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Abstract 15 

Identifying the population structure of the newly emerged coronavirus SARS-CoV-2 has significant potential to inform 16 

public health management and diagnosis. As SARS-CoV-2 sequencing data accrued, grouping them into clusters is 17 

important for organizing the landscape of the population structure of the virus. Since we have little prior information about 18 

the newly emerged coronavirus, we applied a state-of-the-art unsupervised deep learning clustering algorithm to group 19 

16,873 SARS-CoV-2 strains, which automatically enables the identification of spatial structure for SARS-CoV-2. A total 20 

of six distinct genomic clusters were identified using mutation profiles as input features. The varied proportions of the six 21 

clusters within different continents revealed specific geographical distributions. Comprehensive analysis indicated that 22 

genetic factors and human migration played an important role in shaping the specific geographical distribution of 23 

population. This study provides a concrete framework for the use of clustering methods to study the global population 24 

structure of SARS-CoV-2. In addition, clustering methods can be used for future studies of variant population structures in 25 

specific regions of these fast-growing viruses. 26 

 27 

Introduction 28 

The COVID-19 pandemic was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 1, 2, and has 29 

spread throughout the world. In an effort to understand the molecular characteristics of the virus, viral genomes have been 30 

abundantly sequenced and presented at the Global Initiative on Sharing All Influenza Data (GISAID). As an emerging virus, 31 

it is important to understand the genetic diversity, evolutionary trajectory and possible routes of transmission of SARS-32 

CoV-2 from its natural reservoir to humans. Most studies have looked into the aspects of real-world SARS-CoV-2 evolution 33 

and strain diversification through phylogenetic trees 4, 5, 6. Phylogenetic tree is a graph that shows the evolutionary 34 

relationships among various biological entities based on their genetic closeness 7, 8. The distances from one entity to the 35 

other entities indicate the degree of relationships. However, as population genomic datasets grow in size, simply using 36 

pairwise genetic distances cannot present an explicit structure of the total population in phylogenetic analysis. Grouping 37 
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similar entities into the same cluster and identifying the number of main subtypes (clusters) makes it easier to understand 38 

the main characteristics of the population. Traditionally, using the distance matrix and the bifurcations between branches 39 

of leaves on the phylogenetic tree, entities can be grouped into clusters. However, when the number of entities becomes 40 

large, it is not easy to directly and accurately partition the clades in the phylogenetic tree. 41 

In order to identify a better way to effectively group entities, clustering methods emerge as more productive and robust 42 

solutions. The objective of clustering is automatically minimizing intra-cluster distances and maximizing inter-cluster 43 

distances 9. Accurate clustering helps to better understand the inner relationships between data and inform downstream 44 

analysis. Clustering methods have been widely used as a good supplemental tool in phylogenetic analysis, including 45 

phylogenetic tree construction 10, 11, 12, ancestral relationship identification 13, evolutionary rate estimation 14, 15, gene 46 

evolutionary mechanisms research 16 and population structure analysis 17. 47 

Herein, to identify the population structure of the newly emerged coronavirus SARS-CoV-2, we took inspiration from 48 

recent state-of-the-art deep embedding clustering method 18 to group a total of 16,873 strains. Compared with traditional 49 

methods, this deep learning clustering algorithm showed significant improvements in terms of both Silhouette score, sum 50 

of squared errors (SSE) and Bayesian information criterion (BIC) 19. The clustering results showed that there were six 51 

major clusters of SARS-CoV-2. In particular, we found that the proportions of six clusters in each continent showed a 52 

specific geographical distribution. Our analysis revealed that the unique geographical distributions across the clusters are 53 

both influenced by intrinsic genetic factors and migration of humans. This study provides a perspective of the SARS-CoV-2 54 

population structural analysis, helping to investigate the evolution and spread of the virus across the human populations 55 

worldwide. 56 

 57 

Results 58 

Genetic analysis indicates high diversity and rapidly proliferating of SARS-CoV-2 59 

We obtained a total of 16,873 (98 from Africa, 1324 from Asia, 9527 from Europe, 4765 from North America, 1040 from 60 
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Oceania and 119 from South America) earliest SARS-CoV-2 whole-genome sequencing data from GISAID, aligned the 61 

sequences, and identified the genetic variants. A total of 7,970 substitutions were identified, including 4,908 non-62 

synonymous mutations, 2,748 synonymous mutations and 314 intronic mutations. The average mutation count per genome 63 

was 6.99 (Figure S1). The frequency spectrum of substitutions illustrated that more than half (54.05%) of the mutations 64 

were singletons and 15.35% were doubletons. The proportion of the mutations below 0.01 was 99.28% (Figure S2). The 65 

high percentage of these low-frequency mutations suggested that SARS-CoV-2 occurred recently and displayed a rapidly 66 

proliferating pattern 20. In addition, there were 8,706 unique strains across the 16,873 strains (Figure S3), and most unique 67 

strains (7,078) were singletons, yielding high diversity of the virus. In particular, Simpson’s diversity index of the strains 68 

was 0.8222, indicating that two random strains would have a high probability of being genetically different. The frequency 69 

spectrum of substitutions and high Simpson’s diversity index indicated high genetic diversity of SARS-CoV-2. 70 

 71 

Clustering of SARS-CoV-2 reveals six major clusters 72 

To clarify the main population structure of the virus, grouping these strains into clusters is necessary, as these clusters 73 

displayed the major types of the virus. However, the genetic analysis of SARS-CoV-2 showed that there were 8,706 unique 74 

strains across the 16,873 strains (Figure S3), it is not easy to directly and accurately partition the strains. For this reason, 75 

we applied clustering techniques to measure similarities between these strains and effectively group them. 76 

Because SARS-CoV-2 exhibits a limited number of SNPs per virus strain and little ongoing horizontal gene exchange, 77 

making SNPs ideal clustering input features. We first used the aggregated SNP matrix to cluster samples using an 78 

unsupervised deep learning clustering algorithm 18 (see Methods). The unsupervised deep learning clustering algorithm 79 

requires one to pre-specify the number of clusters (K), but we have little prior knowledge about the number of subtypes 80 

formed by the heterogeneous SARS-CoV-2 genome. To determine the number of clusters, we plotted the curves of the SSE 81 

and BIC under different cluster numbers ranging from 2 to 20 (Figure S4). We used the elbow method and chose the elbow 82 

of the curve as the number of clusters 21. This approach resulted in K=6 for both the SSE and BIC curves. To evaluate the 83 
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performance of the algorithm, we also employed K-means clustering 22, hierarchical clustering and BIRCH clustering 23, 24 84 

for comparison. The objective of clustering is minimizing intra-cluster distances and maximizing inter-cluster distances. 85 

To this end, we did five repetitions for each of the four clustering algorithms and selected the one that achieved the best 86 

performance (lowest average intra-cluster pairwise genetic distances). The average intra-cluster pairwise genetic distances 87 

in the deep learning clustering algorithm (4.892) was significantly lower than that in K-means (4.896, P-value < 0.001, 88 

Wilcoxon rank-sum test), hierarchical clustering (5.062, P-value < 0.001, Wilcoxon rank-sum test) and BIRCH (4.985, P-89 

value < 0.001, Wilcoxon rank-sum test). We compared the Silhouette score (Figure 1A), SSE (Figure 1B) and BIC (Figure 90 

1C) of the four algorithms. The deep learning clustering obtained the highest Silhouette score and BIC, and the lowest SSE, 91 

indicating that the clustering results of deep learning clustering are better than the other algorithms. In contrast, BIRCH 92 

performed the worst of the four algorithms. We aligned the partitions of the six clusters against the phylogenetic tree for 93 

the three best methods (Figure 1D). The clustering results indicated that the partitions from the three algorithms were 94 

similar. The differences between the hierarchical clustering results and the two other clustering results were mainly at the 95 

boundary of the clusters. Of the three methods, strains grouped by deep learning clustering and K-means were more 96 

compact in the phylogenetic tree than those by hierarchical clustering. For example, the strains in both deep learning 97 

clustering cluster D and K-means cluster D were split into two clusters using hierarchical clustering. However, such a split 98 

was not supported by the phylogenetic tree (Figure 1D).  99 

In the meantime, we used complementary approaches to validate the deep learning clustering results. First, we 100 

compared the pairwise genetic distances between intra-cluster and inter-cluster. In all six clusters, the average number of 101 

intra-cluster genetic distances was significantly lower (P-value < 0.001, Wilcoxon rank-sum test, Figure 1E) than inter-102 

cluster genetic distances. Next, we applied T-distributed Stochastic Neighbor Embedding (t-SNE) to visualize the deep 103 

learning clustering results. In the t-SNE plot, the strains were adequately isolated between clusters (Figure 1F). 104 

 105 

The varied proportions of the clusters in different continents 106 
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Mapping the proportions of strains from each continent showed that the clusters differed in their geographical distributions 107 

(Figure 2, Table S1). Of the six clusters, cluster C spread globally. By contrast, cluster A and cluster F occurred at high 108 

frequencies in specific regions. 81.92% of the strains in cluster A and 85.73% of the strains in cluster F were from Europe. 109 

The geographical spread of each of the three remaining clusters was intermediate. Cluster E occurred at higher frequencies 110 

in North America and Europe, and lower frequencies in Asia and Oceania. Cluster D occurred at higher frequencies in 111 

North America, and lower frequencies in Asia, Europe and Oceania. The strains in cluster B were mainly in Asia and Europe 112 

and partially in North America and Oceania.  113 

However, due to the sampling bias of the SARS-CoV-2, 85% of the strains were collected from Europe and North 114 

America (Table S1), making the proportion of the continents in each cluster not informative. Therefore, we evaluated the 115 

proportion of the clusters on each continent. In most continents, the distributions of the strains were concentrated in one or 116 

two clusters, including Asia (49% in cluster B), Africa (66% in cluster C), South America (78% in cluster C and F), North 117 

America (74% in cluster D and E) and Europe (64% in cluster C and F). Strikingly, Oceania was the only continent that 118 

was uniformly separated into the six clusters, indicating strains in Oceania were more diverse than in the other continents. 119 

The different geographical distributions for the six clusters could be due to intrinsic genetic factors, extrinsic factors 120 

such as the migration of humans, or both. Hence, we next aimed to explore the genomic characteristics of these clusters, 121 

as well as the transmission and human migration of the virus across the globe. 122 

 123 

The genetic variance analyses indicated high diversity between clusters 124 

If the different geographical distributions for the six clusters were due to intrinsic genetic factors, there would be high 125 

genetic variance between the clusters. The average mutation counts for the six clusters were 6.38, 3.49, 6.57, 7.09, 7.89 126 

and 8.96 (Figure S5), respectively. Considering the different collection dates (Figure 3A) of the strains, mutation rates as 127 

opposed to mutation counts were more effective for describing the genetic variations between clusters. We defined the date 128 

when the reference strain was collected as the index date. The average mutation rates for the six clusters were 25.55, 15.91, 129 
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25.44, 31.64, 30.99 and 34.12 substitutions per year, respectively. Specifically, the average mutation rate in cluster B was 130 

significantly lower (P-value < 0.001, Wilcoxon rank-sum test) than those in other clusters. In contrast, the average mutation 131 

rate in cluster F was significantly higher (P-value < 0.001, Wilcoxon rank-sum test) than those in other clusters. The 132 

Simpson’s diversity indexes for the six clusters were 0.7616, 0.7608, 0.8398, 0.8466, 0.8082 and 0.8502, respectively. Both 133 

the average mutation rate and Simpson’s index were highest in cluster F, suggesting that the diversity of cluster F was 134 

higher than the other clusters. The nucleotide diversity per site for the six clusters was 0.0196%, 0.0222%, 0.0171%, 135 

0.0256%, 0.0131% and 0.0132%. The high mutation rates but low nucleotide diversity in cluster E and cluster F suggests 136 

that these two clusters may have more fixed mutations than the other clusters. The nucleotide diversity of each gene across 137 

all clusters is displayed in Figure 3B-G. Except for some short genes that are unlikely to be informative, the diversity of 138 

most genes was close to the diversity of their genome-wide variants. Our analysis showed that intra-cluster genetic diversity 139 

differed between clusters, suggesting that selective pressures were different between clusters. These different selective 140 

pressures will affect the geographical distribution of each cluster. 141 

 142 

Explore mutations that shaped the geographical distribution of population structure.  143 

The high genetic diversity between clusters indicated that the frequencies of the mutations across clusters were very 144 

different. In order to explore whether there are mutations that affect the genetic structure within the clusters, we applied 145 

ANOVA to identify the statistically significant mutations that were strongly associated with clusters. Across the 7,970 146 

substitutions, 26.27% (2,094 substitutions) of them achieved P-values <0.05 (Figure S6). We found that some of these 147 

mutations were fixed in one or several clusters. Cluster C, cluster E and cluster F shared four common fixed substitutions: 148 

A23403G, C241T, C3037T and C14408T. Cluster E had two additional fixed substitutions: C1059T and G25563T, and 149 

cluster F had three additional substitutions from position 28,881 to position 28,883. For the remaining three clusters, there 150 

were two fixed substitutions (C8782T, T28144C) and three fixed substitutions (G11083T, G14805T and G26144T) in 151 

cluster A. It is noteworthy that the fixed mutation numbers in cluster E (six) and cluster F (seven) were higher than in any 152 
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of the other clusters, which was consistent with our conclusion of the high mutation rates but low nucleotide diversity in 153 

cluster E and cluster F. 154 

We selected the 2% (42/2094) substitutions that achieved the lowest P-values (Table 1) and analyzed their distributions 155 

in the clusters. Of the 42 substitutions, there were 26 nonsynonymous mutations (mutation G28882A was in a trinucleotide 156 

mutation from position 28881 to 28883 that spans two codons and results in an RG (arginine-glycine) to KR (lysine-157 

arginine) amino acid change). We focused on these nonsynonymous mutations as these mutations may be under selection 158 

that affect the population structure 25. Some of these substitutions were reported to impact the evolution of SARS-CoV-2 159 

26, 27. For example, mutation A23403G (D614G, Asparticacid to Glycine) in the spike protein domains was reported to show 160 

significant variation in cytopathic effects and viral load, and substantially change the pathogenicity of SARS-CoV-2 28. 161 

This mutation was accompanied by a mutation (T14408C) that results in an RNA-dependent RNA polymerase (RdRp) 162 

amino acid change 29. In addition, Tang et al 30 used mutation T28144C to define “L” type (defined as “L” type because 163 

T28,144 is in the codon of Leucine) and “S” type (defined as “S” type because C28,144 is in the codon of Serine) of SARS-164 

CoV-2. They found that the “L” type was more transmissible and aggressive than the “S” type. 165 

Previous studies have reported that recombination is common in coronavirus 4, 31, 32. Given that recombinations in 166 

SARS-CoV-2 may perturb the clustering, we used Haploview 33 to analyze the linkage disequilibrium (LD) by calculating 167 

standardized disequilibrium coefficients (D’) and squared allele-frequency correlations (r2) of the 42 substitutions. D′ is 168 

affected solely by recombination and not by differences in allele frequencies between sites, and r2 is also affected by 169 

differences in allele frequencies at the two sites. In the heatmap of D’ and r2 (Figure S7), no obvious LD blocks were 170 

discovered, indicating that our clustering of SARS-CoV-2 strains using substitutions was not distorted by recombination.  171 

Selection usually affects the distribution of the mutations in the population. Purifying selection tends to remove amino 172 

acid-altering mutations, while positive selection tends to increase the frequency of the mutations. Considering the rapidly 173 

proliferating pattern of SARS-CoV-2 that strengthened the power of drift relative to the power of purifying selection 34, 35, 174 

36, we mainly focused on the positive selective sites. We applied HyPhy 37 to infer the probabilities of the extracted 26 175 
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nonsynonymous mutations that were under positive selection. There are nine mutations (asterisks in Table 1) with a positive 176 

probability >0.95. In particular, mutations G2891A, G11083T, C14408T, C17747T and A23403G (D614G) were reported 177 

as recurrent mutations 26, 38. The recurrence of these mutations agrees with the assumption that they may confer selective 178 

advantages in the population. These possible positively selected mutations may result in greater diversity among clusters 179 

with different population structures of SARS-CoV-2 across geographical regions. 180 

 181 

The global spread of SARS-CoV-2  182 

Regardless of the genetic factors, the travel of humans could also lead to unique geographical distributions in today's highly 183 

globalized world. By analyzing the frequencies of the extracted 42 mutations in each cluster (Figure 4A) and their collected 184 

daily counts (Figure 4B), we can trace the dynamics of substitutions in the SARS-CoV-2 genome. The four genetically 185 

linked mutations, A23403G (D614G), C241T, C3037T and C14408T that were fixed across three clusters (C, E and F) had 186 

become the highest frequency mutations in the world, with a high frequency on all continents in our downloaded sequences, 187 

including South America (87%), Africa (86%), Europe (75%), North America (65%), Oceania (55%) and Asia (32%). The 188 

earliest time when sequences carrying these mutations was collected was in late January 2020. About a month later, these 189 

mutations were discovered worldwide. Though the mutation A23403G (D614G) has been reported and estimated to be a 190 

positive selective mutation, it is almost impossible to spread to the world without human migration in such a short time. 191 

Besides these high frequency mutations, some lower frequency mutations also provided some evidence of human migration. 192 

We explored the geographical distributions of mutations with global frequencies <0.05 in Table 1. Though most of these 193 

low frequency mutations were mainly collected within a single continent, we still find two mutations, T28688C and 194 

G1397A, were discovered in Asia, Europe and Oceania with high proportion. In addition, the spatial geographical 195 

distributions of some substitutions also provide the evidence that human migration may have influenced the spread of the 196 

virus. For example, on the west coast of the USA, most strains accumulated the mutations C8782T and T28144C (cluster 197 

D), and these mutations were also found in high frequencies in east Asia. In contrast, on the east coast of the USA, most 198 
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strains accumulated the mutations A23403G, C241T, C3037T, C14408T, C1059T and G25563T (cluster E), and the similar 199 

strains were mainly discovered in Europe (Figure S8). 200 

 201 

Discussion 202 

Understanding the population structure of SARS-CoV-2 is important in evaluating future risks of novel infections. To 203 

precisely analyze their population structure, we used clustering methods in phylogenetic analysis to group a total of 16,873 204 

publicly available SARS-CoV-2 strains. To improve the accuracy, we use a state-of-the-art deep learning clustering 205 

algorithm, which has been demonstrated to exhibit better performance than three traditional clustering algorithms: K-means 206 

clustering, hierarchical clustering and BIRCH.  207 

Our clustering results indicated six major clusters of SARS-CoV-2. The mutation profile characterizing clusters of the 208 

viral sequences displayed specific geographical distributions. Most continents were mainly concentrated in one or two 209 

clusters, but we also found that in Oceania, the strains were uniformly separated across the six clusters. To evaluate whether 210 

the geographical distributions for the clusters were due to genetic factors or travel of humans. The varied intra-cluster 211 

genetic diversity across the clusters suggested different selective pressures between clusters, which would affect the 212 

geographical distributions across the clusters. By analyzing the statistically significant mutations that were strongly 213 

associated with the clusters we identified that some mutations might be under positive selection, indicating different 214 

geographical distributions between the clusters were partially affected by these mutations. In addition, the dynamics and 215 

the spatial geographical distributions of some substitutions suggested that human migration may also have affected the 216 

different geographical distributions. In general, our findings indicate that the geographical distributions for the clusters are 217 

the result of both genetic factors and migration of humans. 218 

It is noteworthy that our study is limited due to the sampling bias of SARS-CoV-2, with more than 60% of the strains 219 

being from the United Kingdom and the USA. In contrast, the overall proportion of strains from Africa and South America 220 

is less than 2% (Table S1). Sampling biases can lead to biased parameter estimation and affect the clustering results we 221 
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observed. For example, the frequency of mutation C15324T reached 41.84% in Africa, but was only 2.21% outside Africa. 222 

The frequency of mutation T29148C reached 15.13% in South America, but was only 0.12% outside South America. 223 

Another mutation T27299C with frequency 10.92% in South America was only found with frequency 0.08% in other 224 

regions. In fact, all three mutations were mostly grouped in single clusters, indicating these mutations were highly 225 

concentrated. However, due to the small proportion of the strains from these two continents, these mutations were unable 226 

to affect the clustering of samples. To address this issue, more strains were needed to be collected from these continents. 227 

In addition, we found that in cluster B, there were no fixed mutations. We calculated the pairwise dependency scores (see 228 

Methods) of all the mutations with frequencies >0.05 in cluster B and discovered five main subclusters (Figure S9). Other 229 

than the mutation G11083T that was discovered in two subclusters, there were no common mutations between either of the 230 

five clusters. As shown in Figure 3A, these strains were grouped in one cluster mainly because these strains had smaller 231 

mutation counts than strains in other clusters. The genetic distance between two strains was still small, though they shared 232 

no common mutations. To address this issue, another clustering can be used for more further analyses. 233 

Despite the limited number of SARS‐CoV‐2 genome sequences, our analysis of population genetics is formative. Our 234 

discovery of high genetic diversity in SARS‐CoV‐2 is consistent with an earlier study 39. The topology and the divergence 235 

of the clusters in the phylogenetic tree illustrate a relatively recent common ancestor, similar to the fact that the emergence 236 

and the spread of the virus was highly concentrated in a short time 2, 40, 41, 42. Our work, as well as previous studies 43, 44 that 237 

use clustering techniques to study the population structure of the SARS-CoV-2 virus, has proved to be a valuable 238 

supplemental tool in phylogenetic analyses. In addition, clustering ideas can be used for further study of variant population 239 

structures in specific regions of these fast-growing viruses. 240 

 241 

Methods  242 

SARS-CoV-2 sample collection 243 

A set of African, Asian, European, North American, Oceanian and South American SARS-CoV-2 strains marked as “high 244 
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coverage” were downloaded from GISAID. The “high coverage” was defined as strains with <1% Ns and <0.05% unique 245 

amino acid mutations (not seen in other sequences in databases) and no insertion/deletion unless verified by the submitter. 246 

In addition, all strains with a non-human host and all assemblies of total genome length less than 29,000 bps were removed 247 

from our analysis. Ultimately, our dataset consisted of 16,873 strains. 248 

 249 

Mutation calls and phylogenetic reconstruction 250 

All downloaded genomes were mapped to the reference genome of SARS-CoV-2 (GenBank Accession Number: 251 

NC_045512.2) following Nextstrain pipeline 45. Multiple sequence alignments and pairwise alignments were constructed 252 

using CLUSTALW 2.1 46. Considering many putatively artefactual mutations and the gaps in sequences are located at the 253 

beginning and end of the alignment, we masked the first 130 bps and last 50 bps in mutation calling following Nextstrain 254 

pipeline. We used substitutions as features to reconstruct the phylogenetic tree using FastTree 2 47. The phylogeny is rooted 255 

following Nextstrain pipeline using FigTree v1.4.4. The phylogenetic trees were visualized using the online tool Interactive 256 

Tree Of Life (iTOL v5) 48. 257 

 258 

Region analysis and data visualization 259 

For each country with SARS-CoV-2 data available, clustering proportions were calculated and plotted on the world map 260 

using the tool Tableau Desktop 2020.2. Other Figures and statistical analyses were generated by the ggplot2 library in R 261 

3.6.1, the seaborn package in Python 3.7.6 and GraphPad Prism 8.0.2. 262 

 263 

Data clustering 264 

Herein, we employed a deep learning unsupervised clustering algorithm to iteratively cluster the SARS-CoV-2 strains 18. 265 

Each identified cluster was considered to be a subtype of SARS-CoV-2. We first used K-means clustering to initialize 266 

centroids for the clusters. To determine the number of clusters, we plotted the curves of the sum of squared errors (SSE) 267 
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and Bayesian information criterion (BIC) 19 under different cluster numbers ranging from 2 to 20. 268 

 To update the cluster assignments, we implemented the Student’s t-distribution as a kernel to measure the distance 269 

from a strain (ℎ𝑖) to a cluster centroid (𝑢𝑗): 270 

𝑞𝑖𝑗 = (1 + ‖ℎ𝑖 − 𝑢𝑗‖2 𝛼⁄ )−𝛼+12∑ (1 + ‖ℎ𝑖 − 𝑢𝑗′‖2 𝛼⁄ )−𝛼+12𝐾𝑗′=1  271 

where the distance 𝑞𝑖𝑗  can be interpreted as the probability of assigning strain i to cluster j. The 𝛼 is the degree of freedom 272 

of the Student’s t-distribution, and we let 𝛼 = 1 in this study. Next, we defined an auxiliary target distribution P by raising 273 

each 𝑞𝑖𝑗  to the second power which upweights strains assigned with high confidence: 274 

𝑝𝑖𝑗 = 𝑞𝑖𝑗2 ∑ 𝑞𝑖𝑗𝑁𝑖=1⁄∑ (𝑞𝑖𝑗′2 ∑ 𝑞𝑖𝑗′𝑁𝑖=1⁄ )𝐾𝑗′=1  275 

where the denominator is to normalize the loss contribution of each centroid to prevent large clusters from distorting the 276 

feature space. Finally, we defined the objective function using a Kullback-Leibler (KL) divergence loss: 277 

L = KL(P||Q) = ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔 𝑝𝑖𝑗𝑞𝑖𝑗𝐾𝑗=1𝑁𝑖=1  278 

The parameters and cluster centroids were jointly optimized by minimizing L using Stochastic Gradient Descent (SGD) 279 

with momentum.  280 

 Besides the deep learning clustering algorithm, we also employed K-means clustering, hierarchical clustering and 281 

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) for SARS-CoV-2 strain clustering. The three 282 

models were implemented using the Python package sklearn with the KMeans function, AgglomerativeClustering function 283 

and Birch function, respectively. 284 

 285 

Simpson's diversity index 286 

Simpson's Diversity Index (D) is a measure of diversity that considers the number of entities as well as their abundance. 287 

The index measures the probability that two randomly selected individuals are the same. The formula to calculate the value 288 

of the index is: 289 
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D = 1 − ∑ 𝑛(𝑛 − 1)𝑎𝑙𝑙 𝑡𝑟𝑎𝑖𝑡𝑠𝑁(𝑁 − 1)  290 

where 𝑛 is the number of individuals displaying one trait and 𝑁 is the total number of all individuals. The value of D ranges 291 

between 0 and 1. With this index, 1 represents infinite diversity and 0 denotes no diversity. 292 

 293 

Inferring positive/purifying selection of individual sites 294 

To test which position was under selective pressure, we used a set of programs available in HyPhy to calculate 295 

nonsynonymous (dN) and synonymous (dS) substitution rates on a per-site basis to infer pervasive selection. Fast 296 

Unconstrained Bayesian AppRoximation (FUBAR) was applied to detect overall sites under positive selection. The 297 

positively selected sites were identified using a probability larger than 0.95 using the FUBAR method. 298 

 299 

Pairwise mutation dependency score 300 

Pairwise mutation dependency scores can measure the order in which genetic mutations are acquired within a cluster. For 301 

two selected mutations X and Y, the score S(X|Y) represents the proportion of strains that accumulated both X among the 302 

strains that accumulated mutation Y. S(X|Y) and S(Y|X) can be calculated using the following functions: 303 

S(X|Y) = ∑ 𝑆𝑋 = 1 & 𝑆𝑌 = 1𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠∑ 𝑆𝑌 = 1𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  304 

S(Y|X) = ∑ 𝑆𝑋 = 1 & 𝑆𝑌 = 1𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠∑ 𝑆𝑋 = 1𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  305 

where 𝑆𝑋 = 1 denotes that the sequence has a mutation X. Pairwise mutation dependency score displays the correlation 306 

and the timescale relationship of the two mutations. The value of S(X|Y) and S(Y|X) ranges between 0 and 1. With this 307 

index, S(X|Y) = 1 with S(Y|X) < 1 represents that mutation Y occurs after mutation X. In contrast, S(X|Y) = 1 with S(Y|X) 308 

= 1 represents that the two mutations occur simultaneously and are genetically linked. Statistical analyses and data 309 

presentations were generated using Python 3.7.6. 310 

 311 

Data Availability 312 

The publicly available SARS-CoV-2 datasets in this study are available at GISAID (https://www.gisaid.org). The reference 313 

SARS-CoV-2 is available at the NCBI GenBank (GenBank Accession Number: NC_045512.2, 314 
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https://www.ncbi.nlm.nih.gov/nuccore/NC_045512.2). 315 

 316 
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Table 1. The information of the 42 mutations using ANOVA. 415 

Mutation Substitution 
Amino Acid 

Substitution 
Type GENE Frequency 

Cluster 

A B C D E F 

C241T C > T Intron Intron Intron 66.37% 10 10 4238 2 3548 3391 

T490A T > A D > E N ORF1ab 1.04% 0 0 1 174 0 0 

T514C T > C H > H S ORF1ab 0.97% 0 162 1 0 0 0 

C1059T* C > T T > I N ORF1ab 21.69% 1 8 2 0 3645 3 

G1397A G > A V > I N ORF1ab 1.12% 0 186 0 0 1 2 

G1440A G > A G > D N ORF1ab 1.92% 0 324 0 0 0 0 

A2480G A > G I > V N ORF1ab 3.60% 608 0 0 0 0 0 

C2558T C > T P > S N ORF1ab 3.83% 646 1 0 0 0 0 

G2891A* G > A A > T N ORF1ab 1.77% 0 298 0 0 0 0 

C3037T C > T F > F S ORF1ab 67.26% 2 7 4277 3 3611 3448 

C3177T C > T P > L N ORF1ab 1.05% 0 0 1 171 6 0 

C6312A C > A T > K N ORF1ab 1.14% 0 189 1 0 0 3 

C8782T C > T S > S S ORF1ab 11.42% 1 21 5 1898 1 1 

T9477A T > A F > Y N ORF1ab 1.17% 0 3 0 195 0 0 

G11083T* G > T L > F N ORF1ab 11.81% 1342 485 52 21 54 39 

C14408T* C > T P > L N ORF1ab 67.47% 1 8 4301 2 3636 3436 

C14805T C > T Y > Y S ORF1ab 9.39% 1352 8 1 195 0 28 

T17247C T > C R > R S ORF1ab 3.00% 500 5 1 0 0 0 

C17747T* C > T P > L N ORF1ab 6.92% 1 0 0 1165 1 0 

A17858G A > G Y > C N ORF1ab 7.05% 1 1 0 1187 0 0 

C18060T C > T L > L S ORF1ab 7.16% 0 3 2 1202 1 0 

T18736C T > C F > L N ORF1ab 1.01% 0 0 1 169 0 0 

C18877T C > T L > L S ORF1ab 2.67% 2 2 440 4 0 2 

A20268G A > G L > L S ORF1ab 4.61% 0 1 773 3 0 1 

A23403G* A > G D > G N S 67.65% 4 4 4316 6 3634 3451 

C23731T C > T T > T S S 1.68% 0 0 0 0 1 282 

C23929T C > T Y > Y S S 1.13% 0 186 1 0 1 2 

C24034T C > T N > N S S 1.16% 0 2 1 187 4 1 

G25563T* G > T Q > H N ORF3a 26.44% 1 3 829 2 3625 2 

G25979T G > T G > V N ORF3a 1.16% 0 2 1 193 0 0 

G26144T* G > T G > V N ORF3a 8.61% 1387 62 0 1 1 1 

T26729C T > C A > A S M 1.07% 0 1 1 179 0 0 

C27046T C > T T > M N M 2.13% 0 1 5 0 0 353 

G28077C G > C V > L N ORF8 1.13% 0 1 1 188 0 0 

T28144C* T > C L > S N ORF8 11.36% 0 10 1 1903 2 0 

C28657T C > T D > D S N 1.21% 0 3 3 196 1 2 

T28688C T > C L > L S N 1.07% 0 178 1 0 1 0 

C28863T C > T S > L N N 1.19% 1 2 2 193 2 0 

G28881A G > A R > K N N 20.54% 4 3 3 1 1 3453 

G28882A G > A R > K1 N N 20.49% 1 2 0 0 0 3454 

G28883C G > C G > R N N 20.49% 1 2 1 0 0 3453 

A29700G A > G Intron Intron Intron 1.04% 0 0 4 167 4 1 

1 G28881A and G28882A occur within the same codon. Amino acid annotation (R > K) is based on the co-occurrence of 416 

these mutations. 417 

* Under positive selection inferred by HyPhy.  418 
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 419 

Figure 1. Clustering of SARS-CoV-2. (A, B and C) The Silhouette score (A), Sum of Squared Errors (SSE; B) and 420 

Bayesian Information Criterion (BIC; C) for the four selected algorithms (X axis). (D) Phylogenetic tree of 16,873 SARS-421 

CoV-2 strains. Four colored panels outside the phylogenetic tree are used to identify auxiliary information for each virus 422 

strain. The inner panel represents the distribution of the continents. The outer three panels represent the partitions of the 423 

six clusters across the three best performance clustering algorithms (deep learning, K-means and Hierarchical) in the tree. 424 

(E) Mean pairwise genetic distances for intra-clustered and inter-clustered genetic distances. The blue bars represent mean 425 

pairwise genetic distances between pairs of isolates within the clusters, and the red bars represent mean pairwise genetic 426 

distances between pairs of isolates outside the clusters. The error bar represents the standard deviation. The mean distance 427 

between pairs of strains for intra-clusters was significantly lower (P-value < 0.001, Wilcoxon rank-sum test) than that of 428 

inter-clusters. (F) The t-SNE plot of the deep learning clustering results. Each dot represents one strain and each color 429 

represents the corresponding cluster.  430 
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 431 

Figure 2. Geographic distributions of the six clusters. Pie charts display the proportions of six clusters among all SARS-432 

CoV-2 strains in each country. Circle sizes and the color scales correspond to the number of strains analyzed per country.  433 

  434 
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 435 

Figure 3. The genetic diversity between clusters. (A) The mutation counts over days of 16,873 SARS-CoV-2 strains. The 436 

X axis represents the days from the corresponding collection date of strains to 24 December 2019 when the earliest strain 437 

(EPI_ISL_402123) was collected. The Y axis represents the number of mutations of each collected strain. A mutation is 438 

defined by a nucleotide change from the original nucleotide in the reference genome to the alternative nucleotide in the 439 

studied viral genome. (B-G) The nucleotide diversity (π) per site for each gene and genome-wide across six clusters. 440 

  441 
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 442 

Figure 4. The clustering of the six clusters by the extracted mutations. (A) The heatmap displays mutation frequency 443 

of the 42 mutations across six clusters. The colors and values represent different frequencies of the corresponding mutations 444 

in each cluster. The collected days of the mutations are represented in (B). The X axis represents the days from the 445 

corresponding collection date of strains to 24 December 2019 when the earliest strain (EPI_ISL_402123) was collected. 446 

Circle sizes represent the frequency the of the mutations on each collection day. 447 
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Supplementary Information 449 

 450 

Figure S1. The distribution of the mutation counts of the 16,873 SARS-CoV-2 strains. 451 
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 453 

 454 

Figure S2. Frequency spectra of SARS-CoV-2. The mutation frequency of derived mutations of 16,873 SARS-CoV-2 455 

stains is depicted on the X axis, and the number of mutations in which strains occurred is displayed on the Y axis. A log-456 

10 scale is used for the Y axis of the graph, and the Y axis ranges from 1 to 10,000. 457 
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 460 

Figure S3. Normalized allele frequency of 16,873 SARS-CoV-2 strains. There are 8,706 unique genomes across the 16,873 461 

strains. The X axis is the number of strains for each unique genome and the Y axis is the proportion of the unique genomes. 462 

A log-10 scale is used for the Y axis of the graph, and the Y axis ranges from 0.0001 to 1. 463 
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 465 

Figure S4. Evaluation of the number of clusters. The evolution of the sum of squared errors (SSE; left) and Bayesian 466 

information criterion (BIC; right) for the number of clusters in the deep learning clustering runs. We used the elbow method 467 

and chose the elbow of the curve as the number of clusters. The elbow method indicated that the number of clusters is six. 468 
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 471 

Figure S5. The distribution of the mutation counts of the strains for the six clusters. 472 
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 475 

Figure S6. The distribution of P-values from the 2,094 mutations with P-values <0.05 by ANOVA. 476 
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 478 

Figure S7. The D’ and r2 of the 42 mutations. (A) D’ values that correspond to substitution pairs are expressed as 479 

percentages and are shown within the respective squares. Higher D’ values are indicated with a brighter red color. (B) The 480 

numbers within the squares represent the r2 scores for pairwise LD. r2 values are represented by white for r2 = 0, with 481 

intermediate values for 0 < r2 < 1 indicated by shades of grey. 482 
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 485 

Figure S8. Geographic distribution of six clusters in the United States. Pie charts display the proportions of six clusters 486 

among all SARS-CoV-2 strains in each state. Circle sizes and the color scales correspond to the number of strains analyzed 487 

per state. 488 
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 491 

Figure S9. The pairwise dependency score (see Materials and Methods) of the mutations with frequency >0.05 within 492 

cluster B. The heatmap shows that there are five major subclusters within cluster B. 493 
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Table S1 Geographic distribution of six continents for each cluster. 495 

 496 

 497 

Cluster Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F Total 

Africa 3 4 65 7 10 9 98 

Asia 38 648 248 217 57 116 1,324 

Europe 1,137 990 3,119 212 1,108 2,961 9,527 

North America 94 334 625 1,268 2,274 170 4,765 

Oceania 110 161 233 196 191 149 1,040 

South America 6 5 44 10 5 49 119 

Total 1,388 2,142 4,334 1,910 3,645 3,454 16,873 
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