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Unsupervised domain adaptation (UDA) is an emerging technique that enables the

transfer of domain knowledge learned from a labeled source domain to unlabeled target

domains, providing a way of coping with the difficulty of labeling in new domains.

The majority of prior work has relied on both source and target domain data for

adaptation. However, because of privacy concerns about potential leaks in sensitive

information contained in patient data, it is often challenging to share the data and labels

in the source domain and trained model parameters in cross-center collaborations.

To address this issue, we propose a practical framework for UDA with a black-box

segmentation model trained in the source domain only, without relying on source data

or a white-box source model in which the network parameters are accessible. In

particular, we propose a knowledge distillation scheme to gradually learn target-specific

representations. Additionally, we regularize the confidence of the labels in the target

domain via unsupervised entropy minimization, leading to performance gain over UDA

without entropy minimization. We extensively validated our framework on a few datasets

and deep learning backbones, demonstrating the potential for our framework to be

applied in challenging yet realistic clinical settings.

Keywords: unsupervised domain adaptation, black-box model, segmentation, brain tumor, MR image, knowledge

distillation

1. INTRODUCTION

Semantic segmentation provides the pixel-wise annotation of lesions or anatomical structures
and has been an important prerequisite for early diagnosis and treatment planning (Liu et al.,
2020a,b; He et al., 2022). Because of the high cost of manual delineations, there is a large
demand for automatic segmentation tools for clinical practice. For the past several years, with
the development of data-driven deep learning, the performance of segmentation tasks has been
substantially improved (Liu et al., 2020c, 2021h). For example, U-Net and its follow-up backbones
achieved outstanding performance compared with their predecessors, in many natural and medical
image analysis tasks, including the brain tumor localization and segmentation from magnetic
resonance (MR) images (MRI) (Liu et al., 2020d; He et al., 2022).
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The performance of a pre-trained deep learning model,
however, can be substantially degraded, when its training
distribution (i.e., source domain) differs from a testing
distribution (i.e., target domain). This is because the majority of
deep learning architectures assume that the source and target data
distributions are independent and identically distributed (i.i.d.)
and thus invariant across domains. This assumption, however,
is deemed unrealistic in many clinical settings. For example,
tumors with different grades are likely to exhibit different data
distributions, due to varying degrees of tumor severity and
growth patterns (Liu et al., 2021j). In addition, in cross-center
collaborations, data acquired even with the same vendor and
with the same acquisition protocol can be substantially different
from one another. Furthermore, under many multimodal MR
image segmentation scenarios, cross-modality domain shifts, e.g.,
T2-weighted to T1-weighted MRI, can arise, leading to large
performance degradation.

To accommodate the difference in distributions between
training and testing data, a possible solution is to fine-tune
developed models with supervised training, which requires pixel-
wise ground truth labeling in the target domain. Since it is costly
to annotate high-quality labeled data in new target domains,
unsupervised domain adaptation (UDA) has been developed (Liu
et al., 2021e) to adapt the model trained in a labeled source
domain to different and unlabeled target domains. In the
conventional UDA, segmentation models have been trained
using both source and target data, but only the source data
are labeled at the adaptation stage. Promising results have been
reported by means of co-training models with source domain
data, primarily by enforcing the similar feature distribution of
source and target domains with maximum mean discrepancy
minimization (Long et al., 2015), adversarial training (Liu et al.,
2021a), and self-training (Zou et al., 2019).

Although UDA offers a promising solution to the problem of
domain shift, because of privacy concerns about sensitive patient
data being leaked, it is often challenging to access data and their
labels in the source domain and trained model parameters in
cross-center collaborations (Liu et al., 2021k). Cross-center data
sharing usually requires sophisticated anonymous processing
and ethics approvals, which can hinder fast deployment. In
addition, large-scale and well-labeled medical datasets can be
a valuable core competence for both research and commercial
institutes. To address this issue, Liu et al. (2021k) have proposed
a source-free or source-relaxed UDA approach (i.e., white-box
domain adaptation) for segmentation. In that work, an off-
the-shelf segmentation model was adapted to a target domain
via a pre-trained model in a source domain, by transferring
its batch normalization statistics. Recently, a deep inversion
technique (Yin et al., 2020) has shown that original training
data can be recovered from knowledge used during white-box
domain adaptation, which may leak confidential information
and raise privacy concerns over patient data (Zhang et al.,
2021). In addition, source-free UDA usually relies on the same
network structure as in the trained source domain, which is
not flexible to update state-of-the-art or lightweight backbones
to achieve better performance or implementation on memory-
limited mobile devices.

This study aims to overcome these limitations by developing
a black-box domain adaptation approach, in which we opt
to restrict the use of knowledge from a source segmentation
model, and do not rely on the network parameters. As a
result, we provide stricter protection of medical data privacy.
In addition, public release of large-scaled trained and packaged
models can be easily applied to task-specific adaptation, such as
segmentation and classification. To the best of our knowledge,
this is the first attempt at achieving UDA for deep segmentation
networks using black-box domain adaptation. Our prior work
showed an initial network design and concept (Liu et al., 2022).
Building upon that work, the present study describes refined
network architectures and provides extensive validations on a few
different datasets and network backbones. The black-box setting
provides a more effective way to protect privacy, compared with
white-box domain adaptation approaches (Liu et al., 2021k)
or conventional UDA approaches (Zou et al., 2019). To our
knowledge, no prior work has yet been reported on recovering
data from a “black-box” model. Recently, Zhang et al. (2021)
proposed to use black-box UDA for classification, with class-wise
noise rate estimation and category-wise sampling. That work
presented iterative learning with noisy labels, in which the black-
box predictions were considered noisy labels. However, that work
cannot be directly applied to the segmentation task to perform
pixel-wise classification. Additionally, a few attempts have been
made to carry out black-box domain adaptation (Liu et al., 2022),
although they could be used in more challenging yet realistic
clinical scenarios.

2. RELATED WORK

2.1. Semantic Segmentation
The fully convolutional network (FCN) (Long et al., 2015) was
a pioneering work of deep semantic segmentation. Then, the
Pyramid Scene Parsing Network (PSPNet) (Zhao et al., 2017) was
proposed to exploit the spatial feature at different scales of FCN.
Recently, U-Net (Ronneberger et al., 2015) has been widely used
as the backbone of many segmentation networks, which have
skip connections between the encoder and decoder to adaptively
learn the correlations at different resolution scales. Other than the
conventional convolutional layers used in vanilla U-Net, more
advanced versions of U-Net, including ResNet (He et al., 2016)
and MobileNet (Howard et al., 2017) have also been proposed
to further boost performance or efficiency. Our black-box UDA
framework is agnostic to any segmentation network, where the
network used in source and target domains can be different to fit
into specific requirements in implementation.

2.2. Unsupervised Domain Adaptation
Unsupervised domain adaptation (He et al., 2020a,b; Liu et al.,
2021c,e) has been an important technology to alleviate the
problem of domain shift and costly labeling in a new domain.
Conventional approaches have utilized both source and target
domain data for training (Liu et al., 2021a,d,g,i,j). Recently,
source-free UDA (Bateson et al., 2020; Liang et al., 2020; Wang
et al., 2020) has been proposed, which uses a pre-trained model
rather than co-training the network with source and target
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domain data. We note that domain generalization (Liu et al.,
2021b), a closely related but different task, assumes that there are
no target domain data in its training. A recent work (Liu et al.,
2021f) explored shared or domain-specific batch-normalization
statistics to achieve domain alignment.

2.3. Model Transfer
Early works (Joachims et al., 1999; Duan et al., 2009) for
adapting a model with parameters attempted to transfer a trained
source classifier with a subset of labeled samples, which is
only applicable for semi-supervised adaptation tasks. Kuzborskij
and Orabona (2013) proposed a detailed theoretical analysis
of hypothesis transfer learning for linear regression, which is
the basis for subsequent UDA solutions that do not rely on
source data at the adaptation stage (Chidlovskii et al., 2016).
In the deep learning era, Liang et al. (2020) proposed to fix
the last few layers by turning the feature extraction parts into
information maximization and pseudo-label-based self-training.
Recently, Li et al. (2020) proposed using conditional generative
adversarial networks (GAN) to generate images at the adaptation
stage. Similarly, Kundu et al. (2020) utilized GAN to explore
conditional entropy. However, all of the above methods require
knowledge of the network parameters, which thereby can be
regarded as white-box source-free UDA.

2.4. Knowledge Distillation
Knowledge distillation is proposed to transfer knowledge learned
by a teacher model to a student model. Typically, the teacher
model has larger backbones with more parameters, while the
student one is typically a more compact model. Therefore, it
is possible to efficiently compact a model with little sacrifice
of performance. The conventional solution used a distillation
loss function to enforce the consistency between the outputs
of teacher and student models with the same input sample
(Hinton et al., 2015). Essentially, the knowledge distillation is
an adaptive label smoothing regularization (Szegedy et al., 2016).
Kim et al. (2020) showed that the previous prediction can teach
the network with a self-knowledge distillation scheme, which can
be potentially used for semi-supervised learning. A recent work
(Samuli and Timo, 2017) assembled the prediction along with
the training as a teacher model prediction. Rather than using the
average teacher model predictions, Tarvainen and Valpola (2017)
used the averaged previous model parameters as a teacher model.

3. METHODOLOGY

Image segmentation partitions medical images into coherent
regions for different lesions or anatomical structures, and is
essential for many computer-aided diagnosis systems. A typical
solution would be to formulate the segmentation task as a pixel-
wise classification. fs takes an encoder and decoder structure to
map an input image, e.g., an MRI slice in the BraTS database
xs ∈ R

128×128, to its corresponding segmentation map ys ∈

R
128×128×C, where C is the number of classes.
Considering the potential distribution shift between two

domains, we assume that there are a source domain ps(x, y) and
a target domain pt(x, y), where x indicates the to be segmented

image and y is its corresponding label of the segmentation
map. In the setting of black-box UDA segmentation, we have a
segmentation network fs trained with a labeled source domain
set DS = {xs, ys} drawn i.i.d. from ps(x, y), where fs is fixed
and accessed only through a nontransparent API during the
adaptation stage. At the adaptation stage, we only have access to
a black-box fs and an unlabeled target domain set DT = {xt}
drawn i.i.d. from the marginal distribution pt(x), to train a target
domain network ft to achieve a good segmentation performance
in the target domain. It is noteworthy that the backbones of fs and
ft do not need to be the same. The network structure details may
also not be available at the adaptation stage.

In this work, we propose a practical solution to black-box
UDA for segmentation with a noise-aware knowledge distillation
scheme using pseudo labels with exponential mixup decay
(EMD). The framework is shown in Figure 1.

3.1. Supervised Source Domain Training
A good source model is a basis for the target domain adaptation
performance. The UDA is motivated by the following theorem
(Kouw, 2018):
Theorem 1 For a hypothesis h

Lt(h) ≤ Ls(h)+ d[ps(x), pt(x)]+ ǫ, (1)

whereLs(h) andLt(h) denote the expected loss with hypothesis h
in the source and target domains, respectively, and d[·] measures
the divergence of the marginal distributions of x between two
domains (Salimans et al., 2016). We note that the last term
ǫ = min[Ex∼ps |ps(y|x) − pt(y|x)|,Ex∼pt |ps(y|x) − pt(y|x)|] is
usually a small value and does not affect the performance. A small
Ls(h) is essential to achieve a low Lt(h), i.e., high accuracy in the
target domain.

For the supervision of training, a cross-entropy (CE) loss is
usually used for optimization. Specifically, the pixel-wise CE loss
can be formulated as:

LCE =
1

H0 ×W0

H0×W0∑

n=1

{−
1

C

C∑

i=1

ys
i
n log fs(xs)

i
n}, (2)

where H0 and W0 are the height and width of an image, n
indexes the pixel, and i indexes class labels. We note that other
loss functions can also be used, e.g., dice loss, IoU loss, and
boundary loss (Jadon, 2020). The supervised source domain
training is independent of the adaptation stage in our black-box
UDA setting. We note that we do not re-train or fine-tune the
fixed black-box source segmentation model.

3.2. Knowledge Distillation With
Exponential Mixup Decay
Following knowledge distillation (Yin et al., 2020), the well-
trained source model can act as a teacher to provide its pixel-wise
softmax histogram prediction of each image. The target domain
model ft is trained to imitate the source model fs. The consistency
of their predictions can be enforced with the Kullback-Leibler
(KL) divergence between their pixel-wise softmax histogram
distributions. In the conventional knowledge distillation, we
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FIGURE 1 | Illustration of our black-box UDA framework using knowledge distillation with exponential mixup decay (EMD) pseudo label and unsupervised entropy

minimization. Only the red shaded parts are used in testing in the target domain. Note that fs and ft can have different backbones.

assume that there is no domain shift, and the predictions of
the teacher model can be reliable and simply be used as ground
truth. However, due to the domain shift, the prediction of fs in
the target domain can be noisy. Simply using it as ground truth
cannot outperform the source models, which is not expected in
the UDA setting.

Accordingly, we resort to a self-training scheme (Liu
et al., 2021j) to construct the pseudo label for target domain
training. Considering that the source model predictions can
be a relatively reliable supervision signal, compared with
unsupervised objectives in the initial epochs, we propose
adjusting the contribution of the supervision signals as
the training progresses. Specifically, to achieve the gradual
translation to the target domain, we mix up the source and target
domain predictions, i.e., fs(xt) and ft(xt), and adjust their ratio for
the pseudo label y′t with EMD:

y′tn = λfs(xt)n + (1− λ)ft(xt)n,

λ = λ0exp(−I), (3)

where n indexes the pixel, and fs(xt)n and ft(xt)n are the
histogram distributions of the softmax output of the n-th pixel
of the predictions fs(xt) and ft(xt), respectively. λ is the target
adaptation momentum parameter with the exponential decay
with respect to iteration I. λ0 is the initial weight of fs(xt), which is
empirically set to 1. Therefore, along with the increase in iteration
I, we have smaller λ, which adjusts the contribution of the source
model prediction to be large at the start of the training and
to be smaller at the later training epochs. The loss knowledge
distillation with the EMD pseudo label can be formulated as:

LKL =
1

H0 ×W0

H0×W0∑

n=1

DKL(ft(xt)n||y
′
tn), (4)

where H0 and W0 are the height and width of the image. We
note that the KL divergence is a measure of how a probability

distribution, e.g., the histogram distribution of ft(xt)n, is different
from a reference probability distribution, e.g., the histogram
distribution of y′tn. Minimizing the KL divergence explicitly
enforces the similarity of the two distributions of the predictions.
Therefore, the weight of λ can be smoothly decreased along with
the training, and ft gradually represents the target data.

3.3. Self-Entropy Minimization
In addition to the supervision signal provided by the source
domain black-box model, we opt to explore unsupervised
learning protocols for unlabeled target domain data.
Unsupervised learning has a long history, and there are a
number of possible solutions for segmentation. Among them,
entropy minimization (Grandvalet and Bengio, 2005) can be an
efficient unsupervised training scheme for deep learning-based
segmentation. Since it does not need a modification to the
networks, it can be a simple add-on loss function on top of
our framework. For implementation, the entropy for pixel
segmentation can be formulated as the averaged entropy of the
pixel-wise softmax prediction, given by

LEnt =
1

H0 ×W0

H0×W0∑

n=1

{−ft(xt)nlogft(xt)n}. (5)

Minimizing LEnt leads to the output ft(xt)n close to a one-hot
distribution, i.e., confident prediction. The unsupervised learning
is combined collaboratively with the black-box source model
supervision to update the target model.

3.4. Overall Training Protocol
In summary, our training objective can be formulated as

L = LKL + αLEnt , (6)

where α is used to balance between the knowledge distillation
with the EMD pseudo label and the entropy minimization
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FIGURE 2 | Examples of MRI slices of LGG and HGG samples. Each sample has four MR modalities, i.e., T1-weighted MRI, T1ce MRI, FLAIR MRI, and T2-weighted

MRI.

FIGURE 3 | Examples of our segmentation results from an LGG MRI slice with different methods in the HGG to LGG UDA task. In addition, BBUDA-Ent represents an

ablation study of the entropy minimization. We use white, dark gray, and gray color to indicate the CoreT, EnhT, and ED, respectively. Of note, OSUDA (Liu et al.,

2021k) with the white-box source model for adaptation is considered an “upper bound.”

scheme. Since the entropy minimization may lead to a trivial
solution in that the prediction of any unlabeled target samples is
the same one-hot prediction (Grandvalet and Bengio, 2005), we
adopt a simple yet effective solution to stabilize the training, by
linearly decreasing the hyper-parameter α from 5 to 0 along with
the training.

4. EXPERIMENTS AND RESULTS

4.1. Dataset and Data Split
We evaluated our approach on the BraTS2018 database (Menze

et al., 2014). In this work, we used a total of 75 patients who

have low-grade gliomas (LGG), and a total of 210 patients who
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TABLE 1 | Quantitative comparisons w.r.t. DSC and HD of HGG to LGG black-box.

Method
Source Dice score [%] ↑ Hausdorff distance [mm] ↓

model WholeT EnhT CoreT WholeT EnhT CoreT

Source only (Liu et al., 2021k) no UDA 79.29 30.09 44.11 38.7 46.1 40.2

BBUDA black-box 82.21 31.33 46.64 28.6 26.4 28.1

BBUDA-Ent black-box 81.84 31.26 45.75 29.4 27.5 29.0

CRUDA (Bateson et al., 2020) white-box 79.85 31.05 43.92 31.7 29.5 30.2

OSUDA (Liu et al., 2021k) white-box 83.62 32.15 46.88 27.2 23.4 26.3

BBUDA+MobileNet black-box 81.84 31.25 46.16 28.9 26.8 28.3

OSUDA+MobileNet white-box 82.67 32.09 46.59 28.1 24.2 26.7

Source only model indicates directly using the source domain trained model in the pre-training step without the subsequent adaptation steps.

Of note, OSUDA (Liu et al., 2021k) with the white-box source model for adaptation is considered an “upper bound.”

TABLE 2 | Quantitative comparisons w.r.t. DSC and HD of LGG to HGG black-box.

Method
Source Dice score [%] ↑ Hausdorff distance [mm] ↓

model WholeT EnhT CoreT WholeT EnhT CoreT

Source only (Liu et al., 2021k) no UDA 81.45 34.36 40.30 36.7 41.6 37.2

BBUDA black-box 85.47 39.56 45.18 26.7 33.8 29.6

BBUDA-Ent black-box 84.92 38.64 44.73 27.1 34.6 31.3

CRUDA (Bateson et al., 2020) white-box 87.62 40.17 49.65 23.9 22.7 23.9

OSUDA (Liu et al., 2021k) white-box 89.75 44.21 50.34 22.2 19.3 21.6

BBUDA+MobileNet black-box 82.14 31.02 46.13 27.2 33.0 28.2

OSUDA+MobileNet white-box 83.36 31.84 46.62 23.5 21.6 22.8

Source only model indicates directly using the source domain trained model in the pre-training step without the subsequent adaptation steps.

Of note, OSUDA (Liu et al., 2021k) with the white-box source model for adaptation is considered an “upper bound.”

have high-grade gliomas (HGG) (Menze et al., 2014) as shown in
Figure 2. As a preprocessing step, all of the imaging modalities
for each subject were registered with each other, including T1-
weighted (T1), T1-contrast enhanced (T1ce), T2-weighted (T2),
and T2 Fluid Attenuated Inversion Recovery (FLAIR) MRI.
In addition, the voxel-wise labels for the enhancing tumor
(EnhT), the peritumoral edema (ED), and the necrotic and non-
enhancing tumor core (CoreT) were provided. The whole tumor
includes the EnhT, ED, and CoreT. More information about the
database can be found in Menze et al. (2014). The source and
target domains have the same classes, e.g., CoreT, EnhT, ED, and
background.

Following the previous white-box source free UDA (Liu et al.,

2021k) and UDA with source data (Shanis et al., 2019), there
are two evaluation protocols for UDA, i.e., cross-subtype and

cross-modality UDA segmentation. In the cross-subtype setting,
we used the HGG subjects as the source domain, and the LGG
subjects as the target domain, which have different size and

position distributions (Shanis et al., 2019). The slices of the
four modalities were concatenated as a 4-channel input with

a spatial size of 128×128. The training of adaptation used the
LGG training set. We followed the training and testing split as

in Liu et al. (2021k). In the cross-modality setting, we used T1-
or T2-weighted MRI as the source or target domain, which has
a larger domain shift compared with the cross-subtype setting.
Each input sample had a single modality slice with the spatial size
of 128×128.

4.2. Training Protocol and Evaluation
Metrics
For the cross-subtype UDA, we experimented on both HGG-to-
LGG and LGG-to-HGG tasks. For the HGG-to-LGG task, our
training set had a total of 210 labeled HGG subjects as the source
domain and a total of 55 unlabeled LGG subjects as the target
domain. The remaining 5 and 15 LGG subjects were used as the
validation and testing sets, respectively. For the LGG-to-HGG
task, our training set had a total of 75 labeled LGG subjects as
the source domain and a total of 160 unlabeled HGG subjects as
the target domain. The remaining 10 and 40 HGG subjects were
used as the validation and testing sets, respectively.

For the cross-modality UDA, we experimented on both T2-
to-T1 and T1-to-T2 tasks. For the T2-to-T1 task, our training
set had a total of 55 labeled T2 subjects as the source domain
and a total of 55 unlabeled T1 subjects as the target domain. The
remaining 5 and 15 T1 subjects were used as the validation and
testing sets, respectively. For the T1-to-T2 task, our training set
had a total of 55 labeled T1 subjects as the source domain and
a total of 55 unlabeled T2 subjects as the target domain. The
remaining 5 and 15 T2 subjects were used as the validation and
testing sets, respectively.

We trained fs using our prior work (Liu et al., 2021k) and did
not have access to its network parameters and source domain data
at the adaptation stage. All of the networks used were based on
2D U-Net as in the previous works of UDA using the BraTS18
database (Shanis et al., 2019). Each subject contained a total
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TABLE 3 | Comparison of T2 to T1 black-box UDA.

Method
Source Dice score [%] ↑ Hausdorff distance [mm] ↓

model WholeT EnhT CoreT WholeT EnhT CoreT

Source only (Liu et al., 2021k) no UDA 54.50 29.62 23.18 42.7 46.4 44.5

BBUDA black-box 78.35 36.17 39.28 34.6 38.5 36.8

OSUDA (Liu et al., 2021k) white-box 79.24 36.43 40.10 32.3 36.7 35.4

BBUDA+MobileNet black-box 77.62 35.36 38.45 36.4 39.5 37.1

OSUDA+MobileNet white-box 78.37 36.28 39.84 35.2 39.0 36.3

The source model is trained with T2-weighted MRI slices, and the testing input is T1-weighted MRI slices. OSUDA (Liu et al., 2021k) with the white-box source model for UDA training

is regarded as an “upper bound.”

of 155 MRI slices for each modality. We used U-Net with 15
convolutional layers alongside batch normalization. Of note, for
fs, we can use different segmentation backbones as the source
domain model. We evaluated two settings that use the same U-
Net as fs, and a 15-layer MobileNet-based U-Net. It is of note
that MobileNet-based U-Net requires 10× fewer parameters,
which is attributed to its separable convolutional operations. It is,
therefore, easier for training, requiring much fewer parameters,
which has been demonstrated in segmentation tasks on natural
images. We used the validation set to tune our parameters. For
both source domain only pre-training and adaptation, we used
100 epochs.

The target network at the adaptation stage was trained using
Adam as an optimizer with β1 = 0.9 and β2 = 0.99. The
training was performed on four NVIDIA TITAN Xp GPUs with
the PyTorch deep learning toolbox (Paszke et al., 2017), which
took about 5 h for the cross-subtype task and 4 h for the
cross-modality task.

The U-Net with ResNet-15 took about 5 h for the cross-
subtype task and 4 h for the cross-modality task. In contrast,
the Mobilenet-based U-Net took about 5 h for the cross-subtype
task and 4 h for the cross-modality task. For testing, the ResNet
and MobileNet based U-Net took about 15 ms and 8 ms for each
slice, respectively.

The small size of MobileNet makes it possible to implement
MobileNet on some memory-restricted portable devices, e.g.,
smartphones. We note that the use of MobileNet is to show that
we do not need to use and know the same network and the
network details, respectively, in the “black-box” case.

For evaluation, we adopted two metrics including Dice
similarity coefficient (DSC) and Hausdorff distance (HD)metrics
(Zou et al., 2020). The DSC or Sørensen-Dice index, measures
the similarity between two sets of data, e.g., pixel set in the
image. DSC has been a widely used metric for evaluating image
segmentation models. Specifically, it can be formulated as

DSC(ỹ, y) =
2× |ỹ ∩ y|

|ỹ| + |y|
. (7)

The HD between two point sets is defined by the sum of all
minimum distances from all points from a point set to another,
divided by the number of points in a point set. HD is more
sensitive thanDSC in terms of the segmentation boundary. In our
image segmentation task, the point sets represent the voxels of
the ground truth and the segmentation result, respectively, which

indicates the maximum HD between the labeled boundary and
the predicted boundary.

4.3. Evaluation Results
The segmentation results of different methods are shown in
Figure 3. BBUDA and BBUDA-Ent indicate our black-box UDA
framework and the ablation study without entropyminimization,
respectively. We can see that the predictions of our proposed
BBUDA outperform the no adaptation model by a large
margin. The better performance of BBUDA over BBUDA-Ent
demonstrates the effectiveness of our entropy minimization. In
addition, BBUDA+MobileNet indicates using the MobileNet-
based U-Net as a segmentor, which has a different structure than
the source domain model.

For the cross-subtype UDA task, the quantitative evaluation
results of the HGG-to-LGG and LGG-to-HGG tasks are shown
in Tables 1, 2, respectively. Our proposed BBUDA achieved
the state-of-the-art performance for the black-box source-free
UDA segmentation, approaching the performance of the white-
box OSUDA (Bateson et al., 2020; Liu et al., 2021k) with the
source model parameters, which can be considered an “upper-
bound.” We note that the labeling ratio consistency assumption
in CRUDA (Bateson et al., 2020) does not hold in this HGG to
LGG transfer task, which thus leads to inferior performance. The
qualitative evaluation results are shown in Figure 3.

For the cross-modality UDA task, we provide the quantitative
evaluation results of T2 to T1 and T1 to T2 in Tables 3, 4,
respectively. In addition, the qualitative evaluations are shown
in Figures 4, 5. Our proposed BBUDA improved performance
in the target domain and outperformed the source model by a
large margin. Both the DSC and HD metrics of our framework
approached those of the “white-box” model. The sensitivity study
of α is provided in Table 5. We found that decreasing the value
of α yielded better performance than using a constant value of α.

In addition to the HGG to LGG setting, we also proposed to
adapt from the LGG to HGG setting. Similar to the HGG to LGG
task, there were also domain gaps w.r.t. tumor types and the label
proportion of each class. The results are shown in Table 2. Our
proposed BBUDA achieved superior performance consistently.

5. DISCUSSION

This work presented a UDA framework for black-box
segmentation networks. The performance of the brain
tumor segmentation is promising, where our framework
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TABLE 4 | Comparison of T1 to T2 black-box UDA.

Method
Source Dice score [%] ↑ Hausdorff distance [mm] ↓

model WholeT EnhT cCoreT WholeT EnhT CoreT

Source only (Liu et al., 2021k) no UDA 52.61 20.44 22.69 45.3 47.8 40.9

BBUDA black-box 76.26 37.30 39.57 39.5 42.3 33.7

OSUDA (Liu et al., 2021k) white-box 77.47 39.64 40.06 38.4 41.7 32.3

BBUDA+MobileNet black-box 76.64 38.25 38.74 40.6 43.2 34.8

OSUDA+MobileNet white-box 77.32 39.37 38.92 40.1 42.0 32.5

OSUDA (Liu et al., 2021k) with the white-box source model for UDA training is regarded as an “upper bound.”

FIGURE 4 | Examples of our segmentation results from T1-weighted MRI with different methods in the T2 to T1 UDA task. In addition, BBUDA-Ent represents an

ablation study of the entropy minimization. We use white, dark gray, and gray color to indicate the CoreT, EnhT, and ED, respectively. OIt is of note that OSUDA (Liu

et al., 2021k) with the white-box source model for adaptation is considered an “upper bound.”

FIGURE 5 | Examples of our segmentation results from T2-weighted MRI with different methods in the T1 to T2 UDA task. In addition, BBUDA-Ent represents an

ablation study of the entropy minimization. We use white, dark gray, and gray color to indicate the CoreT, EnhT, and ED, respectively. OSUDA (Liu et al., 2021k) with

the white-box source model for adaptation is considered an “upper bound.”

achieved performance on par with the white-box adaptation.
Therefore, our system has the potential to be applied to
well-trained segmentation models in a source domain with

target domain data in a range of clinical sites to combat
the problem of domain shift, without the need for data
sharing. Therefore, our approach enables fast, accurate, and
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TABLE 5 | Sensitivity analysis of the hyperparameter α.

α DSC of WholeT

5→0 76.26

10→0 76.13

1→0 76.08

0 72.59

5 75.87

automated lesion contouring to facilitate subsequent clinical
decision processes.

Both the source domain data and network parameters are
not accessible in our setting, which is a stricter requirement
than typical UDA to guarantee data security, i.e., the privacy of
patient data. A well-trained model usually requires large-scaled
and well-labeled source domain data. However, the application
of the system to different test-time institutes is likely to suffer
from significant domain shifts, because of differences in study
populations, imaging devices, imaging parameter settings, and
subtype proportions, which lead to a significant performance
drop. As a consequence, ways to make trained models available
for collaborating target institutes are a key issue for the
successful deployment of developed models. Among others,
cross-institute data sharing can be a major difficulty in real-
world applications. Recent deep inversion technologies further
imposed restrictions on network parameter sharing. Therefore,
our proposed framework can potentially alleviate the concerns
over cross-institute medical data sharing.

The proposed knowledge distillation scheme in UDA has
demonstrated its effectiveness in both cross-subtype and cross-
modality tasks. The consistent loss, e.g., KL divergence, works as
an efficient way to distill the knowledge in the trained black-box
model. In addition, a previous study of the knowledge distillation
in a single domain (Guo et al., 2020; Vu et al., 2021) also has
shown that the student model learned with the distillation can
be more general (Wang et al., 2021). Thus, our framework can
be a viable solution to train a target domain model with a decent
generalization ability.

The hyper-parameter α plays an important role in balancing
between the knowledge distillation and the unsupervised
learning objective. The prediction of the source domain model
can provide a good initialization. The target model training
with only the knowledge distillation, however, can hardly
outperform the source model, i.e., teacher. Therefore, it is
important to utilize the unlabeled target domain data to further
improve the performance in the target domain. To this end,
we linearly decreased α from 5 to 0 for all of our experiments.
While changing the start value did not affect the performance
significantly, the linearly decreasing scheme is an essential step
to achieving our goal. We note that setting α = 0 is equivalent to
only using the knowledge distillation objective. Instead, keeping
α as a constant in the training cannot adjust their contribution at
different training stages.

In the present work, we were able to obtain decent
segmentation results in the cross-modality segmentation task,
especially on EnhT. The enhanced core shown in the brain tumor

MR images is due to Blood Brain Barrier disruption in high-
grade glioma. A contrast agent (e.g., gadolinium) injected into
the blood stream of a patient can pass to the brain parenchyma,
appearing as bright regions in the post-contrast T1-weighted
MR images. Recent literature shows that this information is also
encoded in non-contrast MRI images (e.g., T1, T2, and FLAIR) to
some extent (Ferles and Barkhof, 2021). In Preetha et al. (2021),
which is one of the recent studies on T1ce synthesis, using a
3D CNN based on U-Net architecture, they reported a median
Dice overlap of 28% between segmentations on synthetic and
real T1ce. Although the datasets are different, they used multiple
modalities as the input channels and performed training and
testing in similar domains. Further investigation on synthesis and
segmentation is subject to future work.

The backbones of the source and target models can be
different. We only require that the input and output have
a similar data structure. For example, in the cross-modality
brain tumor segmentation task, our framework takes either T1-
weighted or T2-weighted MRI slices as input and predicts the
corresponding segmentation maps. The typical choice of the
segmentation network would be FCN, PSPNet, or U-Net with
ResNet or MobileNet backbones. More advanced backbones
may provide better accuracy or reduce the computational cost
aimed at different target applications. In addition, the backbones
in some commercial black-box models may not be publicly
available; our framework, therefore, enables the flexible use of a
variety of backbones.

Several aspects are not fully explored in the present work.
First, while we showed promising performance for brain tumor
segmentation tasks with MRI, the developed framework is
applied to other body parts using a variety of imaging modalities.
Second, more advanced knowledge distillation and unsupervised
learning methods could be analyzed beyond the current simple
yet efficient framework. In addition, in the present work, we only
considered a scenario, in which the source and target domains
have the same segmentation classes, e.g., EnhT, ED, and CoreT
in the BraTS2018 database, which is the most common case in
real-world applications. Incorporating open-set UDA or out-of-
distribution methods (Che et al., 2021; Liu et al., 2021a) can
potentially lead to novel subtype discoveries.

6. CONCLUSION

This work proposed black-box UDA for segmentation under
a realistic and meaningful scenario, presenting a practical and
efficient knowledge distillation scheme with EMD pseudo labels.
In particular, it provides a novel mechanism for smoothly
transferring the segmentation in the source domain to the target
domain with EMD to construct the pseudo label. Furthermore,
unsupervised entropy minimization was incorporated into our
model to improve segmentation performance. Experimental
results, performed on the cross-subtype (e.g., HGG to LGG) and
cross-modality (e.g., T1 to T2) adaptation tasks, demonstrated
that our proposed BBUDA outperformed the source model, by
a large margin, and importantly, the DSC and HD metrics of
our framework were comparable to those of the white-box UDA
approaches. In this work, while we only investigated brain tumor
segmentation under the cross-subtype or cross-modality settings,

Frontiers in Neuroscience | www.frontiersin.org 9 June 2022 | Volume 16 | Article 837646

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Liu et al. Black-Box UDA for Brain Tumor Segmentation

the model could be broadly applicable to any segmentation UDA
tasks using different modalities. In addition, more advanced
knowledge distillation and unsupervised learning methods could
be easily added to further augment performance.
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