
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020 3127

Unsupervised Anomaly Detection With

LSTM Neural Networks
Tolga Ergen and Suleyman Serdar Kozat, Senior Member, IEEE

Abstract— We investigate anomaly detection in an unsuper-
vised framework and introduce long short-term memory (LSTM)
neural network-based algorithms. In particular, given variable
length data sequences, we first pass these sequences through
our LSTM-based structure and obtain fixed-length sequences.
We then find a decision function for our anomaly detectors based
on the one-class support vector machines (OC-SVMs) and sup-
port vector data description (SVDD) algorithms. As the first time
in the literature, we jointly train and optimize the parameters of
the LSTM architecture and the OC-SVM (or SVDD) algorithm
using highly effective gradient and quadratic programming-
based training methods. To apply the gradient-based training
method, we modify the original objective criteria of the OC-SVM
and SVDD algorithms, where we prove the convergence of the
modified objective criteria to the original criteria. We also provide
extensions of our unsupervised formulation to the semisupervised
and fully supervised frameworks. Thus, we obtain anomaly detec-
tion algorithms that can process variable length data sequences
while providing high performance, especially for time series data.
Our approach is generic so that we also apply this approach to
the gated recurrent unit (GRU) architecture by directly replacing
our LSTM-based structure with the GRU-based structure. In our
experiments, we illustrate significant performance gains achieved
by our algorithms with respect to the conventional methods.

Index Terms— Anomaly detection, gated recurrent unit (GRU),
long short-term memory (LSTM), support vector data descrip-
tion (SVDD), support vector machines (SVMs).

I. INTRODUCTION

A. Preliminaries

A
NOMALY detection [1] has attracted significant inter-

est in the contemporary learning literature due to its

applications in a wide range of engineering problems [2]–[4].

In this article, we study the variable length anomaly detection

problem in an unsupervised framework, where we seek to find

a function to decide whether or not each unlabeled variable

length sequence in a given data set is anomalous. Note that

although this problem is extensively studied in the literature

and there exist different methods, e.g., supervised (or semisu-

pervised) methods, that require the knowledge of data labels,

we employ an unsupervised method due to the high cost of

Manuscript received May 30, 2018; revised December 25, 2018; accepted
August 14, 2019. Date of publication September 13, 2019; date of current
version August 4, 2020. This work was supported by Tubitak Project under
Grant 117E153. (Corresponding author: Tolga Ergen.)

T. Ergen is with the Department of Electrical Engineering, Stanford Uni-
versity, Stanford, CA 94305 USA (e-mail: ergen@stanford.edu).

S. S. Kozat is with the Department of Electrical and Electronics Engineering,
Bilkent University, 06800 Ankara, Turkey (e-mail: kozat@ee.bilkent.edu.tr).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2019.2935975

obtaining accurate labels in most real-life applications [1].

However, we also extend our derivations to the semisupervised

and fully supervised frameworks for completeness.

In the current literature, a common and widely used

approach for anomaly detection is to find a decision function

that defines the model of normality [1], [5]. In this approach,

one first defines a certain decision function and then optimizes

the parameters of this function with respect to a predefined

objective criterion, e.g., the one-class support vector machines

(OC-SVMs) and support vector data description (SVDD) algo-

rithms [6], [7]. However, algorithms based on this approach

examine time series data over a sufficiently long time window

to achieve an acceptable performance [1], [8], [9]. Thus,

their performances significantly depend on the length of this

time window so that this approach requires careful selection

for the length of the time window to provide a satisfactory

performance [8], [10]. To enhance performance for time series

data, Fisher kernel and generative models are introduced

[11]–[14]. However, the main drawback of the Fisher kernel

model is that it requires the inversion of the Fisher information

matrix, which has a high computational complexity [11], [12].

On the other hand, in order to obtain an adequate performance

from a generative model such as a hidden Markov model

(HMM), one should carefully select its structural parameters,

e.g., the number of states and topology of the model [13], [14].

Furthermore, the type of training algorithm has also consider-

able effects on the performance of generative models, which

limits their usage in real-life applications [14]. Thus, neural

networks, especially recurrent neural networks (RNNs)-based

approaches are introduced, thanks to their inherent memory

structure that can store “time” or “state” information [1], [15].

However, since the basic RNN architecture does not have

control structures (gates) to regulate the amount of information

to be stored [16], [17], a more advanced RNN architec-

ture with several control structures, i.e., the long short-term

memory (LSTM) network, is introduced [17], [18]. However,

neural networks-based approaches cannot directly optimize an

objective criterion for anomaly detection due to the lack of

data labels in an unsupervised framework [1], [19]. Hence,

they first predict a sequence from its past samples and then

determine whether the sequence is an anomaly or not based

on the prediction error, i.e., an anomaly is an event, which

cannot be predicted from the past nominal data [1]. Thus,

they require a probabilistic model for the prediction error and a

threshold on the probabilistic model to detect anomalies, which

results in challenging optimization problems and restricts their

performance accordingly [1], [19], [20]. Furthermore, both the

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0003-4806-0224

3128 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Fig. 1. Overall structure of our anomaly detection approach.

common and neural networks-based approaches can process

only fixed-length vector sequences, which significantly limits

their usage in real-life applications [1].

In order to circumvent these issues, we introduce novel

LSTM-based anomaly detection algorithms for variable length

data sequences. In particular, we first pass variable length

data sequences through an LSTM-based structure to obtain

fixed-length representations. We then apply our OC-SVM [6]-

based algorithm and SVDD [7]-based algorithm for detecting

anomalies in the extracted fixed-length vectors as illustrated

in Fig. 1. Unlike the previous approaches in the literature [1],

we jointly train the parameters of the LSTM architecture

and the OC-SVM (or SVDD) formulation to maximize the

detection performance. For this joint optimization, we propose

two different training methods, i.e., a quadratic programming-

based algorithm and gradient-based algorithm, where the

merits of each different approach are detailed in the arti-

cle. For our gradient-based training method, we modify the

original OC-SVM and SVDD formulations and then provide

the convergence results of the modified formulations to the

original ones. Thus, instead of following the prediction-based

approaches [1], [19], [20] in the current literature, we define

proper objective functions for anomaly detection using the

LSTM architecture and optimize the parameters of the LSTM

architecture via these well-defined objective functions. Hence,

our anomaly detection algorithms are able to process variable

length sequences and provide high performance for time series

data. Furthermore, since we introduce a generic approach in

the sense that it can be applied to any RNN architecture,

we also apply our approach to the gated recurrent unit (GRU)

architecture [21], i.e., an advanced RNN architecture as the

LSTM architecture, in our simulations. Through an extensive

set of experiments, we demonstrate significant performance

gains with respect to the conventional methods [6], [7], [10].

B. Prior Art and Comparisons

Several different methods have been introduced for the

anomaly detection problem [1]. Among these methods,

the OC-SVM [6] and SVDD [7] algorithms are generally

employed due their high performance in real-life applica-

tions [22]. However, these algorithms provide inadequate

performance for time series data due to their inability to

capture time dependencies [8], [9]. In order to improve the

performances of these algorithms for time series data, in [9],

Zhang et al. convert time series data into a set of vectors

by replicating each sample so that they obtain 2-D vector

sequences. However, even though they obtain 2-D vector

sequences, the second dimension does not provide additional

information such that this approach still provides inadequate

performance for time series data [8]. As another approach,

the OC-SVM-based method in [8] acquires a set of vectors

from time series data by unfolding the data into a phase

space using a time delay embedding process [23]. More

specifically, for a certain sample, they create an E dimensional

vector by using the previous E − 1 samples along with the

sample itself [8]. However, in order to obtain satisfactory

performance from this approach, the dimensionality, i.e., E ,

should be carefully tuned, which restricts its usage in real-life

applications [24]. On the other hand, even though LSTM-based

algorithms provide high performance for time series data,

we have to solve highly complex optimization problems to

get adequate performance [1]. For example, the LSTM-based

anomaly detection algorithms in [10] and [25] first predict time

series data and then fit a multivariate Gaussian distribution

to the error, where they also select a threshold for this

distribution. Here, they allocate a different set of sequences

to learn the parameters of the distribution and threshold via

the maximum likelihood estimation technique [10], [25]. Thus,

the conventional LSTM-based approaches require careful

selection of several additional parameters, which significantly

degrades their performance in real-life [1], [10]. Furthermore,

both the OC-SVM- (or SVDD) and LSTM-based methods

are able to process only fixed-length sequences [6], [7], [10].

To circumvent these issues, we introduce generic LSTM-based

anomaly detectors for variable length data sequences, where

we jointly train the parameters of the LSTM architecture

and the OC-SVM (or SVDD) formulation via a predefined

objective function. Therefore, we not only obtain high perfor-

mance for time series data but also enjoy joint and effective

optimization of the parameters with respect to a well-defined

objective function.

C. Contributions

Our main contributions are as follows.

1) We introduce LSTM-based anomaly detection algo-

rithms in an unsupervised framework, where we also

extend our derivations to the semisupervised and fully

supervised frameworks.

2) As the first time in the literature, we jointly train the

parameters of the LSTM architecture and the OC-SVM

(or SVDD) formulation via a well-defined objective

function, where we introduce two different joint opti-

mization methods. For our gradient-based joint opti-

mization method, we modify the OC-SVM and SVDD

formulations and then prove the convergence of the

modified formulations to the original ones.

3) Thanks to our LSTM-based structure, the introduced

methods are able to process variable length data

sequences. In addition, unlike the conventional meth-

ods [6], [7], our methods effectively detect anomalies in

time series data without requiring any preprocessing.

4) Through an extensive set of experiments involving

real and simulated data, we illustrate significant per-

formance improvements achieved by our algorithms

with respect to the conventional methods [6], [7], [10].

ERGEN AND KOZAT: UNSUPERVISED ANOMALY DETECTION WITH LSTM NEURAL NETWORKS 3129

Moreover, since our approach is generic, we also apply

it to the recently proposed GRU architecture [21] in our

experiments.

D. Organization of the Article

The organization of this article is as follows. In Section II,

we first describe the variable length anomaly detection

problem and then introduce our LSTM-based structure.

In Section III-A, we introduce anomaly detection algorithms

based on the OC-SVM formulation, where we also propose

two different joint training methods in order to learn the

LSTM and SVM parameters. The merits of each different

approach are also detailed. In a similar manner, we introduce

anomaly detection algorithms based on the SVDD formulation

and provide two different joint training methods to learn the

parameters in Section III-B. In Section IV, we demonstrate

performance improvements over several real-life data sets.

Thanks to our generic approach, we also introduce GRU-based

anomaly detection algorithms. Finally, we provide concluding

remarks in Section V.

II. MODEL AND PROBLEM DESCRIPTION

In this article, all vectors are column vectors and denoted

by boldface lower case letters. Matrices are represented by

boldface uppercase letters. For a vector a, aT is its ordinary

transpose and ||a|| =
√

aT a is the `2-norm. The time index is

given as subscript, e.g., ai is the i th vector. Here, 1 (and 0) is

a vector of all ones (and zeros) and I represents the identity

matrix, where the sizes are understood from the context.

We observe data sequences {X i }n
i=1, i.e., defined as

X i = [xi,1 xi,2 . . . xi,di]
where xi, j ∈ R

p , ∀ j ∈ {1, 2, . . . di } and di ∈ Z
+ is the

number of columns in X i , which can vary with respect to i .

Here, we assume that the bulk of the observed sequences

are normal and the remaining sequences are anomalous. Our

aim is to find a scoring (or decision) function to determine

whether X i is anomalous or not based on the observed

data, where +1 and −1 represent the outputs of the desired

scoring function for nominal and anomalous data, respectively.

As an example application for this framework, in host-based

intrusion detection [1], the system handles operating system

call traces, where the data consist of system calls that are

generated by users or programs. All traces contain system calls

that belong to the same alphabet; however, the co-occurrence

of the system calls is the key issue in detecting anomalies [1].

For different programs, these system calls are executed in

different sequences, where the length of the sequence may

vary for each program. Binary encoding of a sample set

of call sequences can be X1 = 101011, X2 = 1010, and

X3 = 1011001 for n = 3 case [1]. After observing such a set

of call sequences, our aim is to find a scoring function that

successfully distinguishes the anomalous call sequences from

the normal sequences.

In order to find a scoring function l(·) such that

l(X i) =
�

−1, if X i is anomalous

+1, otherwise

Fig. 2. Our LSTM-based structure for obtaining fixed-length sequences. Note
that each LSTM block has the same parameters; however, we represent them
as separate blocks for presentation simplicity.

one can use the OC-SVM algorithm [6] to find a hyperplane

that separates the anomalies from the normal data or the SVDD

algorithm [7] to find a hypersphere enclosing the normal data

while leaving the anomalies outside the hypersphere. However,

these algorithms can only process fixed-length sequences.

Hence, we use the LSTM architecture [18] to obtain a fixed-

length vector representation for each X i as we previously

introduced in [26]. Although there exist several different ver-

sions of LSTM architecture, we use the most widely employed

architecture, i.e., the LSTM architecture without peephole

connections [17]. We first feed X i to the LSTM architecture

as demonstrated in Fig. 2, where the internal LSTM equations

are as follows [18]:

zi, j = g(W (z)xi, j + R(z)hi, j−1 + b(z)) (1)

si, j = σ(W (s)xi, j + R(s)hi, j−1 + b(s)) (2)

f i, j = σ(W (f)xi, j + R(f)hi, j−1 + b(f)) (3)

ci, j = si, j � zi, j + f i, j � ci, j−1 (4)

oi, j = σ(W (o)xi, j + R(o)hi, j−1 + b(o)) (5)

hi, j = oi, j � g(ci, j) (6)

where ci, j ∈ R
m is the state vector, xi, j ∈ R

p is the input

vector, and hi, j ∈ R
m is the output vector for the j th LSTM

unit in Fig. 2. In addition, si, j , f i, j , and oi, j is the input,

forget, and output gates, respectively. Here, g(·) is set to

the hyperbolic tangent function, i.e., tanh, and applies to

input vectors pointwise. Similarly, σ(·) is set to the sigmoid

function. � is the operation for elementwise multiplication of

two same-sized vectors. Furthermore, W (·), R(·), and b(·) are

the parameters of the LSTM architecture, where the size of

each is selected according to the dimensionality of the input

and output vectors. Basically, in our LSTM architecture, ci, j−1

represents the cell state of the network from the previous

LSTM block. This cell state provides an information flow

between consecutive LSTM blocks. For the LSTM architec-

ture, it is important to determine how much information we

should keep in the cell state. Thus, in order to determine the

amount of information to be kept, we use f i, j , which outputs

a number between 0 and 1, and scales the cell state in (4).

The next step is to determine how much new information

3130 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

we should learn from the data. For this purpose, we compute

zi, j , which contains new candidate values, via a tanh layer,

where we control the amount of learning through si, j . We then

generate a new cell state information by multiplying old and

new information with the forget and input gates, respectively,

as in (4). Finally, we need to determine what we should output.

In order to obtain the output, we use ci, j . However, we also

need to determine which parts of the cell state we should keep

for the output. Thus, we first compute oi, j to filter certain parts

of the cell state. Then, we push the cell state through a tanh

layer and multiply it with the output gate to obtain the final

output of an LSTM block as in (6).

After applying the LSTM architecture to each column of

our data sequences as illustrated in Fig. 2, we take the average

of the LSTM outputs for each data sequence, i.e., the mean

pooling method. Through this, we obtain a new set of fixed-

length sequences, i.e., denoted as {h̄i }n
i=1, h̄i ∈ R

m . Note that

we also use the same procedure to obtain the state information

c̄i ∈ R
m for each X i as demonstrated in Fig. 2. We emphasize

that even though we do not use the mean state vector c̄i

explicitly in Section III, all the calculations that include h̄i

also requires the computation c̄i via the mean pooling method.

Remark 1: We use the mean pooling method in order to

obtain the fixed-length sequences as h̄i = (1/di)
�di

j=1 hi, j .

However, we can also use the other pooling methods. For

example, for the last and max pooling methods, we use h̄i =
hi,di and h̄i = max j hi, j , ∀i ∈ {1, 2, . . . n}, respectively. Our

derivations can be straightforwardly extended to these different

pooling methods.

III. NOVEL ANOMALY DETECTION ALGORITHMS

In this section, we first formulate the anomaly detection

approaches based on the OC-SVM and SVDD algorithms.

We then provide joint optimization updates to train the para-

meters of the overall structure.

A. Anomaly Detection With the OC-SVM Algorithm

In this section, we provide an anomaly detection algorithm

based on the OC-SVM formulation and derive the joint updates

for both the LSTM and SVM parameters. For the training,

we first provide a quadratic programming-based algorithm and

then introduce a gradient-based training algorithm. To apply

the gradient-based training method, we smoothly approximate

the original OC-SVM formulation and then prove the conver-

gence of the approximated formulation to the actual one in

Section III-A2.

In the OC-SVM algorithm, our aim is to find a hyperplane

that separates the anomalies from the normal data [6]. We for-

mulate the OC-SVM optimization problem for the sequence

{h̄i }n
i=1 as follows [6]:

min
θ∈R

nθ ,w∈Rm,ξ∈R,ρ∈R

kwk2

2
+ 1

nλ

n
�

i=1

ξi − ρ (7)

s. t.: w
T h̄i ≥ ρ − ξi , ξi ≥ 0 ∀i (8)

W (·)T W (·) = I, R(·)T R(·) = I

and b(·)T b(·) = 1 (9)

where ρ and w are the parameters of the separating hyper-

plane, λ > 0 is a regularization parameter, ξ is a slack

variable to penalize misclassified instances, and we group

the LSTM parameters {W (z), R(z), b(z), W (s), R(s), b(s),

W (f), R(f), b(f), W (o), R(o), b(o)} into θ ∈ R
nθ , where

nθ = 4m(m+ p+1). Since the LSTM parameters are unknown

and h̄i is a function of these parameters, we also minimize the

cost function in (7) with respect to θ .

After solving the optimization problem in (7)–(9), we use

the scoring function

l(X i) = sgn(wT h̄i − ρ) (10)

to detect the anomalous data, where the sgn(·) function returns

the sign of its input.

We emphasize that while minimizing (7) with respect to θ ,

we might suffer from overfitting and impotent learning of time

dependencies on the data [27], i.e., forcing the parameters to

null values, e.g., θ = 0. To circumvent these issues, we intro-

duce (9), which constraints the norm of θ to avoid overfitting

and trivial solutions, e.g., θ = 0, while boosting the ability of

the LSTM architecture to capture time dependencies [27], [28].

Remark 2: In (9), we use an orthogonality constraint for

each LSTM parameter. However, we can also use other con-

straints instead of (9) and solve the optimization problem in

(7)–(9) in the same manner. For example, a common choice

of constraint for neural networks is the Frobenius norm [29],

i.e., defined as

kAkF =
�

i

�

j

A2
i j (11)

for a real matrix A, where Ai j represents the element at

the i th column and j th row of A. In this case, we can

directly replace (9) with a Frobenius norm constraint for

each LSTM parameter as in (11) and then solve the opti-

mization problem in the same manner. Such approaches only

aim to regularize the parameters [28]. However, for RNNs,

we may also encounter exponential growth or decay in the

norm of the gradients while training the parameters, which

significantly degrades capabilities of these architectures to

capture time dependencies [27], [28]. Moreover, (9) also

regularizes the parameters by bounding the norm of each

column of the coefficient matrices as one. Thus, in this article,

we put the constraint (9) in order to regularize the parameters

while improving the capabilities of the LSTM architecture in

capturing time dependencies [27], [28].

1) Quadratic Programming-Based Training Algorithm:

Here, we introduce a training approach based on quadratic

programming for the optimization problem in (7)–(9), where

we perform consecutive updates for the LSTM and SVM

parameters. For this purpose, we first convert the optimization

problem to a dual form in the following. We then provide the

consecutive updates for each parameter.

We have the following Lagrangian for the SVM parameters:

L(w, ξ, ρ, ν, α) = kwk2

2
+ 1

nλ

n
�

i=1

ξi − ρ −
n

�

i=1

νiξi

−
n

�

i=1

αi (w
T h̄i − ρ + ξi) (12)

ERGEN AND KOZAT: UNSUPERVISED ANOMALY DETECTION WITH LSTM NEURAL NETWORKS 3131

where νi , αi ≥ 0 are the Lagrange multipliers. Taking

derivative of (12) with respect to w, ξ , and ρ and then setting

the derivatives to zero give

w =
n

�

i=1

αi h̄i (13)

n
�

i=1

αi = 1 and αi = 1/(nλ) − νi ∀i. (14)

Note that at the optimum, the inequalities in (8) become

equalities if αi and νi are nonzero, i.e., 0 < αi < 1/(nλ) [6].

With this relation, we compute ρ as

ρ =
n

�

j=1

α j h̄
T

j h̄i for 0 < αi < 1/(nλ). (15)

By substituting (13) and (14) into (12), we obtain the

following dual problem for the constrained minimization

in (7)–(9):

min
θ∈R

nθ ,α∈Rn

1

2

n
�

i=1

n
�

j=1

αiα j h̄
T

i h̄ j (16)

s. t.:

n
�

i=1

αi = 1 and 0 ≤ αi ≤ 1/(nλ) ∀i (17)

W (·)T W (·) = I, R(·)T R(·) = I

and b(·)T b(·) = 1 (18)

where α ∈ R
n is a vector representation for αi ’s. Since the

LSTM parameters are unknown, we also put the minimization

term for θ into (16) as in (7). By substituting (13) into (10),

we have the following scoring function for the dual problem:

l(X i) = sgn

⎛

⎝

n
�

j=1

α j h̄
T

j h̄i − ρ

⎞

⎠ (19)

where we calculate ρ using (15).

In order to find the optimal θ and α for the optimization

problem in (16)–(18), we employ the following procedure.

We first select a certain set of the LSTM parameters, i.e., θ0.

Based on θ0, we find the minimizing α values, i.e., α1, using

the sequential minimal optimization (SMO) algorithm [30].

Now, we fix α as α1 and then update θ from θ0 to θ1 using

the algorithm for optimization with orthogonality constraints

in [31]. We repeat these consecutive update procedures until

α and θ converge [32]. Then, we use the converged values

in order to evaluate (19). Although the convergence of the

algorithm is not guaranteed, it can be obtained by carefully

tuning certain parameters, e.g., the learning rate, in most of

real-life applications [32]. In the following, we explain these

procedures in detail.

Based on θ k , i.e., the LSTM parameter vector at the

kth iteration, we update αk , i.e., the α vector at the kth iteration,

using the SMO algorithm due to its efficiency in solving

quadratic constrained optimization problems [30]. In the SMO

algorithm, we choose a subset of parameters to minimize and

fix the rest of parameters. In the extreme case, we choose only

one parameter to minimize, however, due to (17), we must

choose at least two parameters. To illustrate how the SMO

algorithm works in our case, we choose α1 and α2 to update

and fix the rest of the parameters in (16). From (17), we have

α1 = 1 − S − α2, where S =
n

�

i=3

αi . (20)

We first replace α1 in (16) with (20). We then take the

derivative of (16) with respect to α2 and equate the derivative

to zero. Thus, we obtain the following update for α2 at the

kth iteration:

αk+1,2 =
(αk,1 + αk,2)(K11 − K12) + M1 − M2

K11 + K22 − 2K12
(21)

where Ki j � h̄
T

i h̄ j , Mi �
�n

j=3 αk, j Ki j and αk,i represents

the i th element of αk . Due to (17), if the updated value of α2 is

outside of the region [0, 1/(nλ)], we project it to this region.

Once α2 is updated as αk+1,2, we obtain αk+1,1 using (20).

For the rest of the parameters, we repeat the same procedure,

which eventually converges to a certain set of parameters [30].

In this way, we obtain αk+1, i.e., the minimizing α for θ k .

Following the update of α, we update θ based on the

updated αk+1 vector. For this purpose, we employ the opti-

mization method in [31]. Since we have αk+1 that satisfies

(17), we reduce the dual problem to

min
θ

κ(θ ,αk+1) = 1

2

n
�

i=1

n
�

j=1

αk+1,iαk+1, j h̄
T

i h̄ j (22)

s.t.:W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1. (23)

For (22) and (23), we update W (·) as follows:

W
(·)
k+1 =

	

I + µ

2
Ak

−1	

I − µ

2
Ak

W
(·)
k (24)

where the subscripts represent the current iteration index, µ is

the learning rate, Ak = Gk(W
(·)
k)T −W

(·)
k GT

k , and the element

at the i th row and the j th column of G is defined as

Gi j �
∂κ(θ,αk+1)

∂W
(·)
i j

. (25)

Remark 3: For R(·) and b(·), we first compute the gradient

of the objective function with respect to the chosen parameter

as in (25). We then obtain Ak according to the chosen para-

meter. Using Ak , we update the chosen parameter as in (24).

With these updates, we obtain a quadratic programming-

based training algorithm (see Algorithm 1 for the pseudocode)

for our LSTM-based anomaly detector.

2) Gradient-Based Training Algorithm: Although the

quadratic programming-based training algorithm directly opti-

mizes the original OC-SVM formulation without requiring any

approximation, since it depends on the separated consecutive

updates of the LSTM and OC-SVM parameters, it might not

converge to even a local minimum [32]. In order to resolve this

issue, in this section, we introduce a training method based on

only the first-order gradients, which updates the parameters at

the same time. However, since we require an approximation

to the original OC-SVM formulation to apply this method,

3132 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Algorithm 1 Quadratic Programming-Based Training for the

Anomaly Detection Algorithm Based on OC-SVM

1: Initialize the LSTM parameters as θ0 and the dual

OC-SVM parameters as α0

2: Determine a threshold � as convergence criterion

3: k = −1

4: do

5: k = k + 1

6: Using θ k , obtain {h̄}n
i=1 according to Fig. 2

7: Find optimal αk+1 for {h̄}n
i=1 using (20) and (21)

8: Based on αk+1, obtain θ k+1 using (24) and Remark 3

9: while
�

κ(θk+1,αk+1) − κ(θk,αk)
�2

> �

10: Detect anomalies using (19) evaluated at θ k and αk

we also prove the convergence of the approximated formula-

tion to the original OC-SVM formulation in this section.

Considering (8), we write the slack variable in a different

form as follows:

G(βw,ρ(h̄i)) � max{0, βw,ρ(h̄i)} ∀i (26)

where

βw,ρ(h̄i) � ρ − w
T h̄i .

By substituting (26) into (7), we remove the constraint (8) and

obtain the following optimization problem:

min
w∈Rm,ρ∈R,θ∈R

nθ

kwk2

2
+ 1

nλ

n
�

i=1

G(βw,ρ(h̄i)) − ρ (27)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) =1.

(28)

Since (26) is not a differentiable function, we are unable to

solve the optimization problem in (27) using gradient-based

optimization algorithms. Hence, we employ a differentiable

function

Sτ (βw,ρ(h̄i)) = 1

τ
log

	

1 + eτβw,ρ(h̄i)

(29)

to smoothly approximate (26), where τ > 0 is the smoothing

parameter and log represents the natural logarithm. In (29),

as τ increases, Sτ (·) converges to G(·) (see Fig. 3); hence,

we choose a large value for τ .

Proposition 1: As τ increases, Sτ (βw,ρ(h̄i)) uniformly

converges to G(βw,ρ(h̄i)). As a consequence, our approxi-

mation Fτ (w, ρ, θ) converges to the SVM objective function

F(w, ρ, θ), i.e., defined as

F(w, ρ, θ) �
kwk2

2
+ 1

nλ

n
�

i=1

G(βw,ρ(h̄i)) − ρ.

Proof of Proposition 1: The proof of the proposition is

given in Appendix A. �

With (29), we modify our optimization problem as follows:

min
w∈Rm ,ρ∈R,θ∈R

nθ

Fτ (w, ρ, θ) (30)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) =1

(31)

Fig. 3. Comparison of (26) with its smooth approximations.

where Fτ (·, ·, ·) is the objective function of our optimization

problem and defined as

Fτ (w, ρ, θ) �
kwk2

2
+ 1

nλ

n
�

i=1

Sτ (βw,ρ(h̄i)) − ρ.

To obtain the optimal parameters for (30) and (31), we update

w, ρ and θ until they converge to a local or global opti-

mum [31], [33]. For the update of w and ρ, we use the

gradient descent algorithm [33], where we compute the first-

order gradient of the objective function with respect to each

parameter. We first compute the gradient for w as follows:

∇w Fτ (w, ρ, θ) = w + 1

nλ

n
�

i=1

−h̄i e
τβw,ρ (h̄i)

1 + eτβw,ρ (h̄i)
. (32)

Using (32), we update w as

wk+1 = wk − µ∇w Fτ (w, ρ, θ)

w=wk
ρ=ρk
θ=θ k

(33)

where the subscript k indicates the value of any parameter at

the kth iteration. Similarly, we calculate the derivative of the

objective function with respect to ρ as follows:

∂ Fτ (w, ρ, θ)

∂ρ
=

1

nλ

n
�

i=1

eτβw,ρ (h̄i)

1 + eτβw,ρ (h̄i)
− 1. (34)

Using (34), we update ρ as

ρk+1 = ρk − µ
∂ Fτ (w, ρ, θ)

∂ρ

w=wk
ρ=ρk
θ=θ k

. (35)

For the LSTM parameters, we use the method for optimization

with orthogonality constraints in [31] due to (31). To update

W (·), we calculate the gradient of the objective function as

∂ Fτ (w, ρ, θ)

∂W
(·)
i j

=
1

nλ

n
�

i=1

−w
T
�

∂ h̄i/∂W
(·)
i j

�

eτβw,ρ (h̄i)

1 + eτβw,ρ (h̄i)
. (36)

We then update W (·) using (36) as

W
(·)
k+1 =

	

I +
µ

2
Bk

−1	

I −
µ

2
Bk

W
(·)
k (37)

ERGEN AND KOZAT: UNSUPERVISED ANOMALY DETECTION WITH LSTM NEURAL NETWORKS 3133

where Bk = Mk(W
(·)
k)T − W

(·)
k MT

k and

M i j �
∂ Fτ (w, ρ, θ)

∂W
(·)
i j

. (38)

Remark 4: For R(·) and b(·), we first compute the gradient

of the objective function with respect to the chosen parameter

as in (38). We then obtain Bk according to the chosen

parameter. Using Bk , we update the chosen parameter as

in (37).

Remark 5: In the semisupervised framework, we have

the following optimization problem for our SVM-based

algorithms [34]:

min
θ ,w,ξ,η,γ ,ρ

	

�l
i=1 ηi +

�l+k
j=l+1 min(γ j , ξ j)

(1/C)

+ kwk (39)

s.t.: yi (w
T h̄i + ρ) ≥ 1 − ηi , ηi ≥ 0, i = 1, . . . , l

(40)

w
T h̄ j − ρ ≥ 1 − ξ j , ξ j ≥ 0 j = l + 1, . . . , l + k (41)

−w
T h̄ j + ρ ≥ 1 − γ j , γ j ≥ 0 j = l + 1, . . . , l + k (42)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1

(43)

where γ ∈ R and η ∈ R are slack variables as ξ , C is a tradeoff

parameter, l and k are the number of the labeled and unlabeled

data instances, respectively, and yi ∈ {−1,+1} represents the

label of the i th data instance.

For the application of quadratic programming-based training

method in the semisupervised case, we apply all the steps

from (12) to (25) for the optimization problem in (39)–(43).

Similarly, we modify the equations from (26) to (38) accord-

ing to (39)–(43) in order to get the gradient-based training

method in the semisupervised framework. For the supervised

implementations, we follow the same procedures with the

semisupervised implementations for k = 0 case.

Hence, we complete the required updates for each

parameter. The complete algorithm is also provided in

Algorithm 2 as a pseudocode. Moreover, we illustrate the

convergence of our approximation (29)–(26) in Proposition 1.

Using Proposition 1, we then demonstrate the convergence

of the optimal values for our objective function (30) to the

optimal values of the actual SVM objective function (27)

in Theorem 1.

Theorem 1: Let wτ and ρτ be the solutions of (30) for

any fixed θ . Then, wτ and ρτ are unique and Fτ (wτ , ρτ , θ)

converges to the minimum of F(w, ρ, θ).

Proof of Theorem 1: The proof of the theorem is given in

Appendix B. �

B. Anomaly Detection With the SVDD Algorithm

In this section, we introduce an anomaly detection algorithm

based on the SVDD formulation and provide the joint updates

in order to learn both the LSTM and SVDD parameters.

However, since the generic formulation is the same with the

OC-SVM case, we only provide the required and distinct

updates for the parameters and proof for the convergence of

the approximated SVDD formulation to the actual one.

Algorithm 2 Gradient-Based Training for the Anomaly Detec-

tion Algorithm Based on OC-SVM

1: Initialize the LSTM parameters as θ0 and the OC-SVM

parameters as w0 and ρ0

2: Determine a threshold � as convergence criterion

3: k = −1

4: do

5: k = k + 1

6: Using θ k , obtain {h̄}n
i=1 according to Fig. 2

7: Obtain wk+1, ρk+1 and θ k+1 using (33), (35), (37) and

Remark 4

8: while
�

Fτ (wk+1, ρk+1, θ k+1) − Fτ (wk, ρk, θ k)
�2

> �

9: Detect anomalies using (10) evaluated at wk , ρk and θk

In the SVDD algorithm, we aim to find a hypersphere that

encloses the normal data while leaving the anomalous data

outside the hypersphere [7]. For the sequence {h̄i }n
i=1, we have

the following SVDD optimization problem [7]:

min
θ∈R

nθ ,c̃∈Rm,ξ∈R,R∈R

R2 +
1

nλ

n
�

i=1

ξi (44)

s. t.: kh̄i − c̃k2 − R2 ≤ ξi , ξi ≥ 0 ∀i (45)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1 (46)

where λ > 0 is a tradeoff parameter between R2 and the

total misclassification error, R is the radius of the hypersphere,

and c̃ is the center of the hypersphere. In addition, θ and ξ

represent the LSTM parameters and the slack variable, respec-

tively, as in the OC-SVM case. After solving the constrained

optimization problem in (44)–(46), we detect anomalies using

the following scoring function:

l(X i) = sgn(R2 − kh̄i − c̃k2). (47)

1) Quadratic Programming-Based Training Algorithm:

In this section, we introduce a training algorithm based on

quadratic programming for (44)–(46). As in the OC-SVM

case, we first assume that the LSTM parameters are fixed and

then perform optimization over the SVDD parameters based

on the fixed LSTM parameters. For (44) and (45), we have

the following Lagrangian:

L(c̃, ξ, R, ν, α) = R2 +
1

nλ

n
�

i=1

ξi −
n

�

i=1

νiξi

−
n

�

i=1

αi (ξi − kh̄i − c̃k2 + R2) (48)

where νi , αi ≥ 0 are the Lagrange multipliers. Taking

derivative of (48) with respect to c̃, ξ , and R and then setting

the derivatives to zero yields

c̃ =
n

�

i=1

αi h̄i (49)

n
�

i=1

αi = 1 and αi = 1/(nλ) − νi ∀i. (50)

3134 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Putting (49) and (50) into (48), we obtain a dual form for

(44) and (45) as follows:

min
θ∈Rnθ ,α∈Rn

n
�

i=1

n
�

j=1

αiα j h̄
T

i h̄ j −
n

�

i=1

αi h̄
T

i h̄i (51)

s. t.:

n
�

i=1

αi = 1 and 0 ≤ αi ≤ 1/(nλ) ∀i (52)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) =1.

(53)

Using (49), we modify (47) as

l(X i) = sgn

⎛

⎝R2 −
n

�

k=1

n
�

j=1

αkα j h̄
T

k h̄ j

+ 2

n
�

j=1

α j h̄
T

j h̄i − h̄
T

i h̄i

⎞

⎠. (54)

In order to solve the constrained optimization problem in

(51)–(53), we employ the same approach as in the OC-SVM

case. We first fix a certain set of the LSTM parameters θ .

Based on these parameters, we find the optimal α using

the SMO algorithm. After that, we fix α to update θ using

the algorithm for optimization with orthogonality constraints.

We repeat these procedures until we reach convergence.

Finally, we evaluate (54) based on the converged parameters.

Remark 6: In the SVDD case, we apply the SMO algorithm

using the same procedures with the OC-SVM case. In partic-

ular, we first choose two parameters, e.g., α1 and α2, to mini-

mize and fix the other parameters. Due to (52), the chosen

parameters must obey (20). Hence, we have the following

update rule for α2 at the kth iteration:

αk+1,2 = 2(1 − S)(K11 − K12) + K22 − K11 + M1 − M2

2(K11 + K22 − 2K12)

where S =
�n

j=3 αk, j and the other definitions are the same

with the OC-SVM case. We then obtain αk+1,1 using (20).

By this, we obtain the updated values αk+1,2 and αk+1,1.

For the remaining parameters, we repeat this procedure until

reaching convergence.

Remark 7: For the SVDD case, we update W (·) at the

kth iteration as in (24). However, instead of (25), we have

the following definition for G:

Gi j =
∂π(θ ,αk+1)

∂W
(·)
i j

where

π(θ,αk+1) �

n
�

i=1

n
�

j=1

αk+1,iαk+1, j h̄
T

i h̄ j −
n

�

i=1

αk+1,i h̄
T

i h̄i

at the kth iteration. For the remaining parameters, we follow

the procedure in Remark 3.

Hence, we obtain a quadratic programming-based training

algorithm for our LSTM-based anomaly detector, which is also

described in Algorithm 3 as a pseudocode.

Algorithm 3 Quadratic Programming-Based Training for the

Anomaly Detection Algorithm Based on SVDD

1: Initialize the LSTM parameters as θ0 and the dual SVDD

parameters as α0

2: Determine a threshold � as convergence criterion

3: k = −1

4: do

5: k = k + 1

6: Using θ k , obtain {h̄}n
i=1 according to Fig. 2

7: Find optimal αk+1 for {h̄}n
i=1 using the procedure in

Remark 6

8: Based on αk+1, obtain θk+1 using Remark 7

9: while
�

π(θ k+1,αk+1) − π(θ k,αk)
�2

> �

10: Detect anomalies using (54) evaluated at θ k and αk

2) Gradient-Based Training Algorithm: In this section,

we introduce a training algorithm based on only the first-order

gradients for (44)–(46). We again use the G(·) function in (26)

in order to eliminate the constraint in (45) as follows:

min
θ∈R

nθ ,c̃∈Rm,R∈R

R2 +
1

nλ

n
�

i=1

G(9
R,c̃(h̄i)) (55)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I

and b(·)T b(·) = 1 (56)

where

9
R,c̃(h̄i) � kh̄i − c̃k2 − R2.

Since the gradient-based methods cannot optimize (55) due to

the nondifferentiable function G(·), we employ Sτ (·) instead

of G(·) and modify (55) as

min
θ∈R

nθ ,c̃∈Rm ,R∈R

Fτ (c̃, R, θ) = R2+
1

nλ

n
�

i=1

Sτ (9R,c̃(h̄i)) (57)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1 (58)

where Fτ (·, ·, ·) is the objective function of (57). To obtain the

optimal values for (57) and (58), we update c̃, R, and θ till

we reach either a local or a global optimum. For the updates

of c̃ and R, we employ the gradient descent algorithm, where

we use the following gradient calculations. We first compute

the gradient of c̃ as

∇c̃Fτ (c̃, R, θ) = 1

nλ

n
�

i=1

2(c̃ − h̄i)e
τ9

c̃,R
(h̄i)

1 + e
τ9c̃,R

(h̄i)
. (59)

Using (59), we have the following update:

c̃k+1 = c̃k − µ∇c̃Fτ (c̃, R, θ)

 c̃=c̃k

R2=R2
k

θ=θ k

(60)

where the subscript k represents the iteration number.

Likewise, we compute the derivative of the objective function

with respect to R2 as

∂ Fτ (c̃, R, θ)

∂ R2
= 1 + 1

nλ

n
�

i=1

−e
τ9c̃,R

(h̄i)

1 + e
τ9

c̃,R
(h̄i)

. (61)

ERGEN AND KOZAT: UNSUPERVISED ANOMALY DETECTION WITH LSTM NEURAL NETWORKS 3135

With (61), we update R2 as

R2
k+1 = R2

k − µ
∂ Fτ (c̃, R, θ)

∂ R2

 c̃=c̃k

R2=R2
k

θ=θ k

. (62)

For θ , the gradient calculation is as follows:

∂ Fτ (c̃, R, θ)

∂W
(·)
i j

=
n

�

i=1

2
�

∂ h̄i/∂W
(·)
i j

�T
(h̄i − c̃)e

τ9
c̃,R

(h̄i)

nλ
�

1 + e
τ9

c̃,R
(h̄i)�

.

(63)

Using (63), we have the following update:

W
(·)
k+1 =

	

I + µ

2
Bk

−1	

I − µ

2
Bk

W
(·)
k (64)

where Bk = Mk(W
(·)
k)T − W

(·)
k MT

k and

M i j �
∂ Fτ (c̃, R, θ)

∂W
(·)
i j

. (65)

Remark 8: For R(·) and b(·), we first compute the gradient

of the objective function with respect to the chosen parameter

as in (65). We then obtain Bk according to the chosen para-

meter. Using Bk , we update the chosen parameter as in (64).

Remark 9: In the semisupervised framework, we have

the following optimization problem for our SVDD-based

algorithms [35]:

min
θ ,c̃,R,ξ,γ ,η

R2 − C1γ + C2

l
�

i=1

ξi + C3

l+k
�

j=l+1

η j (66)

s.t.: kh̄i − c̃k2 − R2 ≤ ξi , ξi ≥ 0 ∀ l
i=1 (67)

y j (kh̄ j − c̃k2 − R2) ≤ −γ + η j η j ≥ 0 ∀ l+k
j=l+1

(68)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1

(69)

where η ∈ R is a slack variable as ξ , γ ∈ R is the margin of the

labeled data instances, C1, C2, and C3 are tradeoff parameters,

k and l are the number of the labeled and unlabeled data

instances, respectively, and y j ∈ {−1,+1} represents the label

of the j th data instance.

For the quadratic programming-based training method,

we modify all the steps from (48) to (54), Remark 6 and

Remark 7 with respect to (66)–(69). In a similar manner,

we modify the equations from (55) to (65) according to

(66)–(69) in order to obtain the gradient-based training method

in the semisupervised framework. For the supervised imple-

mentations, we follow the same procedures with the semisu-

pervised implementations for l = 0 case.

The complete algorithm is provided in Algorithm 4. In the

following, we provide the convergence proof as in the

OC-SVM case.

Theorem 2: Let c̃τ and R2
τ be the solutions of (57) for

any fixed θ . Then, c̃τ and R2
τ are unique and Fτ (c̃τ , Rτ , θ)

Algorithm 4 Gradient-Based Training for the Anomaly

Detection Algorithm Based on SVDD

1: Initialize the LSTM parameters as θ0 and the SVDD

parameters as c̃0 and R2
0

2: Determine a threshold � as convergence criterion

3: k = −1

4: do

5: k = k + 1

6: Using θ k , obtain {h̄}n
i=1 according to Fig. 2

7: Obtain c̃k+1, R2
k+1 and θ k+1 using (60), (62), (64) and

Remark 8

8: while (Fτ (c̃k+1, Rk+1, θ k+1) − Fτ (c̃k, Rk, θ k))
2 > �

9: Detect anomalies using (47) evaluated at c̃k , R2
k and θ k

converges to the minimum of F(c̃, R, θ), i.e., defined as

F(c̃, R, θ) � R2 + 1

nλ

n
�

i=1

G(9
R,c̃(h̄i)).

Proof of Theorem 2: The proof of the theorem is given

in Appendix C. �

IV. SIMULATIONS

In this section, we demonstrate the performances of the

algorithms on several different data sets. We first evaluate

the performances on a data set that contains variable length

data sequences, i.e., the digit data set [36]. We then com-

pare the anomaly detection performances on several differ-

ent benchmark real data sets such as the occupancy [37],

Hong Kong Exchange (HKE) rate [38], http [39], and Alcoa

stock price [40] data sets. While performing experiments on

real benchmark data sets, we also include the GRU-based

algorithms in order to compare their performances with the

LSTM-based ones. Moreover, we also measure the training

times of the algorithms and perform an experiment to observe

the effects of the orthogonality constraint in this section. Note

that since the introduced algorithms have bounded functions,

e.g., the sigmoid function in the LSTM architecture, for all

the experiments in this section, we normalize each dimension

of the data sets into [−1, 1].
Throughout this section, we denote the LSTM-based

OC-SVM anomaly detectors that are trained with the gradi-

ent and quadratic programming-based algorithms as “LSTM-

GSVM” and “LSTM-QPSVM,” respectively. In a similar

manner, we use “LSTM-GSVDD” and “LSTM-QPSVDD” for

the SVDD-based anomaly detectors. Moreover, for the labels

of the GRU-based algorithms, we replace the LSTM prefix

with GRU.

A. Anomaly Detection for Variable Length Data Sequences

In this section, we first evaluate the performances of the

introduced anomaly detectors on the digit data set [36].

In this data set, we have the pixel samples of digits, which

were written on a tablet by several different authors [36].

Since the speed of writing varies from person to person,

the number of samples for a certain digit might significantly

3136 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

Fig. 4. ROC curves of the algorithms for the digit data set, where we consider digit “0” as normal and digit “9” as anomaly (a) for the SVM-based algorithms
and (b) for the SVDD-based algorithms.

differ. The introduced algorithms are able to process such

kind of sequences, thanks to their generic structure in Fig. 2.

However, the conventional OC-SVM and SVDD algorithms

cannot directly process these sequences [6], [7]. For these

algorithms, we take the mean of each sequence to obtain

a fixed-length vector sequence, i.e., 2-D in this case (two

coordinates of a pixel). In order to evaluate the performances,

we first choose a digit as normal and another digit as an

anomaly. We emphasize that we randomly choose digits for

illustration and obtain similar performances for the other

digits. We then divide the samples of these digits into training

and test parts, where we allocate 60% of the samples for the

training part and 40% for the test part. In both the training and

test parts, we select the samples so that 10% of the samples

are anomalies. Then, using the training part, we optimize

the parameters of each algorithm using twofold cross valida-

tion, where we also select a certain crucial parameter, e.g., µ.

This procedure results in µ = 0.05, 0.001, 0.05, and

0.01 for LSTM-GSVM, LSTM-QPSVM, LSTM-GSVDD, and

LSTM-QPSVDD, respectively. Furthermore, we select the

output dimension of the LSTM architecture as m = 2 and the

regularization parameter as λ = 0.5 for all the algorithms. For

the implementation of the conventional OC-SVM and SVDD

algorithms, we use the LIBSVM library and their parameters

are selected in a similar manner via built-in optimization tools

of LIBSVM [41].

Here, we use the area under the receiver operating charac-

teristic (ROC) curve as a performance metric [42]. In a ROC

curve, we plot a true positive rate (TPR) as a function of false

positive rate (FPR). Area under this curve, i.e., also known

as AUC, is a well-known performance measure for anomaly

detection tasks [42]. In Fig. 4(a) and (b), we illustrate the ROC

curves and provide the corresponding AUC scores, where we

label digit “0” and “9” as normal and anomaly, respectively.

For the OC-SVM and SVDD algorithms, since we directly

take the mean of variable length data sequences to obtain fixed-

length sequences, they achieve significantly lower AUC scores

compared to the introduced LSTM-based methods. Among

the LSTM-based methods, LSTM-GSVM slightly outperforms

LSTM-QPSVM. On the other hand, LSTM-GSVDD achieves

significantly higher AUC than LSTM-QPSVDD. Since the

quadratic programming-based training method depends on the

separated consecutive updates of the LSTM and SVM (or

SVDD) parameters, it might not converge to even a local

minimum. However, the gradient-based method can guarantee

convergence to at least a local minimum given a proper choice

of the learning rate [33]. Thus, although these methods might

provide similar performances as in Fig. 4(a), it is also expected

to obtain much higher performance from the gradient-based

method for certain cases as shown in Fig. 4(b). However,

overall, the introduced algorithms provide significantly higher

AUC than the conventional methods.

Besides the previous scenario, we also consider a scenario,

where we label digit “1” and “7” as normal and anomaly,

respectively. In Fig. 5(a) and (b), we illustrate the ROC curves

and provide the corresponding AUC scores. As in the previous

scenario, for both the SVM and SVDD cases, the intro-

duced algorithms achieve higher AUC scores than the conven-

tional algorithms. Among the introduced algorithms, LSTM-

GSVM and LSTM-GSVDD achieve the highest AUC scores

for the SVM and SVDD cases, respectively. Furthermore,

the AUC score of each algorithm is much lower compared

to the previous case due to the similarity between digits “1”

and “7.”

In addition to the digit data set, we perform another experi-

ment that handles variable length data sequences. In this exper-

iment, we evaluate the anomaly detection performances of the

algorithms on a financial data set, i.e., the Ford stock price

data set [43]. Here, we have daily stock price values. For our

anomaly detection framework, we first artificially introduce

anomalies via a Gaussian distribution with the mean and ten

times the variance of the training data. We then select certain

parts of the time series data by applying a variable length

time windowing operation, thus we obtain variable length data

ERGEN AND KOZAT: UNSUPERVISED ANOMALY DETECTION WITH LSTM NEURAL NETWORKS 3137

Fig. 5. ROC curves of the algorithms for the digit data set, where we consider digit “1” as normal and digit “7” as anomaly (a) for the SVM-based algorithms
and (b) for the SVDD-based algorithms.

Fig. 6. ROC curves of the stock price data set for (a) SVM-based algorithms and (b) SVDD-based algorithms.

sequences. Moreover, unlike the previous cases, we choose

µ = 0.01, 0.001, 0.001, and 0.005 for LSTM-GSVM, LSTM-

QPSVM, LSTM-GSVDD, and LSTM-QPSVDD, respectively.

In Fig. 6, we observe that the LSTM-based algorithms

achieve considerably higher AUC scores than the SVM and

SVDD algorithms. Among the LSTM-based methods, LSTM-

GSVM slightly outperforms LSTM-QPSVM. Similarly,

LSTM-GSVDD achieves slightly higher AUC than LSTM-

QPSVDD. Moreover, as in the previous experiments, the

gradient-based training method provides higher performance

compared to the quadratic programming-based method, thanks

to its learning capabilities.

B. Benchmark Real Data sets

In this section, we compare the AUC scores of each

algorithm on several different real benchmark data sets.

Moreover, we provide the training times and evaluate the

effects of the orthogonality constraint on these data sets. Since

our approach in this article is generic, in addition to the

LSTM-based algorithms, we also implement our approach

on the recently introduced RNN architecture, i.e., the GRU

architecture, which is defined by the following equations [21]:

z̃i, j = σ(W (z̃)xi, j + R(z̃)hi, j−1) (70)

r i, j = σ(W (r)xi, j + R(r)hi, j−1) (71)

h̃i, j = g(W (h̃)xi, j + r i, j � (R(h̃)hi, j−1)) (72)

hi, j = h̃i, j � z̃i, j + hi, j−1 � (1 − z̃i, j) (73)

where hi, j ∈ R
m is the output vector and xi, j ∈ R

p is the

input vector. Furthermore, W (·) and R(·) are the parameters

of the GRU, where the sizes are selected according to the

dimensionality of the input and output vectors. We then

replace (1)–(6) with (70)–(73) in Fig. 2 to obtain GRU-based

anomaly detectors. Note that in this section, we also include

the LSTM-based anomaly detection approach in [10] and [25]

as another benchmark performance criterion, especially for the

experiments with time series data.

3138 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

TABLE I

AUC SCORES OF THE ALGORITHMS FOR THE OCCUPANCY, HKE RATE, HTTP, AND ALCOA STOCK PRICE DATA SETS

1) Occupancy Detection: We first evaluate the perfor-

mances of the algorithms on the occupancy data set [37].

In this data set, we have five features, which are relative

humidity percentage, light (in lux), carbon dioxide level

(in ppm), temperature (in Celsius), and humidity ratio, and our

aim is to determine whether an office room is occupied or not

based on the features. Here, we use the same procedure with

Section IV-A to separate the test and training data. Moreover,

using the training data, we select µ = 0.05, 0.05, 0.001,

and 0.01 for LSTM-GSVM, LSTM-QPSVM, LSTM-GSVDD,

and LSTM-QPSVDD, respectively. Note that, for the GRU-

based algorithms in this section, we use the same parame-

ter setting with the LSTM-based algorithms. Furthermore,

we choose m = 5 and λ = 0.5 for all of the experiments

in this section in order to maximize the performances of the

algorithms.

As can be seen in Table I, due to their inherent memory,

both the LSTM- and GRU-based algorithms achieve consid-

erably high-AUC scores compared to the conventional SVM

and SVDD algorithms. Moreover, GRU-GSVDD achieves the

highest AUC score among all the algorithms, where the

LSTM-based algorithms (LSTM-GSVM and LSTM-QPSVM)

also provide comparable AUC scores. Here, we also observe

that the gradient-based training method provides higher AUC

scores compared to the quadratic programming-based training

method, which might stem from its separated update proce-

dure that does not guarantee convergence to a certain local

minimum.

2) Anomalous Exchange Rate Detection: Other than the

occupancy data set, we also perform an experiment on the

HKE rate data set in order to examine the performances for

a real-life financial scenario. In this data set, we have the

amount of Hong Kong dollars that one can buy for one US

dollar each day. In order to introduce anomalies to this data

set, we artificially add samples from a Gaussian distribution

with the mean and ten times the variance of the training data.

Furthermore, using the training data, we select µ = 0.01,

0.005, 0.05, and 0.05 for LSTM-GSVM, LSTM-QPSVM,

LSTM-GSVDD, and LSTM-QPSVDD, respectively.

In Table I, we illustrate the AUC scores of the algorithms

on the HKE rate data set. Since we have time-series data, both

the LSTM- and GRU-based algorithms naturally outperform

the conventional methods, thanks to their inherent memory,

which preserves sequential information. Moreover, since the

LSTM architecture also controls its memory content via an

output gate unlike the GRU architecture [21], we obtain the

highest AUC scores from LSTM-GSVM. As in the previous

cases, the gradient-based training method provides better per-

formance than the quadratic programming-based training.

3) Network Anomaly Detection: We also evaluate the AUC

scores of the algorithms on the http data set [39]. In this

data set, we have 4 features, which are duration (number of

seconds of the connection), network service, number of bytes

from source to destination and from destination to source.

Using these features, we aim to distinguish normal connections

from network attacks. In this experiment, we select µ = 0.01,

0.05, 0.001, and 0.01 for LSTM-GSVM, LSTM-QPSVM,

LSTM-GSVDD, and LSTM-QPSVDD, respectively.

We demonstrate the performances of the algorithms on the

http data set in Table I. Even though all the algorithms achieve

high-AUC scores on this data set, we still observe that the

LSTM- and GRU-based algorithms have higher AUC scores

than the conventional SVM and SVDD methods. Overall,

GRU-QPSVDD achieves the highest AUC score and the

quadratic programming-based training methods perform better

than the gradient-based training method on this data set.

However, since the AUC scores are very high and close to

each other, we observe only slight performance improvement

for our algorithms in this case.

4) Anomalous Stock Price Detection: As the last exper-

iment, we evaluate the anomaly detection performances of

the algorithms on another financial data set, i.e., the Alcoa

stock price data set [40]. In this data set, we have daily

stock price values. As in the HKE rate data set, we again

artificially introduce anomalies via a Gaussian distribution

with the mean and ten times the variance of the training data.

Moreover, we choose µ = 0.01, 0.001, 0.001, and 0.005 for

LSTM-GSVM, LSTM-QPSVM, LSTM-GSVDD, and LSTM-

QPSVDD, respectively.

In Table I, we illustrate the AUC scores of the algorithms

on the Alcoa stock price data set. Here, we observe that the

GRU- and LSTM-based algorithms achieve considerably

higher AUC scores than the conventional methods, thanks to

their memory structure. Although the LSTM-based algorithms

have higher AUC scores in general, we obtain the highest

AUC score from GRU-QPSVDD. Moreover, as in the previ-

ous experiments, the gradient-based training method provides

higher performance compared to the quadratic programming-

based method thanks to its learning capabilities.

5) Constraint and Time Complexity Analysis: In Table II,

we compare the performance of LSTM-GSVM under three

different scenarios, i.e., using the orthogonality constraint,

using the conventional `2 norm regularization constraint and

a case without constraint. Note that since LSTM-GSVM

ERGEN AND KOZAT: UNSUPERVISED ANOMALY DETECTION WITH LSTM NEURAL NETWORKS 3139

TABLE II

AUC SCORES OF LSTM-GSVM FOR THE ORTHOGONALITY CONSTRAINT

IN (9), `2 NORM REGULARIZATION CONSTRAINT IN (11),
AND NO CONSTRAINT CASES

TABLE III

TRAINING TIMES (IN SECONDS) OF THE ALGORITHMS. FOR THIS

EXPERIMENT, WE USE A COMPUTER THAT HAS I5-6400
PROCESSOR, 2.7 GHz CPU, AND 16 GB RAM

provides high AUC scores for all the experiments, we choose

it to perform this experiment. We observe that the case with

the orthogonality constraint outperforms the other cases. Thus,

we use it to improve our detection performance in this article.

In addition to this, we measure the training times of the

algorithms for all the data sets. In Table III, we observe

that the gradient-based algorithms achieve significantly faster

training performance compared to the quadratic programming-

based methods due to the highly complicated structure of the

quadratic programming optimization method.

V. CONCLUDING REMARKS

In this article, we study anomaly detection in an unsu-

pervised framework and introduce LSTM-based algorithms.

In particular, we have introduced a generic LSTM-based

structure in order to process variable-length data sequences.

After obtaining fixed-length sequences via our LSTM-based

structure, we introduce a scoring function for our anomaly

detectors based on the OC-SVM [6] and SVDD [7] algorithms.

As the first time in the literature, we jointly optimize the

parameters of both the LSTM architecture and the final scoring

function of the OC-SVM (or SVDD) formulation. To jointly

optimize the parameters of our algorithms, we have also

introduced gradient and quadratic programming-based training

methods with different algorithmic merits, where we extend

our derivations for these algorithms to the semisupervised and

fully supervised frameworks. In order to apply the gradient-

based training method, we modify the OC-SVM and SVDD

formulations and then provide the convergence results of the

modified formulations to the actual ones. Therefore, we obtain

highly effective anomaly detection algorithms, especially for

time series data, that are able to process variable length data

sequences. In our simulations, due to the generic structure of

our approach, we have also introduced GRU-based anomaly

detection algorithms. Through an extensive set of experiments,

we illustrate significant performance improvements achieved

by our algorithms with respect to the conventional meth-

ods [6], [7], [10] over several different real and simulated

data sets.

APPENDIX A

PROOF OF PROPOSITION I

In order to simplify our notation, for any given w, θ , X i ,

and ρ, we denote βw,ρ(h̄i) as �. We first show that Sτ (�) ≥
G(�), ∀τ > 0. Since

Sτ (�) = 1

τ
log(1 + eτ�)

≥ 1

τ
log(eτ�)

= �

and Sτ (�) ≥ 0, we have Sτ (�) ≥ G(�) = max{0,�}. Then,

for any � ≥ 0, we have

∂Sτ (�)

∂τ
= −1

τ 2
log(1 + eτ�) + 1

τ

�eτ�

1 + eτ�

<
−1

τ
� + 1

τ

�eτ�

1 + eτ�

≤ 0

and for any � < 0, we have

∂Sτ (�)

∂τ
= −1

τ 2
log(1 + eτ�) + 1

τ

�eτ�

1 + eτ�

< 0,

thus, we conclude that Sτ (�) is a monotonically decreasing

function of τ . As the last step, we derive an upper bound for

the difference Sτ (�)− G(�). For � ≥ 0, the derivative of the

difference is as follows:

∂(Sτ (�) − G(�))

∂�
= eτ�

1 + eτ�
− 1 < 0,

hence, the difference is a decreasing function of � for � ≥ 0.

Therefore, the maximum value is log(2)/τ and it occurs at

� = 0. Similarly, for � < 0, the derivative of the difference

is positive, which shows that the maximum for the difference

occurs at � = 0. With this result, we obtain the following

bound:

log(2)

τ
= max

�

�

Sτ (�) − G(�)
�

. (74)

Using (74), for any � > 0, we can choose τ sufficiently large

so that Sτ (�) − G(�) < �. Hence, as τ increases, Sτ (�)

uniformly converges to G(�). By averaging (74) over all the

data points and multiplying with 1/λ, we obtain

log(2)

λτ
= max

w,ρ,θ

�

Fτ (w, ρ, θ) − F(w, ρ, θ)
�

which proves the uniform convergence of Fτ (·, ·, ·) to

F(·, ·, ·).

3140 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 31, NO. 8, AUGUST 2020

APPENDIX B

PROOF OF THEOREM I

We have the following Hessian matrix of Fτ (w, ρ, θ) with

respect to w:

∇2
w Fτ (w, ρ, θ) = I + τ

nλ

n
�

i=1

eτβw,ρ(h̄i)

(1 + eτβw,ρ (h̄i))2

h̄i h̄
T

i ,

which satisfies v
T ∇2

w Fτ (w, ρ, θ)v > 0 for any nonzero

column vector v. Hence, the Hessian matrix is positive definite,

which shows that Fτ (w, ρ, θ) is strictly convex function of w.

Consequently, the solution wτ is both global and unique given

any ρ and θ . In addition, we have the following second-order

derivative for ρ:

∂2 Fτ (w, ρ, θ)

∂ρ2
= τ

nλ

n
�

i=1

eτβw,ρ (h̄i)

(1 + eτβw,ρ (h̄i))2

> 0,

which implies that Fτ (w, ρ, θ) is strictly convex function of ρ.

As a result, the solution ρτ is both global and unique for any

given w and θ .

Let w
∗ and ρ∗ be the solutions of (27) for any fixed θ .

From the proof of Proposition 1, we have

Fτ (w
∗, ρ∗, θ) ≥ Fτ (wτ , ρτ , θ) ≥ F(wτ , ρτ , θ)

≥ F(w∗, ρ∗, θ). (75)

Using the convergence result in Proposition 1 and (75),

we have

lim
τ→∞

Fτ (wτ , ρτ , θ) ≤ lim
τ→∞

Fτ (w
∗, ρ∗, θ) = F(w∗, ρ∗, θ)

lim
τ→∞

Fτ (wτ , ρτ , θ) ≥ F(w∗, ρ∗, θ)

which proves the following equality:
lim

τ→∞
Fτ (wτ , ρτ , θ) = F(w∗, ρ∗, θ).

APPENDIX C

PROOF OF THEOREM II

We have the following Hessian matrix of Fτ (c̃, R, θ) with

respect to c̃:

∇2

c̃
Fτ (c̃, R, θ)=

n
�

i=1

2I(�i +�2
i)+4τ�i(c̃ − h̄i)(c̃− h̄i)

T

nλ
�

1 + �i

�2
,

where �i = e
τ9

c̃,R
(h̄i)

, which implies v
T ∇2

c̃
Fτ (c̃, R, θ)

v > 0 for any nonzero column vector v. Thus, the Hessian

matrix is positive definite, which shows that Fτ (w, ρ, θ) is

strictly convex function of c̃. As a result, the solution c̃τ is

both global and unique given any R and θ . In addition to this,

we have the following second-order derivative for R2:

∂2 Fτ (c̃, R, θ)

∂(R2)2
= τ

nλ

n
�

i=1

e
τ9

c̃,R
(h̄i)

�

1 + e
τ9

c̃,R
(h̄i)�2

> 0,

which implies that Fτ (c̃, R, θ) is strictly convex function

of R2. Therefore, the solution R2
τ is both global and unique

for any given c̃ and θ .

The convergence proof directly follows the proof of

Theorem 1.

REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection:
A survey,” ACM Comput. Surv., vol. 41, no. 3, p. 15, Jul. 2009.
doi: 10.1145/1541880.1541882.

[2] N. Görnitz, L. A. Lima, K. Müller, M. Kloft, and S. Nakajima, “Support
vector data descriptions and k-means clustering: One class?” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 3994–4006,
Sep. 2018.

[3] Z. Ghafoori, S. M. Erfani, S. Rajasegarar, J. C. Bezdek,
S. Karunasekera, and C. Leckie, “Efficient unsupervised parameter
estimation for one-class support vector machines,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 29, no. 10, pp. 5057–5070, Oct. 2018.

[4] Q. Chen, R. Luley, Q. Wu, M. Bishop, R. W. Linderman, and
Q. Qiu, “AnRAD: A neuromorphic anomaly detection framework for
massive concurrent data streams,” IEEE Trans. Neural Netw. Learn.

Syst., vol. 29, no. 5, pp. 1622–1636, May 2018.

[5] X. Ding, Y. Li, A. Belatreche, and L. P. Maguire, “Novelty detection
using level set methods,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26,
no. 3, pp. 576–588, Mar. 2015.

[6] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and
R. C. Williamson, “Estimating the support of a high-dimensional distri-
bution,” Neural Comput., vol. 13, no. 7, pp. 1443–1471, 2001.

[7] D. M. J. Tax and R. P. W. Duin, “Support vector data description,”
Mach. Learn., vol. 54, no. 1, pp. 45–66, Jan. 2004. doi: 10.1023/
B:MACH.0000008084.60811.49.

[8] J. Ma and S. Perkins, “Time-series novelty detection using one-class
support vector machines,” in Proc. Int. Joint Conf. Neural Netw.,
vol. 3, Jul. 2003, pp. 1741–1745.

[9] R. Zhang, S. Zhang, S. Muthuraman, and J. Jiang, “One class support
vector machine for anomaly detection in the communication network
performance data,” in Proc. 5th Conf. Appl. Electromagn., Wireless

Opt. Commun. (ELECTROSCIENCE). Stevens Point, WI, USA: World
Scientific and Engineering Academy and Society, 2007, pp. 31–37.

[10] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, Long Short

Term Memory Networks for Anomaly Detection in Time Series.
Louvain-la-Neuve, Belgium: Presses Universitaires de Louvain, 2015,
p. 89.

[11] J. Zhao and L. Itti, “Classifying time series using local descriptors
with hybrid sampling,” IEEE Trans. Knowl. Data Eng., vol. 28, no. 3,
pp. 623–637, Mar. 2016.

[12] R. C. Venkatesan and A. Plastino, “Fisher information framework
for time series modeling,” Phys. A. Stat. Mech. Appl., vol. 480,
pp. 22–38, Aug. 2017. [Online]. Available: http://www.sciencedirect.
com/science/article/pii/S0378437117301863

[13] K. T. Abou-Moustafa, M. Cheriet, and C. Y. Suen, “Classification of
time-series data using a generative/discriminative hybrid,” in Proc. 9th

Int. Workshop Frontiers Handwriting Recognit., Oct. 2004, pp. 51–56.

[14] K. T. Abou-Moustafa. (2003). A Generative-Discriminative Frame-
work for Time-Series Data Classification. [Online]. Available:
https://spectrum.library.concordia.ca/2392/

[15] H. Debar, M. Becker, and D. Siboni, “A neural network component for
an intrusion detection system,” in Proc. IEEE Comput. Soc. Symp. Res.
Secur. Privacy, May 1992, pp. 240–250.

[16] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[17] K. Greff, R. K. Srivastava, J. Koutnìk, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space odyssey,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[18] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[19] R. Kozma, M. Kitamura, M. Sakuma, and Y. Yokoyama, “Anomaly
detection by neural network models and statistical time series analysis,”
in Proc. IEEE Int. Conf. Neural Netw., IEEE World Congr. Comput.
Intell., vol. 5, Jun. 1994, pp. 3207–3210.

[20] C. M. Bishop, “Novelty detection and neural network validation,” IEE

Proc.-Vis., Image Signal Process., vol. 141, pp. 217–222, Aug. 1994.

[21] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555. [Online]. Available: https://arxiv.org/abs/1412.3555

[22] Y. Wang, J. Wong, and A. Miner, “Anomaly intrusion detection using
one class SVM,” in Proc. IEEE 5th Annu. SMC Inf. Assurance Workshop,
Jun. 2004, pp. 358–364.

[23] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, “Geometry
from a time series,” Phys. Rev. Lett., vol. 45, no. 9, p. 712, Sep. 1980.

http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49
http://dx.doi.org/10.1023/B:MACH.0000008084.60811.49

ERGEN AND KOZAT: UNSUPERVISED ANOMALY DETECTION WITH LSTM NEURAL NETWORKS 3141

[24] R. Zhang, S. Zhang, Y. Lan, and J. Jiang, “Network anomaly detection
using one class support vector machine,” in Proc. Int. MultiConf. Eng.

Comput. Scientists, vol. 1, 2008, pp. 1–5.
[25] S. Chauhan and L. Vig, “Anomaly detection in ECG time signals via

deep long short-term memory networks,” in Proc. IEEE Int. Conf. Data

Sci. Adv. Anal. (DSAA), Oct. 2015, pp. 1–7.
[26] T. Ergen and S. S. Kozat, “Online training of LSTM networks in

distributed systems for variable length data sequences,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 5159–5165, Oct. 2018.
[27] L. Jing et al., “Gated orthogonal recurrent units: On learning to

forget,” 2017, arXiv:1706.02761. [Online]. Available: https://arxiv.
org/abs/1706.02761

[28] S. Wisdom et al., “Full-capacity unitary recurrent neural networks,” in
Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 4880–4888.

[29] M. Bai, B. Zhang, and J. Gao, “Tensorial recurrent neural networks for
longitudinal data analysis,” 2017, arXiv:1708.00185. [Online]. Avail-
able: https://arxiv.org/abs/1708.00185

[30] J. Platt, “Sequential minimal optimization: A fast algorithm for
training support vector machines,” Tech. Rep. MSR-TR-98-14,
Apr. 1998, p. 21. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/sequential-minimal-optimization-a-fast-
algorithm-for-training-support-vector-machines/

[31] Z. Wen and W. Yin, “A feasible method for optimization with orthog-
onality constraints,” Math. Program., vol. 142, no. 1, pp. 397–434,
Dec. 2013.

[32] A. Beck, “On the convergence of alternating minimization for con-
vex programming with applications to iteratively reweighted least
squares and decomposition schemes,” SIAM J. Optim., vol. 25, no. 1,
pp. 185–209, Jan. 2015.

[33] A. H. Sayed, Fundamentals of Adaptive Filtering. Hoboken, NJ, USA:
Wiley, 2003.

[34] K. P. Bennett and A. Demiriz, “Semi-supervised support vector
machines,” in Proc. Adv. Neural Inf. Process. Syst., 1999, pp. 368–374.

[35] N. Görnitz, M. Kloft, K. Rieck, and U. Brefeld, “Toward super-
vised anomaly detection,” J. Artif. Intell. Res., vol. 46, no. 1,
pp. 235–262, Jan. 2013. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2512538.2512545

[36] D. Dua and C. Graff, “UCI machine learning repository,” School Inf.
Comput. Sci., Univ. California, Irvine, Irvine, CA, USA, Tech. Rep.,
2017. [Online]. Available: http://archive.ics.uci.edu/ml

[37] L. M. Candanedo and V. Feldheim, “Accurate occupancy detection of an
office room from light, temperature, humidity and CO2 measurements
using statistical learning models,” Energy Buildings, vol. 112, pp. 28–39,
Jan. 2016.

[38] E. W. Frees. Regression Modelling With Actuarial and Financial

Applications. Accessed: May 1, 2018. [Online]. Available: http://
instruction.bus.wisc.edu/jfrees/jfreesbooks/Regression%20Modeling/
BookWebDec2010/data.html

[39] S. Rayana. (2016). ODDS Library. [Online]. Available: http://odds.cs.
stonybrook.edu

[40] Summary for Alcoa Inc. Common Stock. Accessed: May 1, 2018.
[Online]. Available: http://finance.yahoo.com/quote/AA?ltr=1

[41] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vec-
tor machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3,
pp. 27:1–27:27, 2011. [Online]. Available: http://www.csie.ntu.edu.tw/
~cjlin/libsvm

[42] A. P. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern Recognit., vol. 30, no. 7,
pp. 1145–1159, 1997.

[43] Summary for Ford Inc. Common Stock. Accessed: May 1, 2018. [Online].
Available: http://finance.yahoo.com/quote/AA?ltr=1

Tolga Ergen received the B.S. and M.S. degrees in
electrical and electronics engineering from Bilkent
University, Ankara, Turkey, in 2016 and 2018,
respectively. He is currently pursuing the Ph.D.
degree with the Electrical Engineering Department,
Stanford University, Stanford, CA, USA.

His current research interests include machine
learning, optimization, and neural networks.

Suleyman Serdar Kozat (A’10–M’11–SM’11)
received the B.S. degree (Hons.) from Bilkent
University, Ankara, Turkey, in 1998, and the
M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of Illinois at
Urbana–Champaign, Urbana, IL, USA, in 2001 and
2004, respectively.

He joined the IBM Thomas J. Watson Research
Center, Yorktown Heights, NY, USA, as a Research
Staff Member and later became a Project Leader
with the Pervasive Speech Technologies Group,

where he focused on problems related to statistical signal processing and
machine learning. He was a Research Associate with the Cryptography and
Anti-Piracy Group, Microsoft Research, Redmond, WA, USA. He is currently
a Professor with the Electrical and Electronics Engineering Department,
Bilkent University. He has coauthored more than 200 papers in refereed
high impact journals and conference proceedings and holds several patent
inventions (used in several different Microsoft and IBM products). He holds
several patent inventions due to his research accomplishments with the IBM
Thomas J. Watson Research Center and Microsoft Research. His current
research interests include cyber security, anomaly detection, big data, data
intelligence, adaptive filtering, and machine learning algorithms for signal
processing.

Dr. Kozat received many international and national awards. He is the Elected
President of the IEEE Signal Processing Society, Turkey Chapter.

