
Unsupervised Approach for Selecting Sentences in Query-based Summarization

Yllias Chali and Shafiq R. Joty
Department of Mathematics and Computer Science

University of Lethbridge
4401 University Drive

Lethbridge, Alberta, Canada, T1K 3M4
chali,jotys@cs.uleth.ca

Abstract

When a user is served with a ranked list of relevant doc-
uments by the standard document search engines, his
search task is usually not over. He has to go through
the entire document contents to judge its relevance and
to find the precise piece of information he was looking
for. Query-relevant summarization tries to remove the
onus on the end-user by providing more condensed and
direct access to relevant information.
Query-relevant summarization is the task to synthesize
a fluent, well-organized summary of the document col-
lection that answers the user questions. We extracted
several features of different types (i.e. lexical, lexi-
cal semantic, statistical and cosine similarity) for each
of the sentences in the document collection in order
to measure its relevancy to the user query. We exper-
imented with two well-known unsupervised statistical
machine learning techniques: K-Means and EM algo-
rithms and evaluated their performances. For all these
methods of generating summaries, we have shown the
effects of different kinds of features.

Introduction
Question Answering (QA) is retrieving answers to natural
language questions from a collection of documents rather
than retrieving relevant documents containing the keywords
of the query. After having made substantial headway in fac-
toid and list questions (such as “Who won the nobel prize in
peace in 2006?” or “Name the books written by Dr. Muham-
mad Yunus”), researchers have turned their attention to more
complex information needs that cannot be answered by sim-
ply extracting named entities (persons, organization, loca-
tions, dates, etc.) from documents. For example, the ques-
tions : “Describe steps taken and worldwide reaction prior
to the introduction of the Euro on January 1, 1999. Include
predictions and expectations reported in the press.” require
inferencing and synthesizing information from multiple doc-
uments, which in computation linguistics we call query-
based multi-document summarization. The “definition” and
“other” questions in the TREC-QA track and query-relevant
summarization task of DUC 1 exemplify this shift to more

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Document Understanding Conference

complex information needs. Our paper deals with this re-
search problem in the context of DUC 2007: “Given a com-
plex question (topic description) and a collection of relevant
documents, the task is to synthesize a fluent, well-organized
250-word summary of the documents that answers the ques-
tion(s) in the topic”.

In this paper, we extensively study two unsupervised
learning techniques: EM and K-means for this particular
problem. We extract several features of type: lexical, lex-
ical semantic, statistical and cosine similarity for each of
the sentences in the document collection to measure its rele-
vancy to the user query. We then used the soft clustering al-
gorithm EM and hard clustering algorithm K-means to rank
the sentences and generate summaries accordingly. For each
of these algorithms we have shown the effects of different
kinds of features.

Although we concentrate on query relevant summariza-
tion task in this paper, the methods should also be useful
in applications that share similar problems and structures.
This paper is organized as follows: the following section de-
scribes how the features are extracted, in the next section
we discuss the learning issues and presents our learning ap-
proach, section after that describes our experimental study.
We conclude and discuss future directions in the last section.

Feature Extraction
The sentences in the document collection and topic narration
are analyzed in various levels and each of the document-
sentences is represented as a vector of feature-values. We
use several types of features and investigate below their con-
tribution to generate quality summary. The features can be
divided into several categories:

Lexical Features
N-gram Overlap With the view to measure the N-gram
(N=1,2,3,4) overlap scores, a Query Pool and a Sentence
Pool are created. In order to create the Query Pool, we took
the query sentences, for each query sentence we created a
set of related sentences by replacing an important word (i.e.
noun, verb, adverb and adjective) by its synonym(s). We
created a sentence pool for each of the document-sentences
in the same way. We measure the recall based n-gram scores
using the following formula:

47

Proceedings of the Twenty-First International FLAIRS Conference (2008)

N − gram(S,Q) =
∑

gramn∈S
Countmatch(gramn)∑

gramn∈S
Count(gramn)

n− gramscore = argmaxi(argmaxj N − gram(si, qj))

Where, n stands for the length of the n − gram (n =
1, 2, 3, 4) and Countmatch (gramn) is the maximum
number of n-grams co-occurring in the query and candidate
sentence. qj is the jth sentence in the query pool and si is
the ith sentence in the sentence pool.

Longest Common Subsequence and Weighted
Longest Common Subsequence A sequence
W = [w1, w2, ..., wn] is a subsequence of another se-
quence X = [x1, x2, ..., xm] , if there exists a strict
increasing sequence [i1, i2, ..., ik] of indices of X such that
for all j = 1, 2, ..., k we have xij = wj (Cormen, Leiser-
son, & Rivest 1989). Given two sequences, S1 and S2, the
longest common subsequence (LCS) of S1 and S2 is a
common subsequence with maximum length.

The longer the LCS of two sentences is, the more simi-
lar the two sentences are. Following (Lin 2004), we used
LCS-based F-measure to estimate the similarity between the
document sentence S of length m and the query sentence Q
of length n as follows:

Rlcs(S,Q) =
LCS(S,Q)

m

Plcs(S,Q) =
LCS(S,Q)

n
Flcs(S,Q) = (1− α)× Plcs + α×Rlcs

Where, LCS(S,Q) is the length of a longest common sub-
sequence of S and Q and α is a constant that determines
the importance of precision and recall. In order to measure
LCS score for a sentence we took a similar approach as the
previous section (i.e. sentence pool and query pool). We
calculated the LCS score using the following formula:

LCS score = argmaxi(argmaxj Flcs(si, qj))

Where, qj is the jth sentence in the query pool and si is
the ith sentence in the sentence pool.

The basic LCS has a problem that it does not differentiate
LCSes of different spatial relations within their embedding
sequences (Lin 2004). To improve the basic LCS method,
we can remember the length of consecutive matches encoun-
tered so far to a regular two dimensional dynamic program
table computing LCS. We call this weighted LCS (WLCS)
and use k to indicate the length of the current consecutive
matches ending at words xi and yj . Given two sentences X
and Y, the WLCS score of X and Y can be computed us-
ing the similar dynamic programming procedure as stated
in (Lin 2004). We computed the WLCS-based F-measure
in the same way as previous section using both the question
pool and sentence pool.

WLCS score = argmaxi(argmaxj Fwlcs(si, qj))

Skip-Bigram Measure Skip-bigram is any pair of words
in their sentence order, allowing for arbitrary gaps. Skip-
bigram measures the overlap of skip-bigrams between a can-
didate sentence and a query sentence. Following (Lin 2004),
the skip bi-gram score between the document sentence S of
length m and the query sentence Q of length n can be com-
puted as follows:

Rskip2(S,Q) =
SKIP2(S,Q)
C(m, 2)

(1)

Pskip2(S,Q) =
SKIP2(S,Q)

C(n, 2)
(2)

Fskip2(S,Q) = (1− α)× Pskip2 + α×Rskip2 (3)

Where, SKIP2(S,Q) is the number of skip bi-gram
matches between S and Q and α is a constant that deter-
mines the importance of precision and recall. C is the com-
bination function. We call the Equation 3, skip bigram-based
F-measure. We computed the skip bigram-based F-measure
as follows:

Skip−bi−gramscore = argmaxi(argmaxj Fskip2(si, qj))

Head and Head Related-words Overlap The number of
heads common in between two sentences can indicate how
much they are relevant to each other. In order to extract
the heads from both query and sentence, the query and the
sentence are parsed by Minipar 2. From the parse trees we
extract the heads and measure the overlap between them as
follows:

Exact Head Score =

∑
w1∈HeadSet Countmatch (w1)∑

w1∈HeadSet Count (w1)

Where HeadSet is the set of head words in the sentence
and Countmatch is the number of matches between the
HeadSet of query and sentence.

Again, we take the synonyms, hyponyms and hypernyms
of both the query-head words and sentence-head words and
measure the overlap similarly using the formula:

HeadRelated Score =

∑
w1∈HeadRelSet Countmatch (w1)∑

w1∈HeadRelSet Count (w1)

Where, HeadRelSet is the set of synonyms, hyponyms
and hypernyms of head words in the sentence and
Countmatch is the number of matches between the head
related set of query and sentence.

Basic Element Overlap Measure We extracted Basic El-
ements (BEs) for the sentences in the document collection
by using BE package distributed by ISI3. We used the stan-
dard BE-F breaker included in the BE package.

Once we get the BEs for a sentence, we computed the
likelihood ratio (LR) for each BE following (Zhou, Lin, &
Hovy 2005). The LR score of each BE is an information
therotic measure that represents the relative importance in
the BE list from the document set that contains all the texts

2Available at http://www.cs.ualberta.ca/ lindek/minipar.htm
3BE website:http://www.isi.edu/ cyl/BE

48

to be summarized. Sorting BEs according to their LR scores
produced a BE-ranked list. Our goal is to generate a sum-
mary that will answer the questions of a topic narrative. The
ranked list of BEs in this way contains important BEs at the
top which may or may not be relevant to the topic ques-
tions. We filter those BEs by checking whether they contain
any word which is a query word or a query related word(i.e.
synonyms, hypernyms, hyponyms and gloss words). The
score of a sentence is the sum of its BE scores divided by
the number of BEs in the sentence.

Lexical Semantic Features
We form a set of words which we call query related words
by taking the important words (i.e. nouns, adjectives,
verbs and adverbs) from the query, their synonyms, hy-
pernyms/hyponyms and important words from their gloss
definitions. Synonym overlap measure is the overlap be-
tween the list of synonyms of the important words extracted
from the candidate sentence and query related words. Hy-
pernym/hyponym overlap measure is the overlap between
the list of hypernyms and hyponyms of the nouns extracted
from the sentence in consideration and query related words
and gloss overlap measure is the overlap between the list
of important words that are extracted from gloss definition
of nouns in the sentence in consideration and query related
words.

Statistical Similarity Measures
Statistical similarity measures are based on the co-occurance
of similar words in a corpus. We have used two statistical
similarity measures:

Dependency-based similarity measure and Proximity-
based similarity measure Dependency-based similarity
measure uses the dependency relations among words in or-
der to measure the similarity (Lin 1998b). It extracts the
dependency triples then uses statistical approach to measure
the similarity. Proximity-based similarity measure is com-
puted based on the linear proximity relationship between
words only (Lin 1998a). It uses the information theoretic
definition of similarity to measure the similarity.

We used the thesaurus provided by Dekang Lin4. Using
the data, one can retrieve most similar words for a given
word. The similar words are grouped into clusters. Note
that, for a word there can be more than one cluster. Each
cluster represents the sense of the word and its similar words
for that sense.

For each query-word, we extract all of its clusters from
the thesaurus. Now, in order to determine the right clus-
ter for a query word, we measure the overlap score between
the query related words (i.e. exact words, synonyms, hyper-
nyms/hyponyms and gloss) and the clusters. The hypothesis
is that, the cluster that has more words common with the
query related words is the right cluster. We chose the cluster
for a word which has the highest overlap score.

Once we get the clusters for the query words, we mea-
sured the overlap between the cluster words and the sentence

4http://www.cs.ualberta.ca/ lindek/downloads.htm

words:

Measure =

∑
w1∈SenWords Countmatch (w1)∑

w1∈SenWords Count (w1)

Where, SenWords is the set of words for the sentence and
Countmatch is the number of matches between the Sen-
tence Words and the cluster of similar words.

Graph-based Similarity Measure
In (Erkan & Radev 2004), the concept of graph-based cen-
trality is used to rank a set of sentences, in producing generic
multi-document summaries. A similarity graph is produced
for the sentences in the document collection. In the graph,
each node represents a sentence. The edges between nodes
measure the cosine similarity between the respective pair
of sentences. The degree of a given node is an indication
of how much important the sentence is. Once the similar-
ity graph is constructed, the sentences are then ranked ac-
cording to their eigenvector centrality. The LexRank per-
formed well in the context of generic summarization. To
apply LexRank to query-focused context, a topic-sensitive
version of LexRank is proposed in (Otterbacher, Erkan, &
Radev 2005). We followed a similar approach in order to
calculate this feature. The score of a sentence is determined
by a mixture model of the relevance of the sentence to the
query and the similarity of the sentence to other high-scoring
sentences. We capture this idea by the following mixture
model:

p(s|q) = d× rel(s|q)∑
z∈C rel(z|q)

+ (1− d)

×
∑
v∈C

sim(s, v)∑
z∈C sim(z, v)

× p(v|q) (4)

Where C is the set of all sentences in the collection and
rel(s|q) is the relevance of sentence s to the query q and
computed as follows:

rel(s|q) =
∑
w∈q

log (tfw,s + 1)× log (tfw,q + 1)× idfw

idfw = log

(
N + 1

0.5 + sfw

)
Where tfw,s and tfw,q are the number of times w appears

in s and q, respectively, idfw is the IDF value of word w, N
is the total number of sentences in the cluster and sfw is the
number of sentences that the word w appears in. The value
of the parameter d in equation 4, which we call “bias”, is a
trade-off between two terms in the equation and is set empir-
ically. For higher values of d, we prefer the relevance to the
question to similarity to other sentences. The denominators
in both terms are for normalization. We measure the cosine
similarity weighted by word IDFs as the similarity between
two sentences in a cluster:

sim(x, y) =

∑
w∈x,y tfw,xtfw,y (idfw)2√∑

xi∈x (tfxi,xidfxi
)2
√∑

yi∈y (tfyi,yidfyi
)2

49

Ranking Sentences and Summary Generation
The method used in order to select sentences for query-based
summary extraction, is of type unsupervised learning, that
means, before the learning begins, it is not known how many
subsets (clusters) there are or how they are distinguished
from each other. To start with, we experimented with two
unsupervised learning techniques with the features extracted
in the previous section: (a) K-means learning and (b) Expec-
tation Maximization (EM) learning.

K-means Learning
We start with a set of initial cluster centers and go through
several iterations of assigning each object to the cluster
whose center is closest. After all objects have been assigned,
we recompute the center of each cluster as the centroid or
mean (µ) of its members. The distance function we use is
squared Euclidean distance instead of true Euclidean dis-
tance. Since the square root is a monotonically growing
function squared Euclidean distance has the same result as
the true Euclidean distance but the computation overload is
smaller when the square root is dropped.

Once we have learned the means of the clusters using the
K-means algorithm, our next task is to rank the sentences
according to a probability model. We have used Bayesian
model in order to do so. Bayes’ law says:

P (qk|x,Θ) =
p(~x|qk,Θ)P (qk|Θ)

p(~x|Θ)

=
p(~x|qk,Θ)P (qk|Θ)∑K
k=1 p(~x|qk,Θ)p(qk|Θ)

where qk is a class, ~x is a feature vector representing
a sentence and Θ is the parameter set of all class mod-
els. We set the weights of the clusters as equiprobable (i.e.
P (qk|Θ) = 1/K). We calculated p(~x|qk,Θ) using the gaus-
sian probability distribution. The gaussian probability den-
sity function (pdf) for the d-dimensional random variable ~x
is given by:

p(~µ,Σ)(~x) =
e
−1
2 (~x−µ)T Σ−1(~x−µ)

√
2π

d√
det(Σ)

(5)

where ~µ, the mean vector and Σ, the covariance matrix
are the parameters of the gaussian distribution. We get the
means (~µ) from the K-means algorithm and we calculate the
covariance matrix using the unbiased covariance estimation
procedure:

Σ̂ =
1

N − 1

N∑
i=1

(~xi − ~µj)(~xi − ~µj)T (6)

EM Learning
EM is a “soft” version of K-means algorithm described
above (Manning & Schutze 2000). As K-means, we start
with a set of random cluster centers, c1 · · · ck. In each it-
eration we do a soft assignment of the data-points to every

cluster by calculating their membership probabilities. EM is
an iterative two step procedure: 1. Expectation-step and 2.
Maximization-step. In the expectation step, we compute ex-
pected values for the hidden variables hi,j which are cluster
membership probabilities. Given the current parameters, we
compute how likely an object belongs to any of the clusters.
The maximization step computes the most likely parame-
ters of the model given the cluster membership probabilities.
The data-points are considered to be generated by a mixture
model of k-gaussians of the form:

P (~x) =
k∑
i=1

P (C = i)P (~x|C = i)

=
k∑
i=1

P (C = i)P (~x|~µi,Σi)

Where the total likelihood of model Θ with k components
given the observed data points, X = ~x1, · · · , ~xn is:

L(Θ|X) =
n∏
i=1

k∑
j=1

P (C = j)P (~xi|Θj)

=
n∏
i=1

k∑
j=1

wjP (~xi| ~µj ,Σj)

⇔
n∑
i=1

log
k∑
j=1

wjP (~xi| ~µj ,Σj)

where P is the probability density function (i.e. eq 5). ~µj
and Σj are the mean and covariance matrix of component
j, respectively. Each component contributes a proportion,
wj , of the total population, such that:

∑K
j=1 wj = 1. Log

likelihood can be used instead of likelihood as it turns the
product into sum.

However, a significant problem with the EM algorithm
is that it converges to a local maximum of the likelihood
function and hence the quality of the result depends on the
initialization. We experimented with one summary (for doc-
ument number D0703A from DUC2007) by initializing the
parameters as follows:

~µj = rand(1, · · · , d) ∗
√

Σ(DATA) ∗ 10 + µ(DATA)
Σj = Σ(DATA)
wj = 1/K

The highly variable nature of the results of the tests is re-
flected in the very inconsistent values for the total log like-
lihood (see figure 1) and the results of repeated experiments
indicated that using random starting values for initial esti-
mates of the means frequently gave poor results. There are
two possible solutions to this problem.

In order to get good results from using random starting
values, we will run the EM algorithm several times and
choose the initial configuration for which we get the max-
imum log likelihood among all configurations. Choosing

50

Figure 1: Plots of Log-likelihood values after one itera-
tion (diamonds) and after convergence of EM algorithm
(squares) for a set of random initial mean values

the best one among several runs is very computer intensive
process. So, to improve the outcome of the EM algorithm
on gaussian mixture models it is necessary to find a better
method of estimating initial means for the components. To
achieve this aim, we explored the widely used “K-means”
algorithm as a cluster (means) finding method. That means,
the means found by K-means clustering above will be uti-
lized as the initial means for EM and we calculate the initial
covariance matrices using the unbiased covariance estima-
tion procedure (eq:6).

Once the sentences are clustered by EM algorithm, we
filter out the sentences which are not question-relevant
by checking their probabilities, P (qr|xi,Θ) where, qr de-
notes the cluster “question-relevant”. If for a sentence xi,
P (qr|xi,Θ) > 0.5 then xi is considered to be question-
relevant.

Our next task is to rank the question-relevant sentences in
order to include them in the summary. This can be done eas-
ily by defining a weight vector w for the features and multi-
plying it with the feature vector xi representing the sentence.
So, the rank of the sentence (or feature vector) ~xi is given by:

scorei = ~xi. ~w

Redundancy Checking and Generating Summary
Once the sentences are scored, the sentences deemed to be
important are compared to each other and only those that are
not too similar to other candidates are included in the final
answer or summary. (Goldstein et al. 1999) observed this
what they called “maximum-marginal-relevancy (MMR)”.
Following (Hovy et al. 2006), we modeled this by BE over-
lap between an intermediate summary and a to-be-added
candidate summary sentence. We call this overlap ratio R,
where R is between 0 and 1 inclusively. Setting R = 0.7
means that a candidate summary sentence s, can be added to

an intermediate summary, S, if the sentence has a BE over-
lap ratio less than or equal to 0.7.

Experimental Evaluation
This section describes the results of experiments conducted
using ROUGE automatic evaluation package (Lin 2004) on
DUC 2007 dataset provided by NIST 5. We generated sum-
maries for the 45 topics in DUC 2007 and experimented with
the performance of EM and K-means and the contributions
of different types of features in generating good summaries
for each of the algorithms. To assess the contribution of dif-
ferent features, we grouped them into four classes. They are
as follows:
Lexical: N-gram (N=1,2,3,4), LCS, WLCS score, skip bi-

gram, head, head synonym and BE overlap.
Lexical semantic: Synonym, hypernym/hyponym, gloss,

dependency-based similarity and proximity based similar-
ity.

Cosine similarity: Graph-based similarity.
All features: All the features above.

Discussion
Table 1 to table 3 and table 4 to table 6 show the evalu-
ation measures for K-means and EM learning respectively.
From our experiments, it is obvious that our systems achieve
better results when we include lexical semantic and cosine
similarity features with the lexical features and as our lexical
features include the ROUGE measures so summaries based
on only lexical features achieve good results.

Table 7 shows the F-scores of all the ROUGE measures
for one baseline system, the best system in DUC 2007 and
our two learning algorithms taking all features. The base-
line system generates summaries by returning all the leading
sentences (up to 250 words) in the < TEXT > field of the
most recent document(s).

The experiment results shows that EM outperforms the
K-means algorithm and comparing with the DUC 2007 par-
ticipants our systems achieve top scores.

Conclusion and Future Work
Our experiments show the following: (a) our approaches
achieve promising results, (b) EM outperforms the K-means
algorithm and (c) our systems achieve better results when we
include lexical semantic and cosine similarity features with
the lexical features. In this paper, we experimented with
mainly fatures of type bag of words, later we would like
to add the tree kernel based syntactic and shallow-semantic
features and experiment their contribution for generating
quality summary. As for this research problem, our train-
ing data were not labeled so we could not use supervised
learning algorithms. Our future plan is to experiment with
the supervised learning techniques (i.e. SVM, MAXENT)
and see how do they perform for this problem. We have
also the plan to decompose the complex questions into sev-
eral simple questions before we find the similarity measures
between the document sentence and the query sentence.

5National Institute of Standards and Technology

51

Scores Lexical Lexical
Seman-
tic

Cosine
Similar-
ity

All Fea-
tures

Recall 0.074488 0.076827 0.085583 0.074625
Precision 0.080886 0.084017 0.092514 0.080753
F-measure 0.077543 0.080241 0.088891 0.077568

Table 1: ROUGE-2 measures for different feature combina-
tions of K-means Learning

Scores Lexical Lexical
Seman-
tic

Cosine
Similar-
ity

All Fea-
tures

Recall 0.337800 0.331936 0.346491 0.348463
Precision 0.366650 0.362165 0.373882 0.393244
F-measure 0.351575 0.346288 0.359562 0.369502

Table 2: ROUGE-L measures for different feature combina-
tions of K-means Learning

Scores Lexical Lexical
Seman-
tic

Cosine
Similar-
ity

All Fea-
tures

Recall 0.131197 0.127442 0.139002 0.135857
Precision 0.154859 0.152065 0.162368 0.176021
F-measure 0.141963 0.138527 0.149630 0.153353

Table 3: ROUGE-SU measures for different feature combi-
nations of K-means Learning

Scores Lexical Lexical
Seman-
tic

Cosine
Similar-
ity

All Fea-
tures

Recall 0.088564 0.079678 0.087056 0.084658
Precision 0.095792 0.087032 0.094192 0.091732
F-measure 0.092018 0.083171 0.090462 0.088053

Table 4: ROUGE-2 measures for different feature combina-
tions of EM Learning

Scores Lexical Lexical
Seman-
tic

Cosine
Similar-
ity

All Fea-
tures

Recall 0.354123 0.328675 0.344994 0.348606
Precision 0.383792 0.359347 0.373265 0.377634
F-measure 0.368281 0.343217 0.358481 0.362540

Table 5: ROUGE-L measures for different feature combina-
tions of EM Learning

Scores Lexical Lexical
Seman-
tic

Cosine
Similar-
ity

All Fea-
tures

Recall 0.145570 0.128454 0.138369 0.143064
Precision 0.171446 0.153288 0.162077 0.167845
F-measure 0.157339 0.139623 0.149153 0.154467

Table 6: ROUGE-SU measures for different feature combi-
nations of EM Learning

Algrothms ROUGE-2 ROUGE-L ROUGE-W ROUGE-
SU

Baseline 0.064900 0.310740 0.113810 0.112780
Best Sys-
tem

0.122850 0.405610 0.153600 0.174700

K-means 0.090269 0.368522 0.138643 0.152057
EM 0.100875 0.373738 0.139323 0.163230

Table 7: ROUGE F-measures for the learing algorithms,
baseline system and DUC-2007 best system

References
Cormen, T. R.; Leiserson, C. E.; and Rivest, R. L. 1989.
Introduction to Algorithms. The MIT Press.
Erkan, G., and Radev, D. R. 2004. LexRank: Graph-
based Lexical Centrality as Salience in Text Summariza-
tion. In Journal of Artificial Intelligence Research (JAIR),
457–479.
Goldstein, J.; Kantrowitz, M.; Mittal, V.; and Carbonell, J.
1999. Summarizing Text Documents: Sentence Selection
and Evaluation Metrics. In Proceedings of the 22nd Inter-
national ACM Conference on Research and Development
in Information Retrieval(SIGIR-99), 121–128.
Hovy, E.; Lin, C. Y.; Zhou, L.; and Fukumoto, J. 2006. Au-
tomated Summarization Evaluation with Basic Elements.
In Proceedings of the Fifth Conference on Language Re-
sources and Evaluation(LREC 2006).
Lin, D. 1998a. An Information-Theoretic Definition of
Similarity. In Proceedings of International Conference on
Machine Learning.
Lin, D. 1998b. Automatic Retrieval and Clustering of Sim-
ilar Words. In COLING-ACL98.
Lin, C. Y. 2004. ROUGE: A Package for Automatic Eval-
uation of Summaries. In Proceedings of Workshop on Text
Summarization Branches Out, Post-Conference Workshop
of ACL 2004.
Manning, C. D., and Schutze, H. 2000. Foundations Of
Statistical Natural Language Processing. The MIT Press.
Otterbacher, J.; Erkan, G.; and Radev, D. R. 2005. Using
Random Walks for Question-focused Sentence Retrieval.
In Proceedings of HLT/EMNLP (2005).
Zhou, L.; Lin, C. Y.; and Hovy, E. 2005. A BE-
based Multi-dccument Summarizer with Query Interpreta-
tion. In Proceedings of Document Understanding Confer-
ence (DUC-2005).

52

