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Abstract— Existing camera networks in public spaces such
as train terminals or malls can help social robots to navigate
crowded scenes. However, the localization of the cameras is
required, i.e., the positions and poses of all cameras in a
unique reference. In this work, we estimate the relative location
of any pair of cameras by solely using noisy trajectories
observed from each camera. We propose a fully unsupervised
learning technique using unlabelled pedestrians motion patterns
captured in crowded scenes.

We first estimate the pairwise camera parameters by op-
timally matching single-view pedestrian tracks using social
awareness. Then, we show the impact of jointly estimating the
network parameters. This is done by formulating a nonlinear
least square optimization problem, leveraging a continuous
approximation of the matching function. We evaluate our
approach in real-world environments such as train terminals,
where several hundreds of individuals need to be tracked across
dozens of cameras every second.

I. INTRODUCTION

Nowadays, cameras are everywhere: “an average Amer-
ican citizen can be caught on camera more than 75 times
a day” [8]. Public places such as train terminals, malls,
or retail shops are monitored by dozens of fixed cameras
(originally installed for security purposes). These already
installed cameras are a valuable source of information to
push the limits of automatic perception in the quest to have
social robots everywhere [37]. Robots can use these cameras
to obtain the locations of humans that might be out of their
own sensing range, or occluded from their point of view.
In general, these cameras networks can help the robots in
their navigation and go beyond perception by predicting what
could happen next [29], [13], [39], [3]. For example, it has
been demonstrated that traffic/security cameras can assist in
the detection of pedestrians from vehicles [1].

However, to fully take advantage of existing camera net-
works in both indoor and outdoor environments, the knowl-
edge of the cameras’ location is required. Unfortunately,
in practice, this knowledge is not available across the 210
million of already installed cameras that were originally
deployed for video surveillance purposes [38].

In this work, we use a data-driven method to localize
cameras from the same scene, i.e., the relative positions and
angles between all cameras. Note that cameras are fixed, and
targets (mainly humans) are moving on the ground. These
assumptions describe most of the public and private spaces
(e.g., terminals, malls...) monitored by security cameras
where humans navigate through. The input to our method
is noisy human motion trajectories extracted by each camera
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Fig. 1: (Top) Observed tracklets from 5 uncalibrated cameras (top view).
These tracklets correspond to pedestrians that are observed to come in and
out of the FOV of the cameras. Different color codes correspond to different
track IDs. (Bottom) We aim to infer the relative placement of the cameras
in the scene.

(see Figure 1). We use the output of a tracking algorithm
which is prone to error [2]. The correspondence between the
trajectories across cameras (referred to as tracklets in the rest
of the paper) is not known.

Pioneering works [19], [27], [24], [4] have shown en-
couraging results towards our goal of locating cameras in
constrained settings. They assume that the correspondence
between an observed pedestrian from one view is known
across a different view, e.g., a single person moves around the
scene. Given the shift in time between the observations, it is
possible to estimate the relative camera positions. However,
in practice, cameras simultaneously observe dozens of indi-
viduals across their fields-of-view and such correspondence
is not available. This causes the chicken-and-egg problem:
the cameras’ relative location can not be inferred without the
correspondences and vice versa.

Our model draws inspiration from a number of works in
the sensor network community [20], [7], [41]. These works
locate the sensors given pairwise distances between the sen-
sors. Our model is based on a non-linear optimization over
the distances using Levenberg-Marquardt (LM) algorithm.
However, in our camera network setup, we need to extend
these techniques to handle the uncertainty in the pairwise
estimation of the camera network (cameras are temporally
synchronised). The challenges in this pairwise estimation
step are the following:

o Tracklet correspondences between cameras are un-

known . We need to estimate them from the data.



o Inter-camera observations of a track can be dis-
tant enough experiencing strong pedestrians’ motions
change. We need to forecast realistic motion behavior
in non-observed regions.

o Recurrent motion patterns appear across cameras in high
density crowds creating track ambiguities promoting
several sets of parameters with the same likelihood.

o The tracklet association function between a pair of
cameras is not surjective, i.e. not every tracklet from the
first camera has a correspondence in the next camera.

o Tracklets are noisy since they are the output of a
tracking algorithm.

We present in Sec. III-A our method to obtain the pair-
wise estimates given the aforementioned challenges and our
proposed optimization step over a continuous cost function
to address the uncertainty in the estimates (in Sect III-B). To
the best of our knowledge, it is the first time that such model
has been applied to locate cameras in crowded scenes.

The contributions of our paper are summarized as follows:
(i) a new problem formulation, i.e., cameras localization
solely with extracted tracklets in an unsupervised setting,
(ii) a framework that can handle the ill-posed problem of
estimating pairwise camera parameters thanks to our pro-
posed joint optimization over a continuous cost function, (iii)
an evaluation framework made of real-world crowd datasets
to let the community address the same challenge with re-
producible results. In Section IV, we show the performance
of our method on several public datasets such as [43] and
especially the challenging crowd dataset [2].

II. RELATED WORK

In this paper, we tackle the problem of locating cameras
using tracklets extracted from multiple uncalibrated fixed
cameras in crowded settings. The challenges involve extract-
ing and matching tracklets across cameras, as well as cali-
brating the network. We propose to use pedestrian behavioral
models and insights from the sensor network community to
address these challenges. We briefly summarize key works
in these areas.

Tracklet extraction and matching - Algorithms with
high levels of accuracy have been proposed to locate humans
with a single top view camera [9], [15], [14], [2]. Once
humans are located on the ground, tracking algorithm is used
to generate the tracklets by temporally linking located points
with various techniques such as Markov Chain Monte Carlo
(MCMC) [22], Bayesian networks inference [30], dynamic
programming [14], , and more recently linear programming
[23]. Once tracklets are extracted, similar frameworks can be
used to match them across cameras [33], [44], [34]. Alahi
et al. in [2] use Social Affinity Map (SAM) as an additional
cue to reason on the matching cost.

Calibrating the camera network - First, a large body
of work suppose that cameras have overlapping Field-Of-
Views (FOV) [10], [28] whereas our work focuses on camera
networks with non-overlapping FOVs. Moreover, existing
works suppose that either a single person [4] or limited num-
ber of humans move around at different time intervals. For

instance, they use Mutual information [40], cross correlation
and covariance [26], or model visual appearance to learn
the topology [19], [31], [42]. Marinakis et al. in [27] use
tracklets observations of a known number of people with
homogeneous behavior. In large-scale crowded environments
such as train terminals, we cannot assume that a single person
is moving around with homogeneous behavior. Moreover, to
the best of our knowledge, none of the previous works have
addressed the learning of a network made of several dozens
of cameras where hundreds of pedestrians simultaneously
enter and exit the FOV of the cameras from any possible
location. We therefore propose to address such challenging
scenarios using social cue and a non-linear optimization
technique.

Behavioral models - A linearly independent human mo-
tion behavior assumption in crowded scenes is not realistic
[4]. Pedestrian motion models that handle interactions be-
tween individuals are better estimates of pedestrian mobility
[25], [32], [23], [5]. In crowded environments, pedestrians’
behavior is highly influenced by others. D. Hellbing and P.
Molnar in [16] proposed the classical social force model.
Snape et al. [36] propose a motion model coined Optimal
Reciprocal Collision Avoidance (ORCA) that works in the
velocity space by finding the closest collision-free velocity
to the preferred one. The ORCA motion model has the
advantage of providing a smooth and collision-free behavior
estimate in real-time using linear programming. We will
leverage this model to infer our pairwise camera parameters.

Sensor network topology learning - The problem of
learning network topology has been widely studied in the
sensor network community. The most popular algorithm is
the Multidimensional Scaling (MDS-MAP) algorithm, which
locates sensors using pairwise distance constraints [20]. The
method uses SVD to form a low dimensional projection of
a complete set of pairwise distance measurements arranged
in a matrix. Missing measurements introduces error although
they are estimated by computing the shortest path along the
known distances in the network. Biswas and Ye presented
a Semidefinite Programming (SDP) relaxation of the non-
convex localization problem [7], [41]. The method has poten-
tial benefits over MDS-MAP as it does not require complete
pairwise distances between every node but it requires three
anchor nodes of known location. Non-linear least squares
regression (NLS) is another widely used family of algorithms
which often produces more accurate results than MDS-MAP
without much added computational expense [11]. Unlike
MDS-MAP and the SDP relaxation, this algorithm can incor-
porate angular measurements to aid in placement. It is often
solved using the Levenberg-Marquardt algorithm, of which
implementations are widely available. We frame our camera
network problem as a sensor localization problem using
a probabilistic inference. Instead of having hard pairwise
constraints, we have soft ones in the form of continuous cost
functions. More details are provided in the next sections.



[II. METHOD

We want to locate all cameras within the same scene, i.e.,
the relative positions and angles between all cameras. As a
result, extracted tracklets from each camera can be matched
across the network to analyze human mobility in large-scale
and help social robots to navigate in such scenes.

We propose a framework made of two steps: i) a pair-
wise estimation of the camera parameters, and ii) a global
optimization to obtain the optimal set of parameters over the
full network. The first step is an ill-posed problem. Several
solutions can describe the observed flow. Consequently,
we propose to solve a joint optimization (step ii) over a
continuous cost function describing the cost of each cameras
pair. The second step will select the solution for all the
cameras pairing in a network that maximize the likelihood
of the full network.

A. Pairwise camera parameters estimation with social
awareness

For any cameras pairing in a network, we first want to
estimate the cameras’ relative placements using only the
observed tracklets. Formally, the relative pose between two
cameras is modeled by 3D translation vector and 3D rotation
matrix (or SE(3) groups). We propose an intermediate pro-
jection, i.e., projected tracklets on the ground, that will only
require a 3 Degree Of Freedom (DOF) to find the cameras
relative placements. Many methods exist to extract tracklets
from RGB cameras [12], [21], or even RGB-D cameras
[35], [17], [6], [2]. The tracklets are projected on the world
ground plane (where the camera is the origin of the plane,
as illustrated in Figure 1). As a result, our problem is cast
into finding the relative 2D translation and rotation between
the observed tracklets from one view to the other.

Formally, we intend to estimate 2D pairwise camera
constraint parameters tuples p = (y,, Qp, Tm,n) given the
observed tracklets, where scalar 7, ,, is the distance between
the origins of camera m and n, and ., and a, are the
angles of cameras m and n (respectively) relative to a line
segment between the two camera origins (see Figure 3(a)).
Cameras can be far-away from each other, observing high-
density crowds.

To estimate the cost associated with a pairwise camera
constraint parameters, p, we compute its match count M as
the number of tracklets that find a match in the second cam-
era by forecasting their trajectory with a collision avoidance
motion model (ORCA [36]) and a social affinity descriptor
(SAM [2]) given the relative camera placement:

Mgy (p) = Y _1(x},y;,p) )
i,

where p = (@, Qp,Tm,n) is the parameter tuple being
evaluated, ] is the forecasted coordinates of tracklet = from
camera m using the ORCA motion model [36] presented in
Section II, y; is the observed starting point of a tracklet
in camera n, and 1(-) is an indicator function indicating
a spatial match of the two points when the cameras are
positioned relative to each other according to p.

Fig. 2: For a camera pair, we use a bipartite graph to match tracklets
with social awareness. Each edge is weighted by the error of matching
the forecasted tracklet in one camera to the tracklet in the other camera.

a) Greedy matching: We first consider as a match as
long as || X; — Y;||3 < T where T = 1 meter. We prune
the search space by keeping the candidates that have high
likelihood with such simple matching rule, referred to as
ORCA augmentation Section IV. We keep the top 10% of
the tuple with highest number of match. Next, we use a
bipartite graph matching method to fine-tuned the number
of matches by finding the optimal assignment given both the
forecasting error as well as the Social Affinity Map (SAM)
[2].

b) Bi-partite graph matching: For a given pairwise
camera parameters tuple (e, @, 7m ), We construct a
bipartite graph G, = G, (V1 U Vo, E) where vertices V; and
V5 represent tracklets X; from camera 1 and tracklets Y;
from camera 2, respectively (see Figure 2). The weight d;;
of an edge e¢;; € I represents the forecasting accuracy and
Social (group) Affinity Map (SAM) [2] between tracklet
and j:

_ Forecasting SAM
dij = By + 63

= |IX7 = Y3 + H(sam;, sam;), @

where X is the forecasted coordinates of tracklet ¢ from V;
at the start time of tracklet Y; from V5, H is the hamming
distance between the sam binary vector of the the two
tracklets ¢ and j. The sam vector encodes the spatial position
of the tracklet’s neighbors with a binary radial histogram.
It compares the social affinity map of a person with its
neighbor, i.e. the relative position of your neighbors. The
matches corresponding to the parameters set is obtained by
applying the minimum weight bipartite matching algorithm
presented in [18].

For each point in a discrete range of parameter values
(Qm, O, T ), We calculate a score M representing the
number of tracklet matches. We assume a higher score M
indicates a better relative placement of cameras, and we
seek a global placement of all cameras that maximizes the
matching tracklets between all cameras. The next section
describes our methods for formulating and solving this
problem.
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Fig. 3: (a) Illustration of the pairwise camera parameters to estimate from
bird view (top view). (b) A camera can be represented by a 2 points
formulation see Section 5.4.

B. Global optimization over the full network

Our final goal is to estimate the locations of all cameras
in a scene given estimations for pairwise constraints. For
a given camera pair, several parameters can share similar
match counts. We aim to jointly maximize all the match
counts.

We model the pairwise constraints between cameras as
a “constraint graph” G = (N, E), where the nodes N =
s; represent each camera and each edge F represents a
known tuple of constraints between two cameras, such as the
distance and angle constraints. If this graph is connected, the
full relative placement may be estimated, either by directly
using the constraints of form (o, on, T'm.n), Or by a “two-
point per camera” formulation, where camera position and
angle information are captured by representing each camera
as a pair of points, as depicted in Figure 3(b).

A greedy approach can iteratively place each camera with
respect to a connected neighbor by choosing a minimum
subset of the estimated pairwise parameter tuples. A tuple
is sufficient to fully constrain the relative placement of two
cameras. However, errors in the placement are propagated
over the network. It is also possible to use the MDS-MAP
algorithm or SDP relaxation mentioned in Section II. How-
ever, these methods use a fixed estimate for each pairwise
constraint. More details are provided in Section IV.

From our tracklet matching approach, we can estimate a
match count for a discrete set of points in the constraint
value space. We offer to leverage this using a non-linear
least square optimization method.

C. Levenberg-Marquardt nonlinear least squares optimiza-
tion

We propose to formulate the joint optimization as a non-
linear least squares (NLS) minimization problem:

arg min Zfz(.%')Q 3)

where f;(x) are nonlinear residual functions. We solve this
using the Levenberg-Marquardt (LM) algorithm.

To create a residual or cost function, we borrow concepts
from statistics by modeling each tracklet match as a sample
at a given value for a specific pairwise camera relative con-
straint, and seek a solution that is statistically likely. Mean
and variance constants are calculated from these constraint-
value samples, and the residual functions of the least squares
problem are constructed such that the problem is equivalent

to the maximum log-likelihood estimation of independent
Gaussians. The basic form for the residual for the distance
between cameras is:

fij(riz) = (rig — i) 4
\/50 i,j
where the variable r; ; is the distance between cameras i
and j, and y; ; and o; ; are the constant mean and variance
values of the samples.

A similar formulation is used to fit a Gaussian distribution
representation to the angular constraints, and produce a
residual for the camera angles. Because the angular samples
are periodic, we applied a window centered at the mean of
angles (defined in Section III-D) before calculating the mean
and variance parameters.

The actual domain of the optimization problem is the
absolute locations and angles of the cameras. The resid-
ual functions used in practice are the composition of the
functions f; ; described above with functions that translate
absolute positions and angles to relative distances and angles
using basic geometry. The composed functions are non-
linear, and the problem has infinitely many optimal solutions
that are equal up to a global rotation.

The LM algorithm can be used with any initialization.
However, since it may converge to a local optimum, we use
MDS-MAP to generate the initial placement estimate for the
descent algorithm.

D. Multidimensional Scaling-MAP initialization

First, MDS-MAP is applied as described in the literature
[20], using unit weighting for the shortest-path estimates of
the missing distances. Second, the angle of each camera is
estimated using the (v, iy, 7'm,n) CONstraints as a separate
step. The constraint graph will over-constrain the angular
orientation of cameras when edges appear on a cycle. After
positions have been determined, each pairwise parameter
tuple for a camera infers a specific camera angle. The
final angle is estimated by taking the mean-of-angles of the
orientation angle implied by each constraint. The mean-of-
angles is calculated by assigning a unit vector in the direction
of each camera angle implied by each constraint, followed
by summing these unit vectors and returning the angle of the
resulting vector.

Because MDS-MAP works with distance constraints only,
there exists reflectional ambiguity in the solution. We account
for this ambiguity by computing the camera angles for both
the solved positions and the reflection of the solution, and
choosing the placement which minimized the angular cost.
The total angular cost is chosen as the sum of the quadratic
cost for each constraint angle. The cost associated with
the angular component «; of a camera pairwise constraint
(04, aj,7;.5) is a squared distance-weighted-error function,
where the difference of the constraint angle and the cor-
responding placement angle is multiplied by the associated
distance constraint r; ; and squared. Thus, the overall angular
cost is a function of the absolute 2D positions (a;, b;) and
angles 6; of the cameras:
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Fig. 4: Illustration of the final topology inferred with our approach for
different characteristic camera network arrangements, including the full
network of 33 cameras (vi). Solid outlined blue triangles represent the
inferred placement, and the dashed red triangles represent the ground truth.

Ca,({(a,1,0))) =
[(ai — (01 — atan2(b; — biya; — ax) ))m,j] e

The distance-weighting term attempts to scale angular
error into an appropriate distance error.

The next section will demonstrate the effectiveness of
this NLS algorithm when applied to the pairwise constraint
estimates.

IV. EXPERIMENTS

A. Real-world datasets

We use several datasets to run our experiment. The most
relevant one is the Crowd dataset [2]. In this dataset, more
than a hundred cameras have been installed in two train
terminals. The cameras are clustered into 5 sites where each
site is independently monitored. For our experiments we
chose a site with 33 cameras. The collected tracklets are
dense (up to one pedestrian/m?) and the dataset contains
42 million trajectories. Several hundred pedestrians may
be simultaneously present as illustrated in Figure 6 (a top
view of the corridor, 100m long and 8m wide with 14
origin/destination entryways). For the sake of generalization,
we have also used trajectories collected from other publicly
available datasets such as [43] for the ZARAO1, ZARAO2,
and UCY sequences.

B. Evaluation protocol

To quantitatively measure the error in locating cameras, we
compute the sum-of-squares error measurements. Positional
error is defined as the sum of squared Euclidean distances
of the cameras from their calculated location to their ground
truth location (provided by the datasets). Angular error is
calculated as the sum of squared differences, on the range
[—7, ), between the calculated absolute camera angles and
the angles of the ground truth cameras.

We evaluate various network sparsity and camera arrange-
ment grouped as follows: (i) linear arrangement, cameras
are placed over a single line (see Figure 4) (ii) dual-linear
arrangement, cameras are placed over two lines (iii) non-
linear arrangement, cameras do not follow a structure (iv)
the full set of 33 cameras from the crowd dataset. Figure 4
presents qualitative results over the suggested grouping.

Several approaches have been previously proposed to
locate cameras (often referred to camera network topology).
For instance several methods [40], [26] cluster tracklets
observed in the FOV of the cameras into few entry/exit
zones. Then, they use the departure times and arrival times
as two signals. From this, they find the best time offset
between the two signals by maximizing correlation. As can
be seen in Figure 6, this does not model crowded scenes
well. Entry/exit zones tend to spread to the entire outline of
the cameras, and pedestrians do not tend to leave a small
exit zone and then enter a corresponding small entry zone.
We limit our evaluation to methods that are compatible
with our challenges/datasets, i.e. (i) non-overlapping FOV,
(ii) unknown tracklet association between cameras, and (iii)
crowd behavior with high pedestrian density.

C. Evaluation of the pairwise estimation of the camera
parameters

The accuracy of pairwise camera parameters estimation
depends on the distance between the cameras and the pre-
dictability of the flow of people between the cameras. For
instance, uncertainty of pedestrians’ paths usually grows
with distance traveled between cameras. In Figure 5, we
first present the error of inferring the full network with
linear motion model, ORCA augmentation, and our proposed
bipartite graph matching with social awareness. Note that we
use the same greedy optimization to place the cameras to
compare the performance of methods for pairwise estimation
of the cameras parameters. Various camera networks have
been evaluated: Full network of 30 cameras, single linear
flow, dual linear flow, and non linear flow 5 have (in average)
cameras distant by 3m to 5m; non linear flow 1 & 2 have
cameras distant by 7m to 9m; non linear flow 3 & 4 have
cameras distant by 14m to 16m.

We briefly discuss the results for these methods:

a) Linear prediction: We evaluate the performance
of linear projection of the tracklets to infer the camera’s
pairwise parameters. The only difference with the ORCA
augmentation method is the motion model. We evaluate the
performance of a simple linear one that is not avoiding
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Fig. 5: Quantitative results for various pairwise camera parameter estimation method (in m). We evaluate over several camera networks arrangements as
described in 5.2. (linear single arrangement, double, or non linear). The ids (1-5) represents different camera networks types.

collisions or comparing Social Affinity Map. As seen in
Figure 5, it performs the worst.

b) ORCA augmentation: This method augments the
tracklets as explained in Section 3. The benefit over linear
prediction is the capability to avoid collisions and hence
forecasting more plausible dynamics. In Figure 5, we can see
that such an approach is better than the linear motion model.
We use this algorithm to prune the space before evaluating
our bipartite graph matching method, as described in Section
3.

c¢) ORCA augmentation+SAM: We evaluate the impact
of verifying whether the Social Affinity Map is the same
after forecasting the tracklets from the first camera to the
second. We only keep the tracklets that have the same SAM.
The performance is slightly improved (see Figure 5).

d) Bipartite graph matching: We can see that our pro-
posed algorithm to estimate the pairwise camera parameters
outperforms other methods. It is worth mentioning that in
addition to better performance in estimating the distances,
the distribution of the estimation can be approximated with
a single Gaussian with low variance. Such distribution is used
to learn the connectivity of the camera networks.

D. Performance of the full optimization of the network
parameters

In this Section, we study the joint optimization to locate
the cameras. Figure 7 presents the quantitative results of our
approach with respect to the greedy baseline approach as well
as other competitive approaches. We used the proposed bipar-
tite graph matching step for all comparisons. We have evalu-
ated the performance of greedy placement, MDS-MAP, SDP-
Relaxation, and our proposed LM nonlinear optimization.
In addition to solving MDS-MAP and the SDP-Relaxation
using position constraints and calculating angle from angle
constraints as a second step, we also modeled cameras as
a pair of points and associated distance constraints (see
Figure 3), implicitly solving for angle without additional
steps. We discuss the performance of all the mentioned
methods:

a) Greedy method: This method relatively places cam-
eras starting with the pairwise constraint of highest match

factor (Equation 1). Additional pairwise constraints are cho-
sen from the remaining set in order of highest match factor,
rejecting those pairwise constraints which would make the
chosen set overconstrained. The resulting set of constraints
implies a unique relative placement of the cameras. The
performance of this approach is competitive with other al-
gorithms in various networks. Comparing to the MDS-MAP
and SDP formulations, which were both performed using
the candidate constraints of highest match factor, shows that
there are occasions where the constraint corresponding to the
most number of tracklet matches can produce better results
than optimizing over multiple overdetermined constraints. In
other occasions, the opposite is true. Nevertheless, the greedy
approach is particularly susceptible to propagation of error
in the constraints.

b) MDS-MAP algorithm: For networks having nearly
collinear cameras, such as the ‘Single linear flow’ net-
works, MDS-MAP produces much worse errors than other
algorithms, possibly because the algorithm cannot properly
resolve one dimension. This is especially true when using
angular constraints directly rather than the 2-point camera
constraint formulation. For the non-collinear networks, the
angle constraint formulation usually performs better than the
2-point constraint formulation. One explanation for this is
that the 2 points formulation may create new points that are
near other points, but without a pairwise constraint between
them. The shortest-path estimation step will likely find a
much longer distance than the true distance, which introduces
large errors.

¢) SDP-relaxation localization algorithm: As described
in Section II, an SDP-relaxation [41] method can be used as
an alternative to MDS-MAP. Since we do not have anchors,
we have modified the algorithm to first start with the MDS-
MAP solution. Then, 3 random nodes (cameras) are chosen
to act as anchors. When angular constraints are used, camera
angles are estimated using the same method employed for
MDS-MAP. The candidate solution is adopted if it improves
a cost function which penalizes the error of the constraints
using sum-of-squared-error. If cost does not improve, the
candidate solution is rejected. The procedure is repeated,
randomly choosing new anchors each iteration, until a fixed



Fig. 6: (Top row) Illustration of a corridor in a train terminal from bird’s-eye (top) view where 96 pedestrians are moving around (each colored dot
represents a pedestrian). (Middle row) Illustration of the camera network field of view from bird’s-eye (top) view. (Bottom row) The heatmap of the
tracklet entry/exit of each camera FOV. Each point represents the number of times a pedestrian enter or exit the camera view (red is high, blue is low).
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Fig. 7: Quantitative results over various networks of cameras as described
in 5.2.: linear single arrangement, double, and non linear ones (in meters).
The ids (1-5) represents different camera networks types. We compare to our
proposed algorithm with only MDS-MAP [20], and our implementation of
the SDP-relaxation [41]. Our proposed nonlinear least square optimization
initialized with the MDS-MAP results outperforms the other methods for
all networks tested except ‘Single linear flow’ (in red).

number of iterations occur without improvement in cost.

The overall cost is the sum of individual costs for each
distance constraint 7; ; and, each angular constraint ;. The
distance constraint cost function for a set of 2D camera
positions {(a, b)} for distance constraint r; ; is:

2
Croy(@bh) = (s = awst) = @0)l) - ©
The angular cost is defined in Section III-D.

Comparing the SDP-relaxation results to the MDS-MAP
results, (specifically either the angular camera constraint
formulation or the 2 points camera constraint representation),
there are instances where error increases and instances where
error decreases. It’s important to note that cost is no worse for
the SDP solution because our method starts with the MDS-
MAP solution and only chooses new candidate solutions if
the cost improves. This shows that fitting the constraints

more accurately than the MDS-MAP solution, as measured
by the cost function, does not always reduce our measure of
accuracy. The SDP method does not seem to provide added
benefit, while greatly increasing implementation complexity
and runtime.

d) Proposed LM nonlinear least squares optimization:
Overall, our proposed approach produces the best error by at
least one or two orders of magnitude in every case, except
for one network involving a single linear arrangement of
cameras.

In networks containing only a pair of cameras, or any other
network that is not overconstrained, the proposed algorithm
will place each camera at a relative distance and angle that
are exactly equal to the means of the analogous Gaussian
distributions that were fit to the match count functions. For
most tested cases, the proposed method resulted in an error
that was orders of magnitudes lower than the other methods.
Considering all of the results together, incorporating the
smooth match count function estimate as a cost function pro-
duces a better cost measure for solving the overconstrained
global network topology, i.e., the relative placement of the
cameras in the scene.

V. CONCLUSIONS

In this work, we show that by solely having access to
pedestrians’ observed motion, it is possible to infer the
relative placement of the cameras in the scene. We have
validated our method over real-world, challenging spaces
such as crowded train terminals with thousands of individuals
per hour. For future works, we aim to demonstrate the impact
of these calibrated camera networks on robot navigation.
Robots could reason beyond their sensing range, perceive
occluded objects, and generally improve their perception
capability. As a results, we envision to deploy social robots
in public crowded scenes such as in terminals to assist
commuters, or in malls to help elderly people to shop around.
We believe that the external network of cameras can play a
fundamental role in the success of social robots.
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