higher amplitude 0.45 0.86 0.76 0.90 0.91
Cycle dropouts 0.00 0.26 0.55 0.87 0.89
Single peaks 0.00 0.09 0.00 0.14 0.19
Change of frequency 0.40 0.16 0.46 0.65 0.67
Increase in noise 0.90 0.00 0.00 0.00 0.07
Increase in amplitude 0.00 0.01 0.49 0.30 0.44
Average 0.31 0.22 0.44 0.57 0.62



1403Machine Learning (2022) 111:1377–1408 

1 3

Fi
g.

 9
  

V
is

ua
liz

at
io

n 
of

 th
e 

ou
tli

er
 sc

or
e 

of
 th

e 
O

eS
N

N
 m

od
el

s a
nd

 th
e 

SP
IR

IT
 re

fe
re

nc
e 

al
go

rit
hm

 o
n 

th
e 

ad
ap

te
d 

N
A

B
 d

at
as

et
 w

ith
 fo

ur
 d

im
en

si
on

s



1404 Machine Learning (2022) 111:1377–1408

1 3

Fi
g.

 1
0 

 V
is

ua
liz

at
io

n 
of

 th
e 

ou
tli

er
 sc

or
e 

of
 th

e 
O

eS
N

N
 m

od
el

s a
nd

 th
e 

SP
IR

IT
 re

fe
re

nc
e 

al
go

rit
hm

 o
n 

th
e 

ad
ap

te
d 

N
A

B
 d

at
as

et
 w

ith
 fo

ur
 d

im
en

si
on

s



1405Machine Learning (2022) 111:1377–1408 

1 3

A.5 Visualization of the outlier scores for different algorithms

See Figs. 9 and 10. 

Author Contributions Dennis Bäßler, Tobias Kortus and Gabriele Gühring contributed in an equal way to 
this paper.

Funding Open Access funding enabled and organized by Projekt DEAL. No funding was received to assist 
with the preparation of this manuscript.

 Availability of data and material The data that support the findings of this study are available upon reason-
able request from the authors.

Code Availability The code that support the findings of this study are available upon reasonable request 
from the authors.

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

Ethics approval Not Applicable.

Consent for publication Upon acceptance we will either grant the Publisher an exclusive license to publish 
the article or will transfer copyright of the article to the Publisher.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Aggarwal, C. (2013). Outlier analysis. New York, NY: Springer-Verlag.
Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly detection for 

streaming data. Neurocomputing. https:// doi. org/ 10. 1016/j. neucom. 2017. 04. 070
Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparam-

eter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, Association for Computing Machinery, New York, NY, 
USA, KDD ’19, pp. 2623–2631, https:// doi. org/ 10. 1145/ 32925 00. 33307 01.

Amirshahi, A., & Hashemi, M. (2019). Ecg classification algorithm based on stdp and r-stdp neural net-
works for real-time monitoring on ultra low-power personal wearable devices. IEEE Transactions 
on Biomedical Circuits and Systems, 13(6), 1483–1493. https:// doi. org/ 10. 1109/ tbcas. 2019. 29489 
20.

Bear, M., Seidler, L., Engel, A., Held, A., Connors, B., Hornung, C., et al. (2016). Neurowissenschaften: Ein 
grundlegendes Lehrbuch für Biologie. Springer, Berlin Heidelberg: Medizin und Psychologie.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S., & Smith, K. (2011). Cython: The best of 
both worlds. Computing in Science & Engineering, 13(2), 31–39.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter optimization. In 
Proceedings of the 24th international conference on neural information processing systems, Curran 
Associates Inc., Red Hook, NY, USA, NIPS’11, pp. 2546–2554.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2017.04.070
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/tbcas.2019.2948920
https://doi.org/10.1109/tbcas.2019.2948920


1406 Machine Learning (2022) 111:1377–1408

1 3

Bergstra, J., Yamins, D., & Cox, DD. (2013). Making a science of model search: Hyperparameter optimi-
zation in hundreds of dimensions for vision architectures. In Proceedings of the 30th international 
conference on international conference on machine learning, Volume 28, JMLR.org, ICML’13, pp. 
I-115–I-123.

Bianco, A., Garcia Ben, M., Martínez, E., & Yohai, V. (2001). Outlier detection in regression models with 
arima errors using robust estimates. Journal of Forecasting,20. https:// doi. org/ 10. 1002/ for. 768.

Bing, Z., Meschede, C., Huang, K., Chen, G., Rohrbein, F., Akl, M., & Knoll, A. (2018a). End to End 
Learning of Spiking Neural Network Based on R-STDP for a Lane Keeping Vehicle. Proceedings—
IEEE international conference on robotics and automation pp. 4725–4732. https:// doi. org/ 10. 1109/ 
ICRA. 2018. 84604 82.

Bing, Z., Meschede, C., Röhrbein, F., Huang, K., & Knoll, A. C. (2018). A survey of robotics control based 
on learning-inspired spiking neural networks. Frontiers in Neurorobotics, 12, 35. https:// doi. org/ 10. 
3389/ fnbot. 2018. 00035.

Breunig, MM., Kriegel, HP., Ng, RT., & Sander, J. (2000). Lof: Identifying density-based local outliers. In 
Proceedings of the 2000 ACM SIGMOD international conference on management of data, association 
for computing machinery, New York, NY, USA, SIGMOD ’00, pp. 93–104. https:// doi. org/ 10. 1145/ 
342009. 335388, https:// doi. org/ 10. 1145/ 342009. 335388.

Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. arXiv: 1901. 03407.
Däubener, S., Schmitt, S., Wang, H., Bäck, T., peter, krause. (2019). Large anomaly detection in univariate 

time series: An empirical comparison of machine learning algorithms. In 19th Industrial conference on 
data mining ICDM 2019, Unknown.

Demertzis, K., Iliadis, L., & Spartalis, S. (2017). A spiking one-class anomaly detection framework for 
cyber-security on industrial control systems. In G. Boracchi, L. Iliadis, C. Jayne, & A. Likas (Eds.), 
Engineering applications of neural networks (pp. 122–134). Cham: Springer International Publishing.

Demertzis, K., Iliadis, L., & Bougoudis, I. (2019). Gryphon: A semi-supervised anomaly detection system 
based on one-class evolving spiking neural network. Neural Computing and Applications. https:// doi. 
org/ 10. 1007/ s00521- 019- 04363-x.

Fu, X., Luo, H., Zhong, S., & LIN L,. (2019). Aircraft engine fault detection based on grouped convo-
lutional denoising autoencoders. Chinese Journal of Aeronautics,32(2), 296–307. https:// doi. org/ 10. 
1016/j. cja. 2018. 12. 011, http:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S1000 93611 93002 38.

Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A., & Veeramachaneni, K. (2020). Tadgan: Time 
series anomaly detection using generative adversarial networks. arXiv: 2009. 07769.

Gerstner, W., & Kistler, W. M. (2002). Spiking neuron models: Single neurons, populations, plasticity. Cam-
bridge University Press. https:// doi. org/ 10. 1017/ CBO97 80511 815706.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.
Gühring, G., Baum, C., Kleschew, A., & Schmid, D. (2019). Anomalie-erkennung. atp magazin, 61, 66. 

https:// doi. org/ 10. 17560/ atp. v61i5. 2380.
Hau, M., & Tong, H. (1989). A practical method for outlier detection in autoregressive time series model-

ling. Stochastic Hydrology and Hydraulics, 3, 241–260. https:// doi. org/ 10. 1007/ BF015 43459.
Hopkins, M., García, G., Bogdan, P., & Furber, S. (2018). Spiking neural networks for computer vision. 

Interface Focus, 8, 20180007. https:// doi. org/ 10. 1098/ rsfs. 2018. 0007.
Hossin, M., & Sulaiman, M. (2015). A review on evaluation metrics for data classification evaluations. 

International Journal of Data Mining & Knowledge Management Process, 5, 01–11. https:// doi. org/ 
10. 5121/ ijdkp. 2015. 5201.

Jeni, LA., Cohn, JF., & De La Torre, F. (2013). Facing imbalanced data–recommendations for the use of 
performance metrics. In 2013 Humaine association conference on affective computing and intelligent 
interaction, pp. 245–251.

Kasabov, N. (2006). Evolving connectionist systems: The knowledge engineering approach. Berlin, Heidel-
berg: Springer-Verlag.

King, A. (2012). Online k-means clustering of nonstationary data. Prediction Protect Report. p. 11.
Kriegel, HP., Kröger, P., Schubert, E., & Zimek, A. (2009). Loop: Local outlier probabilities. In Proceed-

ings of the 18th ACM conference on information and knowledge management, association for com-
puting machinery, New York, NY, USA, CIKM ’09, pp. 1649-1652. https:// doi. org/ 10. 1145/ 16459 53. 
16461 95, https:// doi. org/ 10. 1145/ 16459 53. 16461 95.

Lapicque, L. (1907). Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une 
polarisation. Journal de Physiologie et de Pathologie Générale, 9, 620–635. https:// doi. org/ 10. 1007/ 
s00422- 007- 0189-6.

Lobo, J. L., Lan̄a, I., Del Ser, J., Bilbao, MN., & Kasbov, N. (2018). Evolving Spiking Neural Networks 
for online learning over drifting data streams. Neural Networks,108, 1–19. https:// doi. org/ 10. 1016/j. 
neunet. 2018. 07. 014.

https://doi.org/10.1002/for.768
https://doi.org/10.1109/ICRA.2018.8460482
https://doi.org/10.1109/ICRA.2018.8460482
https://doi.org/10.3389/fnbot.2018.00035
https://doi.org/10.3389/fnbot.2018.00035
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
https://doi.org/10.1145/342009.335388
http://arxiv.org/abs/1901.03407
https://doi.org/10.1007/s00521-019-04363-x
https://doi.org/10.1007/s00521-019-04363-x
https://doi.org/10.1016/j.cja.2018.12.011
https://doi.org/10.1016/j.cja.2018.12.011
http://www.sciencedirect.com/science/article/pii/S1000936119300238
http://arxiv.org/abs/2009.07769
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.17560/atp.v61i5.2380
https://doi.org/10.1007/BF01543459
https://doi.org/10.1098/rsfs.2018.0007
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.5121/ijdkp.2015.5201
https://doi.org/10.1145/1645953.1646195
https://doi.org/10.1145/1645953.1646195
https://doi.org/10.1145/1645953.1646195
https://doi.org/10.1007/s00422-007-0189-6
https://doi.org/10.1007/s00422-007-0189-6
https://doi.org/10.1016/j.neunet.2018.07.014
https://doi.org/10.1016/j.neunet.2018.07.014


1407Machine Learning (2022) 111:1377–1408 

1 3

Lobo, J. L., Javier, D. S., Albert, B., & Nikola, K. (2020). Spiking Neural Networks and online learning: An 
overview and perspectives. Neural Networks, 121, 88–100. https:// doi. org/ 10. 1016/j. neunet. 2019. 09. 
004.

Li, D., Chen, D., Jin, B., Shi, L., Goh, J., & Ng, S. K. (2019). Mad-gan: Multivariate anomaly detection 
for time series data with generative adversarial networks. In I. V. Tetko, V. Kůrková, P. Karpov, 
& F. Theis (Eds.), Artificial neural networks and machine learning—ICANN 2019: Text and time 
series (pp. 703–716). Cham: Springer International Publishing.

Li, Y., Lu, A., Wu, X., & Yuan, S. (2019b). Dynamic anomaly detection using vector autoregressive 
model. Springer International Publishing, pp. 600–611. https:// doi. org/ 10. 1007/ 978-3- 030- 16148-
4_ 46.

Lindeberg, T. (2013). A computational theory of visual receptive fields. Biological Cybernetics, 107(6), 
589–635.

Maas, W. (1997). Networks of spiking neurons: The third generation of neural network models. Trans 
Soc Comput Simul Int, 14(4), 1659–1671.

Macia̧g, P. S., Kryszkiewicz, M., Bembenik, R., Lobo, J. L., & Ser, J. D. (2021). Unsupervised anomaly 
detection in stream data with online evolving spiking neural networks. Neural Networks,139, 118–139.

Mahajan, M., Nimbhorkar, P., & Varadarajan, K. (2012). The planar k-means problem is NP-hard. Theo-
retical Computer Science, Elsevier, 442, 13–21.

Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). Lstm-based 
encoder-decoder for multi-sensor anomaly detection. ArXivarXiv:1607.00148

Moayedi, H., & Masnadi-Shirazi, M. (2008). Arima model for network traffic prediction and anomaly 
detection. In 2008 International symposium on information technology, Vol. 4, pp. 1–6.

Munir, M., Siddiqui, S. A., Dengel, A., & Ahmed, S. (2019). Deepant: A deep learning approach for 
unsupervised anomaly detection in time series. IEEE Access, 7, 1991–2005.

Panuku, L. N., & Sekhar, C. C. (2008). Region-based encoding method using multi-dimensional gauss-
ians for networks of spiking neurons. In M. Ishikawa, K. Doya, H. Miyamoto, & T. Yamakawa 
(Eds.), Neural information processing (pp. 73–82). Heidelberg: Springer, Berlin Heidelberg, Berlin.

Papadimitriou, S., Sun, J., & Faloutsos, C. (2005). Streaming pattern discovery in multiple time-series. 
In Proceedings of the 31st international conference on very large data bases, VLDB endowment, 
VLDB ’05, pp. 697–708.

Pokrajac, D., Lazarevic, A., & Latecki, L. J. (2007). Incremental local outlier detection for data streams. 
In 2007 IEEE symposium on computational intelligence and data mining, pp. 504–515.

Schliebs, S., & Kasabov, N. (2013). Evolving spiking neural networks: A survey. Evolving Systems,4. 
https:// doi. org/ 10. 1007/ s12530- 013- 9074-9.

Schuman, CD., Potok, TE., Patton, RM., Birdwell, JD., Dean, ME., Rose, GS., & Plank, JS. (2017). A 
survey of neuromorphic computing and neural networks in hardware. arXiv: 1705. 06963.

Shukla, R., & Sengupta, S. (2020). Scalable and robust outlier detector using hierarchical clustering 
and long short-term memory (lstm) neural network for the internet of things. Internet of Things, 9, 
100167. https:// doi. org/ 10. 1016/j. iot. 2020. 100167.

Stinner, V. (2017). Pep 564 – add new time functions with nanosecond resolution. https:// www. python. 
org/ dev/ peps/ pep- 0564/. [Online; accessed 16 August 2020].

Taddei, A., Distante, G., Emdin, M., Pisani, P., Moody, G. B., Zeelenberg, C., & Marchesi, C. (2000). 
European st-t database. https:// doi. org/ 10. 13026/ C2D59Z.

Thorpe, S., & Gautrais, J. (1998). Rank order coding. Computational Neuroscience: Trends in Research 
pp. 113–118. https:// doi. org/ 10. 1007/ 978-1- 4615- 4831-7_ 19.

Wang, J., Belatreche, A., Maguire, L. P., & McGinnity, T. M. (2017). Spiketemp: An enhanced rank-
order-based learning approach for spiking neural networks with adaptive structure. IEEE Transac-
tions on Neural Networks and Learning Systems, 28(1), 30–43.

Watts, M. (2009). A decade of Kasabov’s evolving connectionist systems: A review. Systems, Man, and 
Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 39, 253–269. https:// doi. 
org/ 10. 1109/ TSMCC. 2008. 20122 54.

Welford, B. P. (1962). Note on a method for calculating corrected sums of squares and products. Techno-
metrics, 4(3), 419–420. https:// doi. org/ 10. 1080/ 00401 706. 1962. 10490 022.

Wu, J., Yılmaz, E., Zhang, M., Li, H., & Tan, K. C. (2020). Deep spiking neural networks for large 
vocabulary automatic speech recognition. Frontiers in Neuroscience, 14, 199. https:// doi. org/ 10. 
3389/ fnins. 2020. 00199.

Wu, R., & Keogh, E. (2021). Current time series anomaly detection benchmarks are flawed and are cre-
ating the illusion of progress. IEEE Transactions on Knowledge and Data Engineering. https:// doi. 
org/ 10. 1109/ TKDE. 2021. 31121 26.

https://doi.org/10.1016/j.neunet.2019.09.004
https://doi.org/10.1016/j.neunet.2019.09.004
https://doi.org/10.1007/978-3-030-16148-4_46
https://doi.org/10.1007/978-3-030-16148-4_46
https://doi.org/10.1007/s12530-013-9074-9
http://arxiv.org/abs/1705.06963
https://doi.org/10.1016/j.iot.2020.100167
https://www.python.org/dev/peps/pep-0564/
https://www.python.org/dev/peps/pep-0564/
https://doi.org/10.13026/C2D59Z
https://doi.org/10.1007/978-1-4615-4831-7_19
https://doi.org/10.1109/TSMCC.2008.2012254
https://doi.org/10.1109/TSMCC.2008.2012254
https://doi.org/10.1080/00401706.1962.10490022
https://doi.org/10.3389/fnins.2020.00199
https://doi.org/10.3389/fnins.2020.00199
https://doi.org/10.1109/TKDE.2021.3112126
https://doi.org/10.1109/TKDE.2021.3112126


1408 Machine Learning (2022) 111:1377–1408

1 3

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2006). On-line learning with structural adaptation in 
a network of spiking neurons for visual pattern recognition. In S. D. Kollias, A. Stafylopatis, W. 
Duch, & E. Oja (Eds.), Artificial neural networks—ICANN 2006 (pp. 61–70). Heidelberg: Springer, 
Berlin Heidelberg, Berlin.

Wysoski, S. G., Benuskova, L., & Kasabov, N. (2008). Adaptive spiking neural networks for audiovisual 
pattern recognition (pp. 406–415). Berlin, Heidelberg: Springer-Verlag.

Xing, L., Demertzis, K., & Yang. (2019). Identifying data streams anomalies by evolving spiking restricted 
boltzmann machines. Neural Computing and Applications,31, 1–15. https:// doi. org/ 10. 1007/ 
s00521- 019- 04288- 5c.

Yu, T., & Zhu, H. (2020). Hyper-parameter optimization: A review of algorithms and applications. arXiv: 
2003. 05689.

Zhang, G. (2003). Time series forecasting using a hybrid Arima and neural network model. Neurocomput-
ing, 50, 159–175. https:// doi. org/ 10. 1016/ S0925- 2312(01) 00702-0.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1007/s00521-019-04288-5c
https://doi.org/10.1007/s00521-019-04288-5c
http://arxiv.org/abs/2003.05689
http://arxiv.org/abs/2003.05689
https://doi.org/10.1016/S0925-2312(01)00702-0

	Unsupervised anomaly detection in multivariate time series with online evolving spiking neural networks
	Abstract
	1 Introduction
	2 Related work
	3 Pattern discovery in multivariate time series
	4 Spiking Neural Networks for outlier detection
	4.1 Spiking neural networks
	4.2 Online evolving Spiking Neural Networks
	4.3 Efficient encoding of multivariate data with Gaussian Receptive Fields
	4.4 Learning capabilities with dynamic weight adaption
	4.5 Anomaly detection using a continuous outlier score

	5 Experimental evaluation
	5.1 Overview of models
	5.2 Evaluation benchmark
	5.3 Hyperparameter optimization
	5.3.1 Generation of validation data
	5.3.2 Efficient hyperparameter selection

	5.4 Model evaluation
	5.5 Experimental determination of runtimes
	5.5.1 Influence of number of data points
	5.5.2 Influence of dimensionality of the input data

	5.6 Anomaly detection of different algorithms
	5.6.1 Anomaly detection and increasing dimensionality of the data
	5.6.2 Detection of different outlier types in the NAB dataset
	5.6.3 Anomaly detection in the Yahoo Webscope dataset


	6 Conclusion
	References




