
Unsupervised Calibration for Multi-beam Lasers

Jesse Levinson, Sebastian Thrun

Stanford Artificial Intelligence Laboratory

{jessel,thrun}@stanford.edu

Abstract— Keeping pace with technological progress, robot
sensors are generating increasing amounts of data; a particular
recent trend has been a shift from single-beam LIDAR sensors
to multi-beam versions. Whereas single-beam sensors can often
be calibrated without great difficulty, deriving an accurate
calibration for lasers with many simultaneous beams has been a
tedious and significantly harder challenge. In addition, existing
calibration methods require specific and known environmental
features.

Instead, we propose a fully unsupervised approach to multi-
beam laser calibration. We attempt to recover optimal parame-
ters for each beam’s orientation and distance-response function
as well as a fully probabilistic generative model for each beam’s
remittance response to surfaces of varying reflectivity. Our
method allows simultaneous calibration of tens or hundreds of
beams, each with its own parameters. In addition, we recover the
sensor’s extrinsic pose relative to the robot’s coordinate frame.

Crucially, our approach requires no specific calibration target,
instead relying only on the weak assumption that points in space
tend to lie on contiguous surfaces. Specifically, we define an
energy function on point clouds that penalizes points far away
from surfaces defined by points from other beams. Then, by
aggregating points acquired across a series of poses, we take
derivatives of the energy function across pairs of beams with
respect to individual parameters. Using an iterative optimization
method we arrive at a globally consistent calibration with very
low error.

Demonstrating our algorithm with a 64-beam LIDAR unit
on a moving vehicle equipped with an IMU, we show that we
can precisely solve for the LIDAR’s extrinsic pose and derive
accurate 192-parameter orientation and distance calibrations
even from grossly inaccurate initializations and without any
calibration target or environment measurements. We also show
significant improvements to the resulting remittance environment
maps resulting from these calibrated parameters as well as the
learned Bayesian model for each beam’s remittance response.

I. INTRODUCTION

Light Detection and Ranging (LIDAR) sensors have be-

come increasingly common in both industrial and robotic

applications. LIDAR sensors are particularly desirable for

their direct distance measurements and high accuracy, but

traditionally have been configured with only a single rotating

beam. However, recent technological progress has spawned

a new generation of LIDAR sensors equipped with many

simultaneous rotating beams at varying angles, providing at

least an order of magnitude more data than single-beam

LIDARs and enabling new applications in mapping [6], object

detection and recognition [15], scene understanding [16], and

SLAM [9].

In order to effectively harness this massive increase in beam

count, new calibration methods are required. First, calibrating

angles and range readings for tens or hundreds of beams

Fig. 1. A single 360-degree scan from the 64-beam Velodyne LIDAR. Points
are colored by height for visual clarity.

Fig. 2. Our vehicle platform. Velodyne LIDAR unit is circled in red.

is a substantially harder problem than calibrating one or a

few beams. Second, for applications that utilize the intensity

returns of LIDAR sensors, e.g. recent mapping and localization

work [6], it is important that the intensity remittance values

agree across beams. In both cases, the number of parameters

makes supervised measuring and calibration at best tedious

and at worst infeasible.

To date, there has been limited research on supervised

calibration for multi-beam LIDARs. The most popular such

unit as of this writing is the Velodyne HD-64E spinning

LIDAR, which has been used extensively for many recent

robotics applications. A representative scan from such a sensor

is shown in Fig. 1. In [4], the authors present a supervised

calibration technique for this LIDAR requiring a dedicated

calibration target and many hand measurements, followed by

a traditional optimization step. Indeed, the manufacturers of

this laser built a dedicated calibration facility which they use to

collect thousands of measurements followed by an unpublished

optimization routine, in order to provide a calibration of each

beam to the customer.

In the case of single-beam LIDARs, there have been at-

tempts at unsupervised recovery of roll, pitch, and yaw in

a known rectangular enclosure [2] as well as an attempt to

estimate the noise parameters of a single-beam LIDAR [3].

Recent work has provided algorithms for calibrating one [10]

or two [1] single-beam LIDARs on a moving vehicle platform

using hand-placed retroreflective calibration targets, which ad-

ditionally requires an intensity threshold for correspondences.

None of these techniques extends to the unsupervised cal-

ibration of a multi-beam LIDAR. Indeed, we are unaware of

any algorithm in the literature to date that is able to recover

the extrinsic pose of any LIDAR unit relative to a vehicle

frame when it is the only such sensor on the vehicle and

when the environment has no particular known features. In

addition, we are similarly unaware of an existing algorithm

that calibrates individual beam parameters for multi-beam

units without hand-measured environmental features.

Although hand measurements are practical in some cases

for single-beam sensors, especially for translational offsets, it

is particularly difficult to measure sensor orientation with high

accuracy in the absence of a dedicated calibration environment.

Furthermore, for sensors with many beams, such measure-

ments may take prohibitively long and would inevitably be

suboptimal in accuracy. Finally, techniques that require specif-

ically placed retroreflective targets with careful thresholding

to pick them apart from the rest of the environment are

not applicable in all settings a robot might encounter; they

also result in the consideration of only a tiny fraction of the

available data.

Thus, we propose a novel fully unsupervised extrinsic and

intrinsic calibration method for multi-beam LIDAR sensors

that requires no calibration target, no labeling, and no manual

measurements. Given a multi-beam LIDAR attached to a

moving platform or robotic vehicle along with accompany-

ing inertial measurment unit (IMU) readings, our algorithm

computes hundreds of sensor parameters from only seconds

of data collected in an arbitrary environment without a map.

Our contribution consists of three complimentary unsuper-

vised calibration algorithms. The first discovers the LIDAR’s

extrinsic 6-dimensional pose relative to the vehicle’s inertial

frame, including translation and rotation. The second estimates

optimal vertical and horizontal angles for each individual beam

and an additive distance offset for each beam’s range reading.

Finally, the third derives a fully Bayesian generative model for

each beam’s remittance intensity response to varying surface

reflectivities in the environment.

In the sections that follow, we will describe each of the

above algorithms conceptually. We will then provide details

about our particular implementation of these techniques on a

ground vehicle with a roof-mounted 64-beam rotating LIDAR,

along with several results demonstrating the effectives of these

algorithms even when presented with poor initial calibrations.

Finally, we will discuss implications for related applications

and possible extensions for future research.

Fig. 3. Velodyne points from two adjacent beams (of 64) accumulated over
time and projected into 3D; one beam colored red, the other white. Due to
known vehicle motion, both beams tend to see the same surfaces.

II. EXTRINSIC CALIBRATION

In the case of a multi-beam LIDAR, extrinsic calibration

considers the mounting location of the entire unit relative to

the vehicle’s own coordinate frame, while intrinsic calibration

considers the configuration of each individual beam inside

the unit. In this section we present a method for extrinsic

calibration, assuming a known intrinsic calibration.1

At the most basic level, our approach for both calibrations

leverages the simple observation that laser returns projected

into three dimensions are not randomly distributed in space.

Indeed, because the returned points are reflections off of

physical surfaces, it is impossible for a properly calibrated

sensor traveling a known trajectory to return a collection

of accumulated points that is randomly distributed in three

dimensions. As such, the proposed method relies only on the

weak assumption that points in space tend to lie on contiguous

surfaces.

Consider Fig. 3, which depicts LIDAR returns from just two

adjacent beams accumulated over several seconds of vehicle

motion along a known trajectory. Here, we color one beam

in red and the other in white; it is apparent that due to the

LIDAR’s movement through space, to a large extent both

beams end up hitting the very same surfaces.

The location of the LIDAR unit relative to the vehicle’s

coordinate frame will be expressed with an x (longitudinal), y

(lateral), and z (height) offset along with roll, pitch, and yaw

angles. The (0, 0, 0) reference point and reference orientation

is specified by the coordinate system being used, i.e. the three-

dimension point and orientation that the vehicle’s positioning

system considers to be the origin.

In contrast to existing methods, our approach makes no

assumptions about the environment other than that it is gen-

erally static and contains some 3D features, i.e. is not just

smooth ground. In order to achieve an accurate calibration,

we record LIDAR measurements as the vehicle transitions

1If neither the extrinsic nor intrinsic calibration is known precisely, then
the two separate calibration procedures can be performed iteratively until both
converge.

Fig. 4. Accumulated points colored by computed surface normal; the red,
green, and blue channels respectively are set to the surface’s x, y, and z
components of the normal vector at each point.

through a series of known poses.2 Global pose information

is irrelevant, as there is no existing map, so only local pose

information is required. Local pose data may be acquired in

any number of ways, e.g. from a wheel encoder and IMU,

from an integrated GPS/IMU system, or from a GPS system

with real-time corrections. Again, it is only the relative motion

of the vehicle through the trajectory that is relevant to the

calibration, so no global pose data is necessary.

Now, we define an energy function on point clouds which

penalizes points that are far away from surfaces defined by

points from other beams:

J =
B

∑
bi=1

bi+N

∑
b j=bi−N

∑
k

wk‖ηk · (pk −mk)‖
2

where B is the total number of beams and N is the number of

neighboring beams we align each beam to,

k iterates over the points seen by beam b j,

pk is the kth point projected according to the current transform,

mk is the closest point to pk seen by beam bi,

ηk is the surface normal at point mk

and wk is 1 or 0 based on whether ‖pk −mk‖< dmax

This energy function bears similarity to the point-to-plane

iterated closest point (ICP) error function [7], with two key

differences. First, we compare surfaces defined by points in

each beam individually against points in neighboring beams.

This has the crucial benefit that an erroneous calibration

between beams will not significantly affect surface normals in

the set of points seen by any individual beam. Second, unlike

in ICP, we are not dealing with rigid point clouds, as a change

in any calibration parameter will transform the points in that

beam’s point cloud in a complex way, since in this case the

points in each cloud were observed at different times and thus

from different poses of the sensor.

Surface normals are computed separately per beam, by

fitting a plane to each point’s 20 nearest neighbors in the

accumulated projected points from the entire trajectory. Due

2The vehicle trajectory can be arbitrary, but must include a change in yaw
so that lateral and longitudinal offsets of the LIDAR can be detected; if the
vehicle only moves straight, these cannot be disambiguated. Similarly, we
do not attempt to recover the sensor’s height, as our vehicle always remains
nearly parallel to the ground, though height can trivially be determined by
considering the distance to points the vehicle drove over.

to the density of data from multi-beam LIDARs, this local

neighborhood for each point is very small. We show an

example of these surface normals in Fig. 4, where the red,

green, and blue channels are colored according to normal

vector’s x, y, and z components at each point.

A further benefit of the high density of points returned

by multi-beam LIDARs is that almost any surface will be

nearly locally planar at the resolution of the pointcloud; thus,

projecting points from one beam onto the surfaces defined by

points in neighboring beams results in very low errors when

all calibrations are accurate.

Given the above energy function, all that remains is to

select the extrinsic calibration that minimizes the total score.

Although in theory the objective is not necessarily convex, and

thus finding the true global optimum cannot be guaranteed in

any reasonable amount of time, in practice the energy function

is quite smooth and standard search heuristics perform very

well.

In our approach, we alternatively optimize the translation

parameters and rotation paramters until both have converged.

For each optimization, we utilize grid search, which compares

the current energy score with the score that results from adjust-

ing the variables in question in all possible directions jointly.

Whereas a coordinate descent iteration takes time linearly

proportional to the number of variables, grid search takes

time exponential in the number of variables, as it considers

all combinations of directions. As a result, it is less prone to

getting stuck in local minima, and as neither translation nor

rotation individually has more than three variables, grid search

is computationally tractable. For example, when considering a

rotation change, each of roll, pitch, and yaw can be increased,

held constant, or decreased, which results in 26 new compar-

isons to the current score. 3

We start with a relatively large step size, iterate until

convergence, and repeatedly reduce the step size until we’ve

reached the finest granularity we desire. At the end of the last

optimization, we obtain our final calibration parameters.

III. INTRINSIC CALIBRATION OF EACH BEAM

The motivation in the previous section applies equally to

the case of intrinsic calibration. That is, an intrinsic calibration

that computes each beam’s horizontal and vertical angle and

range offset correctly will necessarily yield a lower energy

score than an incorrect calibration.

It is worth emphasizing that this property is a direct conse-

quence of the fact that the vehicle moves during data collec-

tion. For a stationary vehicle, it is impossible to disambiguate

certain calibrations; indeed, many possible angles and range

offsets may be equally plausible in that case. But when the

vehicle moves in a known trajectory, no longer will incorrect

3It is important to note that for every possible calibration considered, all
points must be reprojected into 3D space based on the vehicle’s pose at the
time each point was acquired. Thus, a calibration change does not warp or
distort all points in the same way, as the effect of a calibration change on
each individual point depends on where the vehicle was at the time that return
was measured.

calibrations result in plausible pointclouds when each beam’s

returns are accumulated over time and projected appropriately

into 3D space.

Although the energy function used to calibrate the sensor’s

extrinsic pose is equally applicable to its intrinsic calibration, it

is intractible to perform grid search over 3 parameters for each

of tens or hundreds of beams jointly. Instead, we alternately

consider all horizontal angles, all vertical angles, and all range

offsets until convergence. At each step, for the variables in

question, we take empirical derivatives of the energy function

across pairs of beams with respect to the individual parameters.

Consider again the energy function:

J =
B

∑
bi=1

bi+N

∑
b j=bi−N

∑
k

wk‖ηk · (pk −mk)‖
2

At each iteration, for each beam bi and neighboring beams

b j we hold fixed the accumulated projected pointclouds and

accompanying surface normals associated with beam b j and

then re-project the points from beam bi with the parameter in

question increased and then decreased by some increment α .

For each of the two possibilities, the inner part of the energy

function, ∑k wk‖ηk · (pk −mk)‖
2 is recomputed; the parameter

is then changed by α in whichever direction improves the

objective maximally, or else the parameters is held constant if

any perturbation is worse.

In this manner, we iteratively loop through all parameters

and beams, optimizing the objective function at each step, until

either some predetermined number of iterations is reached or

until the change in the global objective function becomes suf-

ficiently small. We note that although this heuristic works well

in practice, unlike with grid search for extrinsic calibration, it

is not actually guaranteed to lower the objective function in

any given iteration, as it updates a particular parameter for

all beams in each iteration. Given the extremely large search

space, however, such approximations are reasonable, and, as

we show in the results section, work very well in practice.

IV. REMITTANCE CALIBRATION

In addition to estimating the LIDAR’s pose and beam

parameters, we also derive a Bayesian generative model of

each beam’s response to surfaces of varying reflectivity using

Expectation Maximization. [8]

As the vehicle transitions through a series of poses, let

T be the set of observations {z1, . . . ,zn} where zi is a four-

tuple 〈bi,ri,ai,ci〉 containing the beam ID, range measurement,

intensity measurement, and map cell ID of the observation,

respectively. The map may be comprised of 2D cells in

which points are projected to the ground plane, or full 3D

correspondences can be used. As we have shown in previous

work [6], the deterministic calibrated output c(a, j) of beam

j with observed intensity a can be computed in a single pass

as follows:

c(j,a) := Ezi∈T [ai | ((∃k : ci = ck,bk = j,ak = a),bi 6= j)]

That is, the calibrated output when beam j observes in-

tensity a is the conditional expectation of all other beams’

Fig. 5. Bayesian prior for beam remittance response function as a function
of surface intensity, used to initialize EM.

intensity readings for map cells where beam j observed

intensity a.

Taking this further, we can derive a probabilistic calibration

that specifically models the uncertainty and noise characteris-

tics of each beam, which in practice are often very different.

We note that although environment reflectivity is of course

continuous, for computational reasons we restrict the values

to integers between 0 and 255, as this matches the range of

the Velodyne’s returns. Thus for each map cell ci we maintain

a distribution P(m) indicating the probability that map cell ci

has intensity m, for m = 0 to 255.

Now, for each beam bi we wish to estimate a distribution

P(ai|m) indicating the probability that beam bi will return

intensity ai given that cell ci has intensity m. Each map cell is

initialized with a uniform intensity prior, and for each beam

we initialize the prior

P(a|m) = η · exp

(

(a−m)2

τ

)

+ ε

where η is the normalizer, τ controls the peakiness of the

distribution, and ε affords a nonzero probability of a random

intensity return. With this initialization, a priori beams are

likely to return values near the true brightness of the map, as

shown in Fig. 5.

Starting with the initializations above we then alternate

between computing P(m) for each map cell (E-step) and

computing P(ai|m) for each beam and map intensity (M-step).

We note that while the intensities of each map cell are by no

means independent, because they are jointly affected by the

beam models, they are conditionally independent of each other

given the beam models, which allows us to apply EM. The

update equations are as follows:

E-step:

P(mk = m) = η · ∏
i:ci=k

P(ai|m;bi)

Thus, in the Expectation step we compute the distribution

over intensities for each map cell given the current beam

parameters.

M-step:

P(m|a;b) = η ·
K

∑
k=1

P(mk = m) ·1{∃i : bi = b,ci = k,ai = a}

P(a|m;b) = η ·P(m|a;b) ·P(a)

Thus, in the Maximization step we compute the most likely

beam parameters given our observed data and our current

distribution over the intensities for each map cell. First we

compute the probability of each map cell having all possible

intensities given the observed intensity return for that cell

by each beam and the distribution over intensity values for

that cell as computed in the E-step. Then, using Bayes’ rule

we compute the distribution over possible intensity return

values for each beam given the distribution over the map cell

intensities.

After EM converges, we have a fully generative model for

each beam’s response to environment surfaces of different

reflectivities.

V. EXPERIMENTAL RESULTS

We demonstrate the performance of the calibration algo-

rithms presented here with several experiments. We used a

Velodyne HD-64E S2 LIDAR sensor with 64 beams oriented

between -22 to +2 degrees vertically and rotating 360 degrees

horizontally. The unit spins at 10Hz and provides around

100,000 points per spin. This sensor was mounted to the roof

of our research vehicle as shown in Fig. 2.

In addition, our vehicle pose was provided by an Applanix

LV-420 positioning system that combines GPS, IMU, and

wheel encoder readings to provide global and intertial pose

updates at 200 Hz. However, as the methods described here

only require locally consistent pose data, we ignored the global

GPS pose values and only used the unit’s local 6-DOF velocity

updates, which we integrated over time to produce a smooth

local coordinate frame.

We implemented our algorithms in C, taking advantage of

the University of Maryland’s Approximate Nearest Neighbor

(ANN) library [5]. For the following results, we used a

maximum matching distance of 20cm and generated per-beam

pointclouds and surface normals using all laser returns, but

only evaluated the energy function at every 16 points for

effiency; with over a million points returned by the Velodyne

per second, it is unnecessary to evaluate the energy function

at every single point. With this implementation on a modern

desktop processor, using about 15 seconds of recorded data,

the extrinsic and intrinsic calibrations each take on the order

of one hour to converge, given a very bad initialization.

The remittance intensity calibration is faster, requiring a few

minutes to run.

A. Extrinsic calibration

First, we show that we can precisely and reliably compute

the Velodyne’s mounting location on our vehicle, even with

a poor initialization. As discussed previously, we attempt to

recover the sensor’s lateral and longitudinal offset and roll,

pitch, and yaw relative the the vehicle’s coordinate frame.

Fig. 6. Initial Velodyne mounting position (left) and after translation and
rotation (right)

(a) Assuming previous Velodyne position.

(b) After calibrating for the updated position

Fig. 7. Moving and rotating the Velodyne, but continuing to use the original
position calibration, projecting accumulated Velodyne points into 3D results
in massively deformed structures and significant blurring of surfaces (a). After
calibration (b), the points are much better aligned, and the computed transform
for the Velodyne is extremely accurate.

We collected two short 15-second logfiles with each of two

different mounting positions for the Velodyne, for a total of

four logfiles. In all four cases, we drove the vehicle in a tight

semi-circular arc close to a building at 2 m/s.

First, we ran the calibration routine on the two logfiles

taken with the initial mounting position. Here, the Velodyne

sensor was centered laterally on the vehicle, and positioned

1.51 meters forward of the rear axle, which is our positioning

system’s reference origin. It was pointed straight forward and

mounted parallel to the roof rack, as shown in Fig. 6 (left).

On the first logfile, starting with an initial calibration

that was within 10cm and 1◦ of the measured location, our

algorithm computed a lateral position of 0.00m, a longitudinal

position of 1.51m, a roll of -.03◦, a yaw of 0.00◦, and a pitch

of -.46◦. On the second logfile, with the Velodyne in the same

location, the algorithm computed a lateral position of -0.01m,

a longitudinal position of 1.50m, a roll of -.03◦, a yaw of

0.03◦, and a pitch of -.46◦. Thus, from two separate drives,

from two different locations, the resulting position estimates

were within 1 cm and .03◦ of each other in all dimensions.4

For a more challenging test, we then remounted the Velo-

dyne 5.6 cm to the right and 20.6 cm behind the original

location, and we rotated it counter-clockwise (around the Z

axis) by 9 to 10◦, as shown in Fig. 6 (right). Now, starting

with the calibrated pose from the original mounting location,

we ran our algorithm on each of the two new logfiles. On

the second of the new logfiles, it correctly estimated that the

sensor had been moved by 6 cm to the right and 21 cm to the

rear, and rotated by 9.78◦ counter-clockwise. The dramatic

improvement in the resulting 3D pointcloud, comparing the

assumed original mounting location to the estimated new

location, is shown in Fig. 7.

On the first of the new logfiles the estimate was less accu-

rate; the computed offsets were 16cm to the right and 30cm to

the rear, along with 9.56◦ counter-clockwise. Thus, although

the directions of the movement were correct, the amounts

were not. Upon examining this logfile, we discovered that

there had in fact been IMU drift across the trajectory, which

resulted in the accumulated 3D pointcloud showing visible

smearing. Indeed, the inacurrate Velodyne pose estimate our

algorithm computed not only had a better scoring energy

function than the correct calibration for that logfile, but it also

visually resulted in less smearing than the correct calibration.

In this case, our algorithm picked the extrinsic calibration

that resulted in the ”best” 3D pointcloud, but because the

assumption of a correct local trajectory was violated, the

estimated calibration was a bit off.

Therefore, these results demonstrate that our algorithm

produces extremely accurate extrinsic pose estimates when

the trajectory is known precisely, and that its performance

degrades when the trajectory estimate is inaccurate.

B. Intrinsic calibration

Next, we show that we can accurately calibrate the Velodyne

sensor’s individual beam angles and range offsets. Recent

improvements in Velodyne’s meticulous supervised factory

calibration give better results than earlier models; not only can

our algorithm do better still, we show that we are able to take

an artifically bad calibration and use our methods to arrive at a

calibration whose accuracy exceeds the best available factory

calibration. Fig. 8 depicts such an optimization; starting with

an unrealistically bad calibration in which we set all horizontal

angles to be 0 and all range offsets to be equal,5 we are able

to recover an excellent calibration based on only 10 seconds

of data in a complex unlabeled environment.

We show quantitative success in two ways. First, in opti-

mizating the intrinsic calibration, the angles and range offsets

we compute are very similar to the factory values, even when

4We are only able to measure the mounting angles to within 1◦, so we
cannot empirically verify the angle calibration to within the .03◦ granularity
to which we estimate angles in our algorithm; however, both the energy
functional and the surfaces in the resulting 3D pointclouds are optimal with
the computed calibration and degrade noticeably if they are changed in either
direction.

5In reality, the horizontal beam angles range from -9◦ to +9◦ within the
Velodyne and the range offsets range from 0.85m to 1.53m.

Fig. 9. Comparing the horizontal angles of all 64 beams with the factory
calibration, starting with a uniform initial estimate and optimizing over 400
iterations. Here, the update step size was very low for clarity. Initially beams
were miscalibrated by up to 9◦, and after calibration all beams’ angles agreed
with the factory calibration to within 1◦, with an RMS deviation of only .25◦.

Fig. 10. Improvement in wall planarity with calibration.

initialized to be significantly different. In one experiment,

we optimize the horizontal angles starting from a uniform

initial estimate of 0◦ per beam. With this initialization, the

beam angles disagree with the factory calibration by up to 9◦,

with an RMS disagreement of 4.6◦; after our optimization,

the maximum disagreement is less than 1◦, with an RMS

disagreement of 0.25◦ (Fig. 9). Thus our result is, for all

beams, very similar to the factory calibration. Indeed, although

we are unable to measure angles to these tolerances, we

find the resulting energy functional and visual appearance

of our calibration both outperform the factory calibration,

suggesting that much of the disagreement may be due to

factory miscalibration, or slight angle shifting over time.

Going further, in Fig. 10 we see another application of our

calibration in a simpler environment, after which we hand-

selected an area of horizontal ground and vertical wall known

to be planar, and in Fig. 11 we compare the RMS distance

of the points to their approximating plane over the course of

optimization. With our artificially bad calibration we start with

ground and wall errors of 54 and 4 cm, respectively, and after

optimization these are reduced to 4 and 2 cm, respectively.

Importantly, the baseline Velodyne factory calibration gives

errors of 6cm and 3cm, respectively, so our unsupervised

method provides superior results.

Fig. 8. Unsupervised horizontal angle and range calibration using 10 seconds of data (all scans depicted above). Points colored by surface normal. Even
starting with an unrealistically inaccurate calibration (a) we are still able to achieve a very accurate calibration after optimization (d).

Fig. 11. Quantitative improvement in wall planarity during calibration
procedure. Final result exceeds factory calibration for both wall and ground.

Fig. 12. The learned generative model P(ai|m) for beam 37 of 64.

C. Bayesian remittance calibrations

The results of Bayesian intensity calibration can be seen

in Fig. 12, in which we plot the learned generative model

for one of the 64 beams. Here we see, as expected, that

brighter surfaces tend to yield brighter returns. The somewhat

surprising non-monotonicity of the graph corresponding to the

brightest 45% of surfaces may be partially explained by the

fact that fewer than 0.1% of the Velodyne returns fall into that

brightness region. Thus, there is very little data to generate that

section of the graph; at the same time, this phenomenon causes

that region of the response function to rarely be queried.

Each beam has a significantly different intensity response;

we show the expected intensity values of the environment

given each beam’s measured intensity in Fig. 13.

Finally, we show the significant impact of angle, range, and

intensity calibration on the resulting laser maps. In Fig. 14

we show an orthographic intensity map of points projected

Fig. 13. The expected environment intensity given each beam’s intensity
return. All 64 beams are shown here; note significant variation between beams.

Fig. 14. Improvement from calibration. We compare an orthographic intensity
map of a street with the horrible angle and range calibration used in Fig. 8
(left), the same map with the learned angles and ranges (center), and finally
adding intensity calibration (right). The final result is much improved.

to the ground plane, first with our artifically bad calibration,

then with calibrated angles and ranges, and lastly adding cal-

ibrated intensities. The final calibrated map displays excellent

sharpness and contrast, indicative of a well-calibrated sensor.

VI. CONCLUSION

Multi-beam LIDAR sensors are a key enabling component

of advanced mapping and robotic applications, and their use

will only increase with time. We have presented what we

believe to be the first complete fully unsupervised calibration

algorithms for these sensors, and have demonstrated that ex-

cellent results are achievable with a trivial amount of data col-

lection in arbitrary unlabeled environments even with terrible

initializations. In addition, these methods are extensible and

have many related applications. For example, these algorithms

could easily be extended to the calibration of multiple single-

beam LIDARs mounted to one vehicle platform.

Due to the particularly large amount of data generated and

extremely large search space, the algorithms discussed here are

naturally suited to be run offline. However, it is conceivable

that with intelligent data pruning and more aggressive search

techniques, a similar realtime algorithm could be developed

to enable on-the-fly sensor calibration while driving. For most

applications, offline calibration is sufficient, but for sensors

that are unable to be perfectly secured to the vehicle, a realtime

algorithm would provide some benefits.

Although the algorithms we discuss here make particularly

few assumptions about the environment, they do treat the

environment as static, i.e. we assume it is only the data

collection vehicle that is moving. To the extent that there are

dynamic obstacles during data collection, this motion could

interfere with the results; in these cases, existing segmentation

and tracking algorithms could be employed [12, 13] to remove

such tracks, although an especially poor initial calibration may

render segmentation and tracking more difficult than usual.

In this paper we presented a solution to a particular instance

of the Simultaneous Calibration and Mapping (SCAM) prob-

lem, in which neither a calibration nor a map is available

a priori. Such situations are in fact common in practice,

despite being significantly less studied than the more popular

Simultaneous Localization and Mapping (SLAM) problems.

This discrepency is perhaps due in part to the fact that

reasonable calibrations for simple sensors are often obtainable

by hand measurement, whereas SLAM problems cannot be

solved similarly. In addition, SCAM - or at least the solution

presented here - is inapplicable to single-beam sensors as

they alone do not provide enough data for fully unsupervised

calibration in the general setting.

A natural extension would be to combine SCAM with

SLAM; that is, to solve Calibration, Localization, and Map-

ping jointly when none are known precisely. In preliminary

work, we have aligned a several-minute logfile with both

SLAM and SCAM as presented here; a resulting 3D point-

cloud can be seen in Fig. 15. However, more research is

required to arrive at a consistent approach to jointly optimizing

all unknowns in the general case, particularly if the initial pose

estimate is poor. Our results benefit from a high-end IMU,

which is not available or practical for all robots, and thus

a joint algorithm for recovering calibration and localization

without a known map would be a worthwhile goal for future

research.

REFERENCES

[1] G. Chao and J. Spletzer ”On-Line Calibration of Multiple LIDARs on a
Mobile Vehicle Platform.” ICRA 2010.

[2] A. Censi, L. Marchionni, and G.Oriolo ”Simultaneous maximum-
likelihood calibration of odometry and sensor parameters.” ICRA 2008.

Fig. 15. 3D pointcloud of a campus parking lot after SLAM and calibration;
60 seconds of accumulated data colored by intensity return.

Fig. 16. Closeup from above scene from another perspective; points colored
by both intensity return and surface normal.

[3] A. Kaboli, M. Bowling, and P. Musilek ”Bayesian calibration for Monte
Carlo localization.” AAAI 2006.

[4] N. Muhammad and S. Lacroix ”Calibration of a
rotating multi-beam Lidar” published on-line at
http://www.pges.fr/2rt3d/SortedDocs/Publications/ CalibrationOfA-
MultiBeamLidar2.pdf 2009.

[5] D. Mount and S. Arya ”ANN: A Library for Approximate Nearest Neigh-
bor Searching” available on-line at http://www.cs.umd.edu/ mount/ANN/

[6] J. Levinson and S. Thrun ”Robust Vehicle Localization in Urban
Environments Using Probabilistic Maps” ICRA 2010.

[7] Y. Chen and G. Medioni ”Object Modeling by Registration of Multiple
Range Images” Proc. of the 1992 IEEE Intl. Conf. on Robotics and
Automation, pp. 2724-2729, 1991.

[8] A. Dempster, P. Laird, D. Rubin ”Maximum likelihood from incomplete
data via the EM algorithm.” Journal of the Royal Statistical Society.
Series B 39(1): 1-38.

[9] A. Segal, D. Haehnel, and S. Thrun ”Generalized-ICP” Robotics Science
and Systems, 2009.

[10] J. Underwood, A. Hill, and S. Scheding ”Calibration of range sensor
pose on mobile platforms” in Proceedings of the 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Diego,
CA, October 2007

[11] S. Thrun, W. Burgard and D. Fox. Probabilistic Robotics. MIT Press,
2005.

[12] K. Lee, B. Kalyan, S. Wijesoma, M. Adams, F. Hover, and N. Pa-
trikalakis ”Tracking random finite objects using 3D-LIDAR in marine
environments” Proceedings of the 2010 ACM Symposium on Applied
Computing.

[13] J. Shackleton, B. VanVoorst, J. Hesch ”Tracking People with a 360-
degree Lidar” 7th IEEE Conference on Advanced Video and Signal Based
Surveillance. 2010.

[14] A. Petrovskaya and S. Thrun ”Model based vehicle detection and
tracking for autonomous urban driving” Autonomous Robots, Volume
26 Issue 2-3. April 2009.

[15] B. Douillard, A. Brooks and F. Ramos ”A 3D Laser and Vision
Based Classifier International Conference in Intelligent Sensors, Sensor
Networks and Information Professing (ISSNIP) 2009.

[16] D. Steinhauser, O. Ruepp and D. Burschka ”Motion segmentation
and scene classification from 3D LIDAR data” Intelligent Vehicles
Symposium, IEEE. 2008.

