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Abstract. This paper describes the advantages of using the anomaly detec-

tion approach over the misuse detection technique in detecting unknown net-
work intrusions or attacks. It also investigates the performance of various clus-
tering algorithms when applied to anomaly detection. Five different clustering 
algorithms: k-Means, improved k-Means, k-Medoids, EM clustering and dis-
tance-based outlier detection algorithms are used. Our experiment shows that 
misuse detection techniques, which implemented four different classifiers 
(naïve Bayes, rule induction, decision tree and nearest neighbour) failed to 
detect network traffic, which contained a large number of unknown intrusions; 
where the highest accuracy was only 63.97% and the lowest false positive rate 
was 17.90%. On the other hand, the anomaly detection module showed promis-
ing results where the distance-based outlier detection algorithm outperformed 
other algorithms with an accuracy of 80.15%. The accuracy for EM clustering 
was 78.06%, for k-Medoids it was 76.71%, for improved k-Means it was 
65.40% and for k-Means it was 57.81%. Unfortunately, our anomaly detection 
module produces high false positive rate (more than 20%) for all four clustering 
algorithms. Therefore, our future work will be more focus in reducing the false 
positive rate and improving the accuracy using more advance machine learning 
techniques. 
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1 Introduction  

Intrusion detection is a process of gathering intrusion-related knowledge occurring in 
the process of monitoring events and analyzing them for signs of intrusion [1][5]. 
There are two basic IDS approaches: misuse detection (signature-based) and anomaly 
detection. The misuse detection system uses patterns of well-known attacks to match 
and identify known intrusions. It performs pattern matching between the captured 
network traffic and attack signatures. If a match is detected, the system generates an 
alarm. The main advantage of the signature detection paradigm is that it can accurate-
ly detect instances of known attacks. The main disadvantage is that it lacks the ability 
to detect new intrusions or zero-day attacks [2][3].  



 
 

The anomaly detection model works by identifying an attack by looking for beha-
viour that is out of the normal. It establishes a baseline model of behaviour for users 
and components in a computer or network. Deviations from the baseline cause alerts 
that direct the attention of human operators to the anomalies [3][4][5]. This system 
searches for anomalies either in stored data or in the system activity. The main advan-
tage of anomaly detection is that it does not require prior knowledge of an intrusion 
and thus can detect new intrusions. The main disadvantage is that it may not be able 
to describe what constitutes an attack and may have a high false positive rate 
[2][3][4].  

2 Clustering Algorithms 

Clustering is a technique for finding patterns in unlabelled data with many dimen-
sions. Clustering has attracted interest from researchers in the field of intrusion detec-
tion [5,6]. The main advantage of clustering algorithm is the ability to learn from and 
detect intrusions in the audit data without explicit descriptions (intrusion signatures) 
which usually provided by security experts. 

There are two different approaches to clustering-based anomaly detection. The first 
approach is called unsupervised clustering where the anomaly detection model is 
trained using unlabelled data that consists of both normal as well as attack traffics. 
The second approach is called semi-supervised clustering where the model is trained 
using normal data only to build a profile of normal activity. The idea behind the first 
approach is that anomalous or attack data forms a small percentage of the total data. 
Based on this assumption, anomalies and attacks can be detected based on cluster 
sizes, large clusters correspond to normal data and the rest of the data points, which 
are outliers, correspond to attacks [5,6,7]. 

Eskin et al.[7] and Portnoy et al.[8] introduced the use of clustering algorithms to 
detect network traffics anomalies. Their algorithm starts with an empty set of clusters 
and generates the clusters with a single pass through the dataset. First, the data set 
needs to be normalized (convert into Z form), it then computes the distance between 
each new instance and its centroid. The cluster with the shortest distance is selected, 
and if that distance is less than or equal W (the cluster width) then the instance is 
assigned to that cluster, otherwise it creates a new cluster with this instance as the 
centre. 

 Based on the previous assumption, the normal clusters (clusters which contain 
normal data) will have much larger number of instances compare to anomalous clus-
ter. Eskin and Portnoy proposed an idea to model the normal traffic by selecting X 
percentage (where X is an input parameter) of clusters containing the largest number 
of instances and label them as normal and then they labeled the rest of the clusters as 
anomalous which might be considered as an intrusion/attack. 

In this paper, we implement and compare the performance of five different cluster-
ing algorithms in our anomaly detection module which are k-Mean, improved k-
Mean, k-Medoids, EM clustering and distance-based outlier detection algorithms.  
 



 
 

2.1 k-Means 

k-Means which is firstly proposed by James MacQueen, is a well-known and widely 
used clustering algorithm. k-Means is one of the simplest clustering algorithms in 
machine learning which can be used to automatically recognize groups of similar 
instances/items/objects/points in data training. The algorithm classifies instances to a 
pre-defined number of clusters specified by the user (e.g. assume k clusters). The first 
important step is to choose a set of k instances as centroids (centres of the clusters) 
randomly, usually choose one for each cluster as far as possible from each other. 
Next, the algorithm continues to read each instance from the data set and assigns it to 
the nearest cluster. There are some methods to measure the distance between instance 
and the centroid but the most popular one is Euclidian distance. The cluster centroids 
are always recalculated after every instance insertion. This process is iterated until no 
more changes are made. The k-Means algorithm is explained in this following pseudo 
code. 

1. Select the total number of clusters (k) 
2. Choose random k points and set as centroid 
3. Calculate the distance from each instance to all 

centroids using Euclidean method 
4. Assign each instance to the closest centroid 
5. Recalculate the positions of the centroids 
6. Repeat step 3-5 until the centroids do not change 

2.2 k-Medoids 

k-Medoids is a clustering algorithm similar to k-Means, which attempts to minimize 
the distance between points and its centre (centroid). A medoid is a data point which 
acts as an exemplar for all other data points in the cluster. The k-Means algorithm is 
very sensitive to outliers because if there is an object with a very large value, the data 
distribution may be biased or distorted [13]. In this case, k-Medoids is more robust to 
noise and outliers because in this algorithm the partitioning method is performed 
based on the principle of minimizing the sum of dissimilarities between each object in 
a cluster. The pseudo code of k-Medoids is explained below [13]: 

1. Input a data set D consists of n objects 
2. Input the number of clusters K  
3. Select k objects randomly as the initial cluster 

centres or cluster medoids  
4. Assign each object to the cluster with the nearest 

medoid 
5. Calculate the total distance between the object and 

its cluster medoid 
6. Swap the medoid with non-medoid object 
7. Recalculate the positions of the k medoids 
8. Repeat 4-7 until the medoids become fixed 



 
 

2.3 EM Clustering 

Expectation Maximization (EM) clustering is a variant of k-Means clustering and is 
widely used for density estimation of data points in an unsupervised clustering [14]. 
In the EM clustering, we use an EM algorithm to find the parameters which maximize 
the likelihood of the data, assuming that the data is generated from k normal distribu-
tions. The algorithm learns both the means and the covariance of the normal distribu-
tions.  This method requires several inputs which are the data set, the total number of 
clusters, the maximum error tolerance and the maximum number of iteration. 

The EM can be divided into two important steps which are Expectation (E-step) 
and Maximization (M-step). The goal of E-step is to calculate the expectation of the 
likelihood (the cluster probabilities) for each instance in the dataset and then re-label 
the instances based on their probability estimations. The M-step is used to re-estimate 
the parameters values from the E-step results. The outputs of M-step (the parameters 
values) are then used as inputs for the following E-step. These two processes are per-
formed iteratively until the results convergence. The mathematical formulas of EM 
clustering are described in [14][15] and the pseudo codes can be found in [15]. 

2.4 Outlier Detection Algorithms 

Outlier detection is a technique to find patterns in data that do not conform to ex-
pected behaviour [6]. Most of the clustering algorithms do not assign all points to 
clusters but account for noise objects, in other words clustering algorithms are opti-
mized to find clusters rather than outliers. Outlier detection algorithms look for out-
liers by applying one of the clustering algorithms and retrieve the noise set, therefore 
the performance of outlier detection algorithms depends on how good the clustering 
algorithm captures the structure of clusters. 

Outlier detection can be divided into two approaches: distance-based outlier detec-
tion and density-based outlier detection. The first method, distance-based outlier de-
tection algorithms, works on the assumptions that the normal data objects have a 
dense neighbourhood and the outliers are far apart from their neighbours. The second 
method works on assumptions that the density around a normal data object is similar 
to the density around its neighbours while the density around an outlier is considera-
bly different to the density around its neighbours. The density-based approach com-
pares the density around a point with the density around its local neighbours by com-
puting an outlier score. This paper focuses on distance-based outlier detection algo-
rithm only. 

The distance-based outlier detection approach,  which is based on the nearest 
neighbour algorithm was first introduced by Ng et al [16] and implements a well-
defined distance metric to detect outliers, the greater the distance of the object to its 
neighbour, the more likely it is to be an outlier. This method calculates the distance 
between each pair of objects using a nested loop (NL) algorithm and then the objects 
which are far away from the majority are signed as outliers. The mathematical formu-
las of distance-based outlier detection methods and their pseudo codes are described 
in more details [16][17]. 



 
 

3 Experimental Setup 

The following section describes the intrusion data sets used in the experiment, the 
performance metric used to evaluate the proposed system and the experimental set-
tings and its results. 

3.1 Intrusion Dataset  

One of the most widely used data sets for evaluating IDS is the DARPA/Lincoln La-
boratory off-line evaluation dataset or IDEVAL[9]. IDEVAL is the most comprehen-
sive test set available today and it was used to develop the 1999 KDD Cup data min-
ing competition [10]. In this experiment, we use the NSL-KDD intrusion data, which 
was provided to solve some problems in KDD’99, particularly that its training and 
test sets contained a huge number of redundant records with about 78% and 75% of 
the records being duplicated in the training and test sets, respectively. This may cause 
the classification algorithms to be biased towards these redundant records and thus 
prevent it from classifying other records [11].  

Table 1. List of intrusions in training and testing data 

Intrusions which exist in both  
training and testing data 

Intrusions which only exist  
in testing data 

back, buffer_overflow,  ftp_write, 
guess_passwd, imap, ipsweep, land, loadmo-
dule, multihop, neptune, nmap, phf, pod, 
portsweep, rootkit, satan, smurf, spy, teardrop, 
warezclient, warezmaster 

apache2, httptunnel, mailbomb, mscan, 
named, perl, processtable, ps, saint, 
sendmail, snmpgetattack, snmpguess, 
sqlattack, udpstorm, worm, xlock, 
xsnoop, xterm 

 
The intrusion data set consists of forty different intrusions classified into four main 

categories: DoS (Denial of Service), R2L (Remote to Local Attack), U2R (User to 
Root Attack) and Probing Attack. The training dataset consists of 25,191 instances 
and the testing dataset consists of 11,950 instances. The testing data set has many 
intrusions, which do not exist in the training data, as shown in Table 1. 

3.2 Performance Metric 

We use accuracy rate and false positive rate as the performance criteria based on the 
following metric shown in Table 2 below.  

Table 2. Performance metric 

 Actual Result 
Intrusion Normal 

Predicted 
Result 

Intrusion True Positive (TP) False Positive (FP) 

Normal False Negative (FN) True Negative (TN) 



 
 

 
True Positive (TP) is a condition when an actual attack is successfully detected by 

the IDS. True Negative (TN) is a condition where normal traffic is detected as a nor-
mal, in other words there is no attack nor IDS alert is raised. False Positive (FP) is an 
alert that indicates that an attack is in progress when in fact there was no such attack. 
False Negative (FN) is a failure of IDS to detect an actual attack [12]. The accuracy 
rate and false positive rate are measured using the following formulae: 

 �������� ���	 = ������������ �1�, ����	 �������	 = ������ �2� 

3.3 Misuse Detection Module 

Our proposed misuse detection module consists of five phases: feature extraction, 
dimensionality reduction, classification algorithms, apply model and performance 
measurement & analysis as explained in Figure 1 below. 

 

 

Fig. 1. Misuse Detection System Design 

We use Principal Component Analysis (PCA) as a dimensionality reduction algo-
rithm.  Dimensionality reduction is the process of reducing the number of random 
variables under consideration, which is very useful to reduce the computational cost 
as well as to avoid over-fitting. After that, we apply four different classifiers (naïve 
Bayes, decision tree, rule induction and nearest neighbour) into the misuse detection 
module in order to find the best method in detecting intrusion based on accuracy, false 
positive and speed (computation time). 

3.4 Anomaly Detection Module 

We designed the anomaly detection module as shown in Figure 2 below. This module 
implements several unsupervised clustering algorithms which do not required labeled 
dataset. In the feature extraction module we select only numerical data and handle 
missing value, then we transform the data into normal form. Normalization is a popu-



 
 

lar method used to convert all attributes/variables to a common scale with an average 
of zero and standard deviation of one. 

Intrusion data set consists of 41 attributes, which may have different scale and dif-
ferent distribution. Some attributes may have a wide range of values while other 
attributes are very narrowly distributed. These differences in distribution make it dif-
ficult to measure the similarities or significant differences between variables/ catego-
ries in the data sets. To solve this problem, we will convert the data set into normal 
form. Normalization (or standardization) is the most commonly used method to con-
vert all attributes to a common scale with an average of zero and standard deviation of 
one.  

 

 

Fig. 2. Anomaly Detection System Design 

Given a training dataset, the average and standard deviation feature vectors are cal-
culated: 

avg_vector'j) = 1* + instance/'j)0
123425  

std_vector'j) = 7 1* − 1 +��9���9�	1':) − ��;_�	����':)�<0
123  

where vector[j] is the jth element (feature) of the vector.  Then each instance (feature 
vector) in the training set is converted as follows: 9	=_�9���9�	':) = 1>?@A>BC'D)E AFG_FCB@HI'D)JKL_MNOKPQ'R)  , 
4 Experimental Results and Discussion 

The following section discusses and analyses the results of both the misuse detection 
module and the anomaly detection module.  
 



 
 

4.1  Misuse Detection Module 

In the first experiment, we use only the training data which contains around 22 differ-
ent types of intrusions and apply 10-fold cross validation in the misuse detection 
module. The results are shown in Table 3 below. 

Table 3. Misuse Detection performance using 10 fold cross validation 

Algorithm Accuracy False Positive 

Naïve Bayes 89.59% 10.60% 

Nearest Neighbour 99.44% 0.60% 
Rule Induction 99.58% 0.40% 
Decision Tree 99.56% 0.40% 

 
Table 3 shows that misuse detection achieves very good results when detecting 

known intrusion. Three of the four algorithms (nearest neighbour, rule induction and 
decision tree) achieve more than 99% accuracy and the false positive rates are less 
than 1%.  

In the second experiment, we use a testing data to evaluate the performance of in-
trusion model in the misuse detection module. The testing data contains 22 types of 
known intrusions and 18 types of unknown intrusions. The results of the second expe-
riment are shown in Table 4 below. 

Table 4. Misuse Detection performance using testing data 

Algorithm Accuracy False Positive 

Naïve Bayes 55.77% 34.80% 

Nearest Neighbour 62.84% 20.90% 
Rule Induction 63.69% 18.00% 
Decision Tree 63.97% 17.90% 

 
Table 4 shows that the misuse detection module does not perform well in detecting 

data which contains a large number of unknown intrusions where the highest accuracy 
is only 63.97% and the lowest false positive is 17.90%.  

4.2 Anomaly Detection Module 

We applied five unsupervised clustering algorithms which are k-Means, improved k-
Means, k-Medoids, Expectation-Maximization (EM) clustering and distance-based 
outlier detection algorithm into the anomaly detection module and used an unlabelled 
dataset as an input and the results are shown in Table 5 below. 

Compared to the misuse detection module which has an accuracy of only 63.97% 
(evaluated using testing data), the anomaly detection module has a better performance 
in detecting novel intrusion. These clustering algorithms are able to detect intrusions 
without prior knowledge. In this experiment, the distance-based outlier detection al-



 
 

gorithm achieves the best accuracy with 80.15%, followed by EM clustering 78.06%, 
k-Medoids with 76.71%, improved k-Means 65.40% and k-Means 57.81%. 

Table 5. Anomaly Detection accuracy using clustering algorithms 

Algorithm Accuracy False Positive 

k-Means 57.81% 22.95% 

improved k-Means 65.40% 21.52% 

k-Medoids 76.71% 21.83% 

EM clustering 78.06% 20.74% 

Distance-based outlier detection 80.15% 21.14% 

 
Unfortunately, all of these algorithms have quite high positive rates with more than 

20%. This means that there are around 20% of normal traffics predicted as intrusions. 
Because of the high positive rates, this anomaly detection module would not be viable 
in the real world. Therefore, our future work will be focused on how to reduce the 
false positive while still improving the accuracy. 

 

 

Fig. 3. Clustering algorithms execution time 

Even though the distance-based outlier detection algorithm outperforms the other 
four algorithms in accuracy, unfortunately its computation time is relatively high. The 
k-Means algorithm is the fastest but its accuracy is the worst (57.81%), in contrast the 
k-Medoids algorithm is the slowest but its accuracy is relatively high (76.71%). 

Since the distance-based outlier detection algorithm has achieved the highest accu-
racy, we continue our experiment by applying this algorithm in the anomaly detection 
module. Now we classify the intrusion dataset into four types of intrusion which are 
probing attacks, DoS attacks, R2L attacks and U2R attacks. The results are shown in 
Figure 4 below. 
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Fig. 4. Anomaly detection using distance-based outlier detection algorithm 

This experiment shows that the distance-based outlier detection algorithm is able to 
detect probing attacks with 83.8% accuracy and DoS attacks with 82.21% accuracy. 
Unfortunately, this algorithm failed to accurately detect R2L attack (42.44%) and 
U2R attacks (52.73%). One reason is that the R2L attacks and U2R attacks have very 
similar behaviour with normal traffics which makes them very difficult to distinguish. 
Furthermore, the number of R2L and U2R attacks in intrusion dataset is very small 
compare to the whole data set. The number of R2L attacks is only 0.83% and U2R is 
only 0.04%.  

5 Conclusions 

Our experiment shows that the misuse detection technique achieves a very good per-
formance with more than 99% accuracy when detecting known intrusion but it fails to 
accurately detect data set with a large number of unknown intrusions where the high-
est accuracy is only 63.97%. In contrast, the anomaly detection approach shows 
promising results where the distance-based outlier detection method outperforms the 
other three clustering algorithms with the accuracy of 80.15%, followed by EM clus-
tering (78.06%), k-Medoids (76.71%), improved k-Means (65.40%) and k-Means 
(57.81%). Further experiment shows that the distance-based outlier detection per-
forms very well in detecting probing attacks (83.88%) and DoS attacks (82.21%) but 
it fails to detect R2L attacks (42.44%) and U2R attacks (52.73%). Unfortunately, our 
anomaly detection module produces high positive rate (more than 20%) for all four 
clustering algorithms. Therefore, our future work will be focused in reducing the false 
positive rate and improving the accuracy using more advance machine learning tech-
niques. 
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