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Saı̈d Medjkouh1, Emre Gönültaş1, Tom Goldstein2, Olav Tirkkonen3, and Christoph Studer1

1Cornell University, Ithaca, NY; 2University of Maryland, College Park, MD; 3Aalto University, Finland

Abstract—Future wireless communication systems will rely on
large antenna arrays at the infrastructure base stations (BSs) to
serve multiple users with high data rates in a single cell. We
demonstrate that the availability of high-dimensional channel
state information (CSI) acquired at such multi-antenna BSs
enables one to learn a chart of the radio geometry, which
captures the spatial geometry of the users so that points close in
space are close in the channel chart, using no other information
than wireless channels of users. Specifically, we propose a novel
unsupervised framework that first extracts channel features
from CSI which characterize large-scale fading effects of the
channel, and then uses specialized dimensionality reduction tools
to construct the channel chart. The channel chart can, for
example, be used to perform (relative) user localization, predict
cell hand-overs, or guide scheduling tasks, without accessing
location information from global navigation satellite systems.

I. INTRODUCTION

Fifth-generation (5G) wireless communication systems must

be able to serve a large number of users within a given cell and

provide higher spectral efficiency than existing communication

systems [1], [2]. Massive multi-user multiple-input multiple-

output (mMIMO) is widely believed to be a core technology

that provides a solution for these requirements [3]–[5]. The

idea of mMIMO is to deploy hundreds of antennas at the

infrastructure base-stations (BSs) which enables fine-grained

beamforming to transmit and receive user data at the same time

and in the same frequency band. However, user mobility, sharp

hand-over regions between neighboring cells, and massive

device densification, mainly driven by the Internet of Things,

pose severe implementation challenges of this technology.

It is widely believed that machine learning will play a

critical role in unlocking the true potential of 5G technolo-

gies [6]. Concretely, one must provide the BS with information

about user mobility, cell hand over, and congested areas to

successfully deploy mMIMO in practice. To this end, one

must lean heavily on the available high-dimensional channel

state information (CSI) acquired at the multi-antenna BS. To

effectively use the collected CSI, the BS has to learn the radio

geometry in which the users are moving. What needs to be

learned is a chart of the radio geometry, which represents

user location and movement related to CSI. To automate

learning and charting, to dynamically adapt to changes in the
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environment, to prevent extensive measurement campaigns,

and to avoid human intervention, learning the radio geometry

should be unsupervised.

A. Contributions

We show that the availability of high-dimensional CSI in

mMIMO systems enables one to learn a chart of the radio

geometry that captures the spatial geometry of the users so that

points close in space are also close in the channel chart. The

proposed method, referred to as channel charting (CC), maps

high-dimensional CSI of the users into a low-dimensional

channel chart that accurately preserves the local geometry of

the users’ true location in space. CC first extracts suitable

channel features that represent slowly varying CSI components

in time and space; these features are then used to learn a

channel chart via specialized dimensionality reduction methods.

In contrast to existing localization methods that require vast

amounts of CSI labelled with the users’ true locations, e.g.,

obtained from global navigation satellite systems (GNSSs), CC

operates in an unsupervised fashion. The unsupervised nature

of CC avoids the need for extensive measurement campaigns

and enables the BSs to perform cognitive and predictive tasks

critical to 5G networks which are currently unavailable. We

demonstrate the efficacy of CC via numerical simulations

under realistic channel models and conditions.

B. Relevant Prior Art

Unsupervised charting of the radio geometry has not been

addressed in the literature. Existing methods for user localiza-

tion are mainly based on triangulation that use geometrical

models to map a low-level descriptor of the channel, such as

the received signal strength or angle-of-arrival, to a location

in space [7]–[9]. For triangulation to work, cooperation of

multiple BS located far from each other and line-of-sight

(LoS) propagation conditions are necessary. Similarly, for

channel fingerprinting [10]–[15], a channel map is generated

via extensive measurement campaigns that directly associates

CSI with position information from GNSSs [10], [12]–[17].

Fingerprinting methods are fully supervised and require

training of the wireless channel at wavelength scales in

space [17]. In contrast, CC is unsupervised and requires

orders-of-magnitude sparser spatial sampling. Furthermore,

supervision achieved by means of precise location information

with application layer localization services, such as GNSS, is

currently infeasible as this information is not accessible to

BSs according to OSI layering principles [18].

In charting of wireless channels, we are primarily interested

in preserving the local neighborhood structure of the spatial



geometry when charting the radio geometry. Tools from

manifold learning [19], [20] and dimensionality reduction [21]

have extensively been used to compute low-dimensional

embeddings that preserve the geometry of high-dimensional

datasets. Specific methods for these tasks are, among many

others, multidimensional scaling (MDS) [19] or Sammon’s

mapping [20], which attempt to embed a high-dimensional

manifold into a low-dimensional space. While such machine

learning tools have been extensively used for data mining and

data visualization purposes [22], dimensionality reduction has

not been used in wireless communication systems. We will

show how accurate channel charts can be generated using

tools from manifold learning and dimensionality reduction.

C. Notation

Lowercase and uppercase boldface letters stand for column

vectors and matrices, respectively. For the matrix A, the

Hermitian conjugate is AH , and the kth row and ℓth column

entry is An,ℓ or [A]n,ℓ. For the vector a, the nth entry is ak.

The Frobenius norm of A is denoted by ‖A‖F . The M×N all-

zeros and all-ones matrix is 0M×N and 1M×N , respectively,

and the M×M identity is IM . The collection of N vectors an,

n = 1, . . . , N , is denoted by {an}
N
n=1.

II. CHANNEL CHARTING PRINCIPLES

The objective of CC is to learn a low-dimensional channel

chart from a large amount of high-dimensional CSI (acquired

at the infrastructure BS from users at different spatial locations)

that locally preserves the original spatial geometry, i.e., users

that are nearby in physical space will be nearby in the

channel chart and vice versa. CC operates in an unsupervised

fashion from CSI only, i.e., does not require application layer

location information from GNSSs. Note that practical wireless

systems require the extraction of CSI anyway for reliable data

transmission. Hence, CSI is readily available at the BS. We

now detail the principles underlying this approach.

A. Channel Function and Assumptions

Consider a single-antenna user that is either static or moves

in real space. We denote its spatial locations at discrete time

instants n = 1, . . . , N by the set {xn}
N
n=1 with xn ∈ R

D,

where D is the dimensionality of the spatial geometry (e.g.,

the user’s x, y, and z coordinates). At each time instant n,

the user transmits pilots or information symbols sn, which is

received at a mMIMO BS with B antennas. The received data

is modeled as yn = H(sn) + nn, where the function H(·)
represents the wireless channel between the transmitting user

and the receiving BS; the vector nn models noise.

For CC, we are not interested in the transmitted data

but rather in the associated CSI. Concretely, the Rx uses

the received data yn to extract CSI denoted by hn ∈ C
M ,

where M denotes the dimensionality of the acquired CSI from

all antennas, frequencies, and/or delays; typically, we have

M ≫ D. We denote the mapping from spatial location xn to

CSI hn by the channel function H : RD → C
M , where C

M

refers to the radio geometry. In practice, the CSI represented

by hn depends on the user’s spatial location xn, but also on

(static or moving) objects within the cell, as well as on noise

and interference. CSI captures the overall geometry of the cell,

including all scatterers, reflectors, and diffractors in the built

and natural environment. In what follows, we will make the

following assumptions:

Assumptions 1. We assume that the statistical properties of

the multi-antenna channel vary slowly across space, on a

length-scale related to the macroscopic distances between

scatterers in the channel, not on the small fading length-scale

of wavelengths. We also assume a static channel function H.

Large-scale channels effects are typically created by reflec-

tion, diffraction, and scattering of the environment, whereas

small-scale effects are caused by multipath propagation [23].

Accordingly, this assumption is well supported by measure-

ments. As we will demonstrate in Section V, CC performs

exceptionally well under these assumptions.

B. Channel Charting

CC first distills CSI hn into channel features fn ∈ R
M ′

with M ′ denoting the feature dimension; typically, we have

M ′ ≫ D. Feature extraction is denoted by the function F :
C

M → C
M ′

, whose purpose is to extract large-scale fading

properties from CSI. CC then proceeds by using the set of

N collected features {fn}
N
n=1 to learn the so-called forward

charting function in an unsupervised manner. The forward

charting function to be learned is denoted by C : CM ′

→ R
D′

and maps each channel feature fn to a point zn ∈ R
D′

in the

low-dimensional channel chart; typically, we have D′ ≈ D.

The forward charting function C to be learned should preserve

local geometry between neighboring data points, i.e., aims at

implementing the condition:

If dx(x,x
′) is small, then dz(z, z

′) ≈ dx(x,x
′). (1)

Here, x,x′ ∈ R
D are two distinct coordinates in spatial

geometry, z, z′ ∈ R
D′

are two distinct points in the learned

channel chart, and dx(x,x
′) and dz(z, z

′) are suitably defined

distance (or dissimilarity) measures. The goal of CC is to

compute a channel chart {zn}
N
n=1 satisfying (1), solely from

the set of N channel features {fn}
N
n=1 in an unsupervised

manner, i.e., without access to the spatial locations {xn}
N
n=1.

Figure 1 outlines the process of CC. The users are located

in spatial geometry denoted by R
D which represents their

coordinates. The wireless channel H maps transmit signals

into CSI in radio geometry denoted by C
M . This non-linear

mapping obfuscates the spatial relationships between the users.

The purpose of feature extraction is to find a representation

from which spatial geometry is easily recovered. CC learns

the forward charting function C that maps the channel features

into low-dimensional points in the channel chart RD′

such

that neighboring transmit locations (in real-world coordinates)

will be neighboring points in the channel chart.

III. CHANNEL FEATURES

We start by the feature extraction stage. We show that lifting,

scaling, and transforming the CSI in the angular domain yields
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Fig. 1. Summary of CC. Users are located in spatial geometry RD and a
mMIMO BS extracts CSI in radio geometry CM . Feature extraction distills

useful information into feature geometry CM
′

, which is used to learn the
charting function C that maps features into a low-dimensional channel chart

in RD
′

that preserves the local geometry of the original spatial locations RD .

features that accurately represent large-scale fading properties

of the channel. To limit our search for suitable channel features,

we focus on Frobenius distance as dissimilarity measure on

pairs of feature matrices, i.e., we use df (F,F
′) = ‖F−F′‖F .

A. Lifted CSI Moments

CSI is affected by small-scale fading (due to multi-path

propagation) and large-scale fading (due to shadowing, path

loss, and other macroscopic effects). Small-scale fading effects

change the phase of CSI at sub-wavelength scales and hence,

are typically modeled statistically. To render our CSI features

robust to such random phase shifts, we propose to compute

features that are invariant to global phase shifts but contain

information of the relative phase within the antenna array [24].

We compute the raw 2nd moment (R2M) of dimension M2

given by H = E
[

hhH
]

, where expectation is over noise

and variations in CSI caused by small-scale motion during

short time. In practice, we compute H = 1
T−1

∑T
t=1 hth

H
t ,

where T is the number of samples we are averaging over.

B. Adaptive Feature Scaling

One of the key aspects in the design of good channel features

is to realize that CSI in radio geometry is a particularly poor

representation of spatial geometry. To see this, assume that

two users A and B are close to the BS, and two users C and D

are further away. Due to path-loss, the CSI contained in HC

and HD of users C and D appears to be weaker (i.e., has small

Frobenius norm) than that of the users nearby, HA and HB.

If we now directly compare the Frobenius distance between C

and D, their distance appears to be smaller than that between A

and B because they have small overall norm, even though

they should be further apart. To compensate for this “warping”

phenomenon, we adaptively scale the CSI contained in the

R2M so that it is more compatible with spatial geometry.

Consider a user that is separated d meters from a BS whose

B antennas form a uniform linear array (ULA). Assume a

narrowband line-of-sight (LoS) channel without scatterers and

a 2-dimensional plane wave model (PWM), which accurately

models transmitters in the far field. For this scenario, the

entries hb of the CSI vector h ∈ C
B are given by [25]

hb = d−ρ exp
(

− 2π
λ
∆r(b− 1) cos(φ)

)

, (2)

for b = 1, . . . , B, where ρ > 0 is the path-loss exponent, ∆r
is the antenna spacing, and φ is the incident angle of the user

to the BS. For this LoS scenario, we have the following result.

Lemma 1. Let H = hhH be the R2M. Assume two users

A and C with the same incident angle φ, with distances dA

and dC to the BS. By scaling the R2M as

H̃ = Bβ−1

‖H‖β

F

H with β = 1 + 1/(2ρ), (3)

the distance dh(H̃A, H̃C) = ‖H̃A − H̃C‖F of the scaled

moments H̃A and H̃C is their true distance, i.e.,

dh

(

H̃A, H̃C

)

= |dA − dC|. (4)

Proof. The proof follows by inserting (3) and (2) into (4), and

the fact that both users A and C are associated with the same

channel vector h in (2) but with different path losses.

We emphasize that adaptive scaling operation in (3) “un-

wraps” the radio geometry, i.e., CSI from transmitters far away

is amplified and nearby CSI is attenuated. Since the path-loss

exponent ρ > 0 is often unknown in practice, we can also

use it as a tuning parameter. Note that for the special case

of β = 1, the scaling in (3) simply normalizes the matrices

to unit Frobenius norm, effectively discarding any path loss

information. The resulting scaled CSI moments from (3) are

then passed to the feature transform stage discussed next.

C. Transformation into Beamspace

We are now ready to transform the scaled R2M H̃ into

channel features. A straightforward choice would be to directly

set the feature to the scaled CSI moments F = H̃; for

simplicity, we now allow features to be matrices and denote this

feature by “C{·}”. It turns out, however, that applying certain

well-designed nonlinear transforms to the scaled CSI moments

significantly improves the feature quality. In particular, we

transform H̃ into DH̃DH where D is the M ×M discrete

Fourier transform (DFT) matrix. This approach converts the

scaled R2M from the antenna domain into the so-called

beamspace domain, which represents the incident angles of

the user and potential scatterers to the BS array in a concise

way [26]. To see this, it is key to realize that the vector h

for the LoS PWM model in (2) resembles a basis function

of the DFT. As a final step, we take the entry-wise absolute

value of the scaled and transformed R2M, i.e., our features

are given by F = |DH̃DH |. This last step mitigates noise

that is caused by residual phase fluctuations.



IV. CHANNEL CHARTING ALGORITHMS

We now propose two dimensionality reduction algorithms

that have been specialized for the purpose of channel charting.

Corresponding simulation results are provided in Section V.

A. Sammon’s Mapping

Sammon’s mapping (SM) [20] is a classical nonlinear

method that maps a high-dimensional point set into a point

set of lower dimensionality with the goal of retaining small

pairwise distances between both point sets as in (1). We

next detail how SM can be used for CC, explain an efficient

algorithm to compute the channel chart, and propose a

specialized version that takes into account side information

that is typically available in wireless communication systems.

1) SM Basics: First, we compute a pairwise distance

matrix D between all channel features, i.e.,

Dn,ℓ = df (Fn,Fℓ), n = 1, . . . , N, ℓ = 1, . . . , N,

using the Frobenius distance. SM tries to find a low-

dimensional channel chart, i.e., a point set {zn}
N
n=1, that

results from the following optimization problem:

(SM)



















minimize
zn∈R

D′

n=1,...,N

∑

n=2,...,N
ℓ=1,...,n−1

D−1
n,ℓ(Dn,ℓ − ‖zn − zℓ‖2)

2

subject to
∑

n=1,...,N

zn = 0D′×1,

where we omit pairs of points for which Dn,ℓ = 0. The

objective function of SM promotes channel charts for which

the Euclidean distance of pairs of nearby points in R
D′

agrees

with the feature distance. Points for which D−1
n,ℓ is small (i.e.,

points that are dissimilar in feature geometry) are discounted;

this ensures that SM ignores relationships of points that are

far apart in feature geometry. Since the objective function is

invariant to global translations, we enforce the channel chart

to be centered in each of the coordinates in R
D′

.

2) Forward-Backward Splitting for SM: While the problem

(SM) is non-convex, we next detail an efficient first-order

method that enables us to include side information that is

available for CC; see Section IV-B. Concretely, we use an

accelerated forward-backward splitting (FBS) procedure [27],

[28] that solves a class of convex optimization problems of

the following general form: minimize f(Z)+g(Z), where the

function f(Z) =
∑N

n=1 fn(zn) should be convex and smooth

and g should be convex, but does not need to be smooth or

bounded. FBS consists of the iteration

Z(t+1) = proxg
(

Z(t) − τ (t) ∇f(Z(k)), τ (t)
)

for t = 1, . . . , Tmax. Here, ∇f(Z) is the gradient of the smooth

function f , and the proximal operator for the nonsmooth

function g is [29]

proxg(Z, τ) = arg min
V

{

τg(V) + 1
2‖V − Z‖2F

}

.

The sequence {τ (t) > 0} contains carefully selected step-size

parameters that ensure convergence of FBS.

For CC, the matrix Z = [z1, . . . , zN ] contains all points in

the channel chart. The function f is chosen to be

f(Z) =
∑

n=2,...,N
ℓ=1,...,n−1

D−1
n,ℓ(Dn,ℓ − ‖zn − zℓ‖2)

2, (5)

and the nth column of the gradient of f is

[∇f(Z)]n = 2
∑

ℓ=1,...,n
ℓ 6=n

D−1
n,ℓ(Dn,ℓ − ‖zn − zℓ‖2)

zn − zℓ

‖zn − zℓ‖2
.

The centering constraint of (SM) is enforced by the function

g(Z) = χ(
∑N

n=1 zn) which is zero when its argument
∑N

n=1 zn is zero and infinity otherwise. The proximal operator

for this function is a re-projection onto the centering constraint:

proxg(Z, τ) = Z−
1

N
Z1N×11

T
N×1.

Note that since f is nonconvex, FBS is not guaranteed to

find a global minimizer. Nevertheless, as shown in Section V,

FBS initialized with a solution from principal component

analysis (PCA) combined with the adaptive step-size procedure

proposed in [28] yields high-quality channel charts.

B. Sammon’s Mapping with Side-Information

In practice, one often collects a large number of CSI vectors

from a single user over time. For such situations, the channel

features for a given user u form a time series {fn}n∈Nu
,

where Nu contains the temporally ordered indices associated

with user u. Since users move with finite velocity, we know

that temporally adjacent CSI vectors from the same user must

be close in the channel chart. To exploit such side information,

we include an elastic-net penalty in the objective function that

keeps temporally adjacent points in Nu nearby in the channel

chart. Concretely, for each user u, we add

fu(Z) = αu

∑

n∈Nu
‖zn − zn+1‖

2
2

to the objective of (SM), where the parameter αu > 0
determines the spatial smoothness of user u in the channel

chart. In what follows, we refer to this CC algorithm as

Sammon’s mapping plus (SM+).

V. RESULTS

We now demonstrate the efficacy of CC with our channel

features and charting algorithms for realistic channel models.

A. Quality Measures of Channel Charts

To characterize the quality of the generated channel charts,

we need a performance metric of how well points in the

channel chart preserve the spatial geometry of the true user

locations. To this end, we borrow two metrics commonly

used to measure the quality of mappings in dimensionality

reduction tasks, namely continuity (CT) and trustworthiness

(TW) [22], [30], [31]. Both of these quality measures can be

described in the context of two abstract sets of data points

with cardinality N , i.e., {un}
N
n=1 from an original space

and {vn}
N
n=1 from a representation of the original space; the



Fig. 2. Top view of the considered channel scenario: a massive MIMO
BS is equipped with a B = 32 antenna uniform linear array at location
(x, y, z) = (0, 0, 10) meters. The BS acquires CSI from 2048 randomly
placed points in space; the points forming the “VIP” curve have been added
to simplify visualization of the channel charts in Figure 3.

point vn is said to represent un. In the CC context, the original

space would be spatial geometry and the representation space is

the channel chart (cf. Figure 1). We define the K-neighborhood

of a point u as the set containing its K nearest neighbors

in terms of the chosen distance du(u,u
′); the neighborhood

of v is defined analogously with dv(u,u
′).

1) Continuity (CT): Neighbors in spatial geometry (original

space) can be far away (or dissimilar) in the channel chart

(representation space). For such situations, the representation

space does not preserve the continuity of the original point

set. To measure such situations, we first define the point-wise

continuity for K neighbors of the data point ui. Let VK(ui)
be the K-neighborhood of point ui in the original space. Also,

let r̂(i, j) be the ranking (in terms of dissimilarity) of point

vj among the neighbors of point vi. Then, the point-wise

continuity of the representation vi of the point ui is

CTi(K) = 1−
2

K(2N − 3K − 1)

∑

j∈VK(ui)

(r̂(i, j)−K).

The (global) continuity between the sets {un}
N
n=1 and

{vn}
N
n=1 is the average over the point-wise continuities.

Continuity values close to zero indicate that points similar in

spatial geometry are dissimilar in the channel chart; continuity

values close to one indicate neighbor-preserving mappings.

2) Trustworthiness (TW): In dimensionality reduction, it

may happen that the representation mapping introduces new

neighbor relations that were absent in the original space.

Trustworthiness measures how well the feature mapping avoids

introducing such false relationships. We first define the point-

wise trustworthiness for a K-neighborhood of vi. Let UK(vi)
be the set of “false neighbors” that are in the K-neighborhood

of vi, but not of ui in the original space. Also, let r(i, j)
be the ranking (in terms of dissimilarity) of point uj in the

neighborhood of point ui. The point-wise trustworthiness of

the representation at ui is then

TWi(K) = 1−
2

K(2N − 3K − 1)

∑

j∈UK(vi)

(r(i, j)−K).

The (global) trustworthiness is simply the average over all

the point-wise trustworthiness values. Trustworthiness values

close to zero indicate situations in which most data points that

appear similar in the channel chart are actually dissimilar in

spatial geometry; trustworthiness values close to one indicate

that data points nearby in the channel chart are also nearby

in spatial geometry,

Remark 1. We set K to 5% of the total number of points N ,

i.e., K = 0.05N , as we are interested in preserving local

geometry; this is a common choice in the literature [30].

B. Simulation Settings

Due to space constraints, we focus on a single scenario as

depicted in Figure 2 with a narrowband non-LoS channel gen-

erated from the state-of-the-art Quadriga channel model [32]

with the following parameters. We simulate the Berlin NLoS

scenario (UMa) at a carrier frequency of 2.0GHz with a

bandwidth of 312.5KHz. The mMIMO BS is located at

coordinate (x, y, z) = (0, 0, 10) meters and consists of a

B = 32 antenna array arranged as a ULA with ∆r = λ/2
antenna spacing. We record CSI of N = 2048 randomly

selected spatial locations (with the exception of the “VIP”

curve) within an area of 500m × 500m; the median distance

between nearest neighbors is approximately 7.86 meters, i.e.,

we sample the space at roughly 53 wavelengths. We acquire

CSI at an SNR of 0 dB, i.e., consider channel charting under

adversarial conditions, use T = 10, and set ρ = 16.

C. Feature Comparison

As briefly mentioned in Section III, applying certain

nonlinear transforms to the scaled CSI moments H̃ can

significantly improve the feature quality. To identify suitable

candidate features, we also considered taking the entry-wise

real part (denoted by “ℜ{·}”), imaginary part (denoted by

“ℑ{·}”), angle (denoted by “∠(·)”), or absolute value (denoted

by “| · |”) of the scaled CSI moments. We furthermore say

that all these channel features were taken in the antenna

domain. We also consider the case in which we take the

scaled CSI vectors and transform then into the beamspace

domain followed by applying one of the above nonlinearities.

Table I compares the TW and CT measured between the

true locations and between the channel features for all the

combinations of features for the scenario depicted in Figure 2.

This comparison confirms that taking the absolute value in

the beamspace domain, as detailed in Section III, significantly

outperforms all other methods in terms of TW and CT. Hence,

in the remainder of the paper, we only consider on the absolute

value in the beamspace domain, denoted by “beamspace, | · |”.

D. Channel Charting Results

In what follows, CT and TW is measured between the true

spatial locations and the associated points in the channel chart.



TABLE I
COMPARISON OF R2M CHANNEL FEATURES IN TERMS OF TRUSTWORTHINESS (TW) AND CONTINUITY (CT) FOR K = 0.05N .

Domain C{·} ℜ{·} ℑ{·} ∠(·) | · |

Antenna
TW 0.76 (±0.11) 0.62 (±0.12) 0.70 (±0.09) 0.67 (±0.09) 0.54 (±0.07)
CT 0.76 (±0.07) 0.71 (±0.07) 0.69 (±0.08) 0.63 (±0.08) 0.56 (±0.09)

Beamspace
TW see TW above 0.76 (±0.12) 0.56 (±0.08) 0.55 (±0.07) 0.81 (±0.13)
CT see CT above 0.74 (±0.07) 0.52 (±0.06) 0.53 (±0.09) 0.84 (±0.09)

(a) PCA (0.92, 0.85) (b) AE (0.91, 0.86) (c) SM (0.93, 0.85) (d) SM+ (0.93, 0.85)

Fig. 3. D′ = 2 dimensional channel charts for various CC algorithms under the Quadriga non-LoS channel model for the scenario depicted in Figure 2. We
compare PCA, autoencoder (AE), Sammon’s mapping (SM), and Sammon’s mapping with temporal continuity (SM+). The values in the brackets denote
continuity (CT) and thrustworthiness (TW). We see that AE, SM, and SM+ achieve the highest CT and TW, whereas SM+ also delivers visually pleasing results.

1) Channel Charts: We learn channel charts for SM and

SM+ as detailed in Section IV, as well as PCA and a

deep autoencoder (AE), two commonly used methods in the

dimensionality reduction literature [21]. Figure 3 shows the

learned channel charts. For all algorithms, we obtain CT

values ranging between 0.91 and 0.93. This implies that the

neighborhood of a point in spatial geometry is well-preserved

in the learned channel charts. The TW values range between

0.85 and 0.86; this indicates that most neighbors of a point in

the channel charts are also neighbors in spatial geometry. We

can also visually inspect the quality of the obtained results

by comparing (i) the color gradient in Figure 3 with that of

the scenario in Figure 2 or (ii) the “VIP” curve in spatial

geometry and in the channel chart.

Figure 3(a) shows that PCA yields surprisingly high CT and

TW values, and provides a visually accurate embedding of

spatial geometry. We address this behavior to the fact that we

use carefully engineered channel features that well-represent

spatial geometry. Figure 3(b) shows that the AE yields even

higher CT and TW values, comparable to those of SM/SM+.

The AE channel charts are less visually pleasing than, for

example, those of SM+. Figure 3(c) shows that SM yields

high CT and TW and provides excellent preservation of the

color gradients. Figure 3(c) shows that SM+ is able to exploit

temporal side information, while the CT and TW is comparable

to AE and SE. Nevertheless, SM+ provides extremely well-

preserved embeddings of the channel geometry. In fact, one

can even identify the “VIP” curve in the learned channel chart.

2) CT and TW Measures: To gain additional insight into

the quality of the learned channel charts, Figure 4 shows

the CT and TW values for different neighborhood sizes, i.e.,

K ranges from 1 to 100. We see that, for the challenging

Quadriga non-LoS channel, which models complex scattering

and multipath behavior, SM and SM+ perform best, followed

by PCA. Evidently, the AE struggles in achieving high CT but

has the advantage over SM and SM+ of providing a parametric

mapping, i.e., given a new CSI vector, we can use the existing

AE to directly compute the location in the channel chart.

VI. CONCLUSIONS

We have proposed a novel application of dimensionality

reduction to multi-antenna wireless systems. More specifically,

we have developed channel charting (CC), an unsupervised

framework to learn a map between channel-state information

(CSI) acquired at a single base-station (BS) and the relative

user locations. Our method relies on the extraction of care-

fully designed channel features from large amounts of high-

dimensional CSI acquired at a massive MIMO BS, followed by

CC algorithms that borrow ideas from dimensionality reduction

and manifold learning. We have developed new CC algorithms

with varying complexity, flexibility, and accuracy that produce

charts that preserve the local geometry of the transmitter

locations for realistic channel models. Since channel charting

is unsupervised, i.e., does not require knowledge of the true

user locations, the proposed framework finds use in numerous

applications relevant to 5G wireless networks, such as rate

adaptation, network planning, user scheduling, hand-over,

cell search, user tracking, beam finding in millimeter-wave

systems, and other cognitive tasks that rely on CSI and the

user movement relative to the BS.



(a) Continuity (CT)

(b) Trustworthiness (TW)

Fig. 4. Comparison of continuity (CT) and trustworthiness (TW) for various
CC algorithms under the Quadriga non-LoS channel model. We observe that
Sammon’s mapping (SM) and its extension (SM+) outperform PCA and
autoencoders (AEs) in terms of CT, while the AE slightly outperforms the
other methods in terms of the TW. PCA yields surprisingly good results and
performs close to that of SM and SM+ in terms of CT and TW.
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