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Abstract

Purpose: To identify novel breast cancer subtypes by extracting
quantitative imaging phenotypes of the tumor and surrounding
parenchyma and to elucidate the underlying biologic underpin-
nings and evaluate the prognostic capacity for predicting recur-
rence-free survival (RFS).

Experimental Design: We retrospectively analyzed dynamic
contrast–enhanced MRI data of patients from a single-center
discovery cohort (n ¼ 60) and an independent multicenter
validation cohort (n ¼ 96). Quantitative image features were
extracted to characterize tumor morphology, intratumor hetero-
geneity of contrast agent wash-in/wash-out patterns, and tumor-
surrounding parenchyma enhancement. On the basis of these
image features, we used unsupervised consensus clustering to
identify robust imaging subtypes and evaluated their clinical and
biologic relevance. We built a gene expression–based classifier of
imaging subtypes and tested their prognostic significance in five
additional cohorts with publically available gene expression data
but without imaging data (n ¼ 1,160).

Results: Three distinct imaging subtypes, that is, homo-
geneous intratumoral enhancing, minimal parenchymal
enhancing, and prominent parenchymal enhancing, were
identified and validated. In the discovery cohort, imaging
subtypes stratified patients with significantly different 5-year
RFS rates of 79.6%, 65.2%, 52.5% (log-rank P ¼ 0.025) and
remained as an independent predictor after adjusting for
clinicopathologic factors (HR, 2.79; P ¼ 0.016). The prog-
nostic value of imaging subtypes was further validated in five
independent gene expression cohorts, with average 5-year
RFS rates of 88.1%, 74.0%, 59.5% (log-rank P from <0.0001
to 0.008). Each imaging subtype was associated with specific
dysregulated molecular pathways that can be therapeutically
targeted.

Conclusions: Imaging subtypes provide complimentary
value to established histopathologic or molecular subtypes
and may help stratify patients with breast cancer. Clin Cancer
Res; 23(13); 3334–42. �2017 AACR.

Introduction
Breast cancer is routinely divided into several subtypes on the

basis of clinical and pathologic factors such as hormone receptor
and HER2 status, which are used to determine appropriate ther-

apy and guide clinical decision-making (1, 2). Gene expression
profiling of breast cancer has identified 4 intrinsic molecular
subtypes (luminal A, luminal B, HER2-enriched, and basal-like),
each associated with distinct gene expression patterns, prognosis,
and response to treatment (3, 4). However, molecular tests are
limited by the requirement for invasive biopsy or surgery, and
surrogate subtypes based on routinely measured tumor markers
[estrogen receptor (ER), progesterone receptor (PR), HER2] do
not fully approximate the intrinsic subtypes. Moreover, recent
studies have shownprofound intratumor genetic heterogeneity in
breast cancer (5, 6), which poses a significant challenge for
molecular profiling based on a single biopsy. There is a critical
need for reliable, noninvasive prognostic or predictive biomarkers
that can aid in patient stratification.

MRI plays an important role in breast cancer management,
from the initial diagnosis to the evaluation of therapy response
(7–10).MRI is exquisitely sensitive to physiological changes (e.g.,
blood flow) in the underlying tissue and is well suited for
noninvasive characterization of the tumor. One important advan-
tage of MRI over biopsy-derived molecular data is that imaging
provides a global, unbiased view of the entire tumor as well as its
surrounding tissue. Beyond visual assessment by radiologists,
quantitative image analysis may reveal additional useful biomar-
kers in cancer (11–14). Recent studies have shown that intratumor
imaging heterogeneity, which might reflect underlying genetic
heterogeneity, is associated with aggressive disease, resistance to
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chemotherapy, and poor prognosis (15–21). There is also emerg-
ing evidence suggesting that imaging characteristics of breast
parenchyma are associated with the risk of developing breast
cancer, treatment response, long-term disease recurrence, and
patient survival (22–24).

The availability of large-scale curated image and gene expres-
sion datasets has spurred a significant interest in linking tumor
phenotypes at the molecular and tissue (imaging) level (14, 25–
34). These studies used a similar study design to identify the
correlation of individual imaging features with specific molecular
features, such as gene expression, mutation, or predefinedmolec-
ular subtypes. Significant associations have been identified in

breast cancer (31, 32, 34), leading to an improved understanding
of the molecular mechanisms behind imaging phenotypes.

In this study,we aim todiscover novel breast cancer subtypes by
extracting quantitative image phenotypes of the tumor as well as
the breast parenchyma for a detailed characterization of the tumor
and its invasion into surrounding tissue. By creating an imaging–
genomic association map, we show that the imaging subtypes are
associated with differing molecular pathways and that patients
stratified by the imaging subtypes have distinct prognoses in
multiple independent cohorts.

Materials and Methods
Study design

We aimed to discover novel breast cancer subtypes defined by
quantitative imaging features, investigate the prognostic relevance
of these imaging subtypes, and explore their underlying biological
mechanism. To do this, we carried out this study in 3 phases, as
shown in Fig. 1. In phase 1, we independently explored intrinsic
imaging subtypes of breast cancer in discovery (single institution-
al) and validation [(TCGA)] cohorts on the basis of unsupervised
clustering of quantitative imaging features and further validated
the similarity and reproducibility of the imaging subtypes across
these 2 cohorts. See Supplementary Methods for details of the 2
patients' cohorts. In phase 2, the prognostic value of the imaging
subtypes was investigated in its ability to stratify recurrence-free
survival (RFS) in (i) discovery cohort and (ii) 5 additional gene
expression datasets. In phase 3, we explored the biologic mech-
anism associated with the discovered imaging subtypes through 2
typesof pathway analyses. Thedetails of eachphase are elaborated
in the following sections.

Overview of patient cohorts
The overall study design is shown in Fig. 1. We retrospectively

analyzed 2 publicly accessible breast cancer imaging cohorts from

Figure 1.

Flowchart of the overall design of the
study. This study contains 3 phases.

Translational Relevance

Breast cancer is a heterogeneous disease. Biomarkers that
stratify patients with clinical relevance are critically needed for
precision medicine. Molecular profiling is currently used to
stratify breast cancer but is limited by the requirement for
invasive biopsy and confounded by intratumor genetic het-
erogeneity. Conversely, imaging provides a global, unbiased
picture of the entire tumor. Using unsupervised consensus
clustering of quantitative imaging phenotypes of the tumor
and parenchyma, we identify three imaging subtypes in a
single-institution cohort and validate them in an independent
multi-institutional cohort. Each imaging subtype is associated
with distinct molecular pathways with therapeutic implica-
tions. Furthermore, we show that imaging subtypes and their
gene expression–based classifiers predict patient survival in a
discovery cohort and five external validation cohorts, respec-
tively. Our method can potentially stratify patients noninva-
sively for personalized management of breast cancer.

Imaging Subtypes of Breast Cancer
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The Cancer Imaging Archive (TCIA). Sixty patients from a single
institution were used as the imaging subtype discovery cohort,
for which both imaging and RFS data were available. Another
96 patients from TCGA were used as the imaging subtype vali-
dation cohort, for which both imaging and gene expression data
were available. Patient characteristics of these 2 cohorts are
summarized in Supplementary Table S1 (see Supplementary
Methods for patient selection and imaging protocols). To validate
the prognostic relevance of the imaging subtypes, we identified 5
publicly available datasets comprising microarray gene expres-
sion profiles for a total of 1,160 patients with breast cancer, for
whom the RFS information was available. Among them, the
Netherlands Cancer Institute (NKI) dataset (295 patients) was
obtained from the NKI homepage (http://ccb.nki.nl/data,
accessed April 1, 2016). The other 4 datasets were retrieved from
the Gene Expression Omnibus [series accession numbers:
GSE1456 (159 patients), GSE25055 (310 patients), GSE25065
(198 patients), and GSE7390 (198 patients)].

Image analysis and feature extraction
We analyzed each patient's dynamic contrast–enhanced (DCE)

MR images in 3 steps: (i) tumor and background parenchyma
segmentation, (ii) image preprocessing and harmonization, and
(iii) quantitative image feature extraction. In step 1, 2 radiologists
(G. Cao and X. Sun with 17 and 11 years of experience in breast
imaging) blinded to the patients' clinical outcome, that is, RFS,
manually delineated the tumor in a slice-by-slice manner on the
DCE MRI and reached consensus regarding the tumor contours.
The background parenchyma ipsilateral to tumor was automat-
ically segmented using fuzzy c-means (35) and confirmed by both
radiologists in consensus (see details in Supplementary Meth-
ods). In step 2, the image data were harmonized via a series of
imaging processing algorithms, which allows subsequent quan-
titative image analysis. First, the temporal sequences for the DCE
MRI were extracted at 3 time points, including the pre-contrast,
early post-contrast (around 2.5 minutes), and late post-contrast
(around 7.5 minutes). The N4 bias correction (36) was used to
remove the shading artifacts in the MR images. Then each of the 3
sequential MR images was normalized by the average pixel value
of breast parenchyma in pre-contrast images. The DCE MR
images were resized to an isotropic voxel resolution of 0.8 mm
to allow for consistent calculation of image features. In step 3, a
set of 110 quantitative image features were extracted to char-
acterize the phenotypes of each tumor and its parenchymal
enhancement as well as intratumor heterogeneity. The feature
set contains 8 tumor morphologic features, 66 tumor texture
features of kinetic maps including wash-in/wash-out and signal
enhancement ratio (SER) maps, 4 functional tumor volume
features, 10 background parenchymal enhancement features,
and 22 tumor-surrounding parenchymal enhancement fea-
tures. The details of the image features are explained in Sup-
plementary Table S2. The image analysis and feature extraction
were implemented with MATLAB (MathWorks).

Imaging subtype discovery and validation
We used unsupervised consensus clustering (37) to discover

intrinsic imaging subtypes for the discovery and validation
cohorts, respectively. Compared with traditional k-means and
hierarchical clustering algorithms, consensus clustering is shown
to be more robust and insensitive to random starts and has been
widely used to identify biologically meaningful clusters (37). In

detail, we used the partition-around-medoids clustering algo-
rithm (38) with the Euclidean distance metric and performed
10,000 bootstraps with 80% item resampling of the quantita-
tive imaging features. We varied the cluster number from 2 to
10 and selected the optimal cluster number that produced the
most stable consensus matrices and the most unambiguous
cluster assignments across permuted clustering runs (37). The
final clusters identified as such correspond to imaging subtypes
of breast cancer. Furthermore, the same procedure was inde-
pendently implemented in the validation cohort to determine
and validate the imaging subtypes. The significance analysis of
microarrays (SAM) algorithm (39) was used to identify the
quantitative image features significantly associated with the
identified imaging subtypes. SAM is a permutation-based non-
parametric statistical algorithm and designed to identify sig-
nificantly different variables (imaging features) that are asso-
ciated with a given trait (imaging subtype). The in-group
proportion (IGP) statistic (40) was used to test whether similar
imaging subtypes from the discovery cohort existed in the
validation cohort. The IGP quantitatively measure the similar-
ity of clusters when defined using training and testing data. If
the clusters are identical between 2 datasets, the IGP
approaches to 100%. The consensus clustering, SAM algorithm,
and IGP statistic were performed in R.

Prognostic significance of the imaging subtypes
We first evaluated the imaging subtypes in terms of their

prognostic capacity for predicting RFS in the discovery cohort.
Then, we tested the prognostic relevance of the imaging subtypes
on 5 additional breast cancer cohorts with gene expression data
publically available but no imaging data available. To do this, we
first built a gene expression–based imaging subtype classifier
using clustered imaging subtype labels and gene expression data
(RNA-seq) from theTCGAcohort. Specifically,weperformedone-
way ANOVA with fixed-effect (41) to first identify genes signif-
icantly associated with imaging subtypes (P < 0.05). Then, we
trained a nearest shrunken centroid classifier (42) with the pre-
selected genes and validated it using 10-fold cross validation with
stratified sampling. We subsequently applied this classifier to the
microarray datasets to classify each patient into 1 of the 3 imaging
subtypes and evaluated their prognostic value in stratifying RFS.
To account for the different dynamic ranges of RNA-seq and DNA
microarray data, we performed copula transformation (43) to
each gene, respectively, and independently for each dataset so that
theywere comparable in the classificationmodel (Supplementary
Methods).

Identifying molecular pathways associated with the imaging
subtypes

We performed 2 types of pathway analyses to elucidate the
biologic mechanisms of the imaging findings. First, we used the
Gene Set Enrichment Analysis (GSEA) to identify enriched bio-
logic pathways associated with each imaging subtype within the
TCGA cohort. The gene expression data of normal breast tissue
available for 113 patients were set as the baseline. Then, the
samples from the tumor tissue were compared with the paired
normal tissue, respectively in each imaging subtype. The KEGG
pathway database was used for GSEA. Second, we integrated gene
expression and copy number variation (CNV) data with Pathway
Recognition AlgorithmUsingData Integration onGenomicMod-
els (PARADIGM; ref. 44). The NCI Pathway Interaction Database
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was used for PARADIGM analysis. See details in Supplementary
Methods.

Statistical analysis
We used the Cox proportional hazard model to build survival

model to predict RFS. Kaplan–Meier analysis and log-rank test
were used to evaluate patient stratification into different survival
groups. To adjust for multiple statistical testing, the Benjamini–
Hochberg method was used to control the false discovery rate
(FDR)onunivariate analysis. All statistical testswere 2-sided,with
a P < 0.05 or FDR < 0.25 considered statistically significant. The
rationale of using a larger threshold for FDR is to increase the
likelihood of positive findings. All statistical analyses were per-
formed in R.

Results
Three imaging subtypes emerge in the discovery cohort

On the basis of consensus clustering of the patients' quan-
titative imaging features characterizing both tumor and sur-
rounding parenchyma, we determined the optimal cluster
number to be 3. The 3-cluster solution corresponded to the
largest cluster number that induced the smallest incremental
change in the area under the under cumulative distribution
function (CDF) curves while maximizing consensus within
clusters and minimizing the rate of ambiguity in cluster assign-
ments, as shown in Fig. 2A and B. This resulted in 18 patients
(30%) in cluster 1, 19 patients (32%) in cluster 2, and 23
patients (38%) in cluster 3 for the discovery cohort.

SAM (39) identified quantitative image features significantly
associated with each imaging subtype (Supplementary Fig. S1).
The boxplot of 4 representative imaging features is shown in Fig.
3A, forwhich therewere significant differences (ANOVA: P<0.05)
across the subtypes. In particular, imaging subtype 1 was charac-
terized by the lowest intratumoral heterogeneity compared
with others (Wilcoxon: P < 2.2E-16) and hence was named
"homogeneous intratumoral enhancing subtype." Imaging sub-
type 2 was characterized by the lowest amount of background
parenchymal enhancement (BPE) compared with others (Wil-
coxon: P ¼ 0.0002) and was named "minimal parenchymal
enhancing subtype," Compared with subtype 2, subtype 3 was
characterized by a higher amount of BPE (Wilcoxon: P ¼ 5.49E-
16) and was named "prominent parenchymal enhancing sub-
type." These patterns were consistent in the validation cohort
(Supplementary Fig. S2). Images of typical patients from 3 sub-
types are shown in Fig. 3B.

Imaging subtypes are validated in an external multi-
institutional cohort

We independently applied the same consensus clustering anal-
ysis to the multi-institutional TCGA cohort and determined the
optimal cluster number to be 3, as shown in Fig. 2C andD. The in-
group proportion (IGP) statistic (40) was used to evaluate the
reproducibility of the imaging subtypes across the discovery and
validation cohorts. Imaging subtypes 1 and 2 showed a high
consistency between the 2 cohorts, with the corresponding IGP
values at 82.4% and 92.3%, respectively. On the other hand,
imaging subtype 3 was associated with a lower IGP of 60.0%,

Figure 2.

Unsupervised consensus clustering of
quantitative imaging phenotypes. A
and C, Consensus matrices
represented as heatmaps for the
chosen optimal cluster number (k¼ 3)
for discovery and validation cohorts,
respectively. Patient samples are both
rows and columns, and consensus
values range from 0 (never grouped
together) to 1 (always clustered
together). The dendrogram above the
heatmap illustrates the ordering of
patient samples in 3 clusters. B and D,
Corresponding relative change in area
under the cumulative distribution
function (CDF) curves when cluster
number changing from k to k þ 1. The
range of k changed from 2 to 10, and
the optimal k ¼ 3.
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suggesting a large degree of intertumor phenotypic heterogeneity
among this group. All 3 imaging subtypes were statistically
significant, with P < 0.01, P < 0.001, and P < 0.05 for each subtype,
respectively.

Imaging subtypes are distinct from established breast cancer
subtypes

The 3 imaging subtypes were not associated with intrinsic
molecular subtypes (Pearson c2: P ¼ 0.865) or immunohis-
tochemistry (IHC)-based measurements such as ER, PR, HER2
(Pearson c2: P > 0.05). Every imaging subtype contained all
molecular subtypes and all IHC-based subtypes and vice versa
(Supplementary Tables S3 and S4). In addition, the imaging
subtypes were not associated with the BI-RADS–based character-
istics including tumor shape, margin, and internal enhancement
patterns (Pearson c2: P ¼ 0.344, 0.769, 0.432, respectively).

Imaging subtypes stratify patients in terms of RFS in the
discovery cohort

Weobserved significant differences in RFS (log-rank P¼ 0.025)
in the discovery cohort (Fig. 4A), with 5-year RFS rates of 79.6%,
65.2%, 52.5% for subtypes 1, 2, and 3, respectively. On univariate
analysis, imaging subtypewas a strong predictor of RFS [HR, 2.11;
95% confidence interval (CI), (1.19–3.71); P ¼ 0.01]. On mul-
tivariate analysis, imaging subtype was the only independent
predictor of RFS (P ¼ 0.016) after adjusting for clinical and
pathologic factors, including patients' age, receptor status, histo-
logic type, and lymph node involvement (Table 1).

Gene expression–based imaging subtype classifier predicted
RFS in 5 independent cohorts

We identified 692 genes whose expression was significantly
associated with the imaging subtypes using one-way ANOVA and
trained a nearest shrunken centroid classifier (42) to predict
imaging subtypes based on the selected genes in the TCGA cohort.
This gene expression–based classifier had an accuracy of 90.6%,

75.0%, and 82.3% in predicting each imaging subtype based on
10-fold cross validation. We then applied the classifier to 5
independent microarray datasets, respectively, to assign each
patient into 1 of the 3 imaging subtypes. Patient stratification
based on the predicted imaging subtypes showed significantly
different RFS in all 5 datasets (Fig. 4B–F, log-rank P ¼ 1.16e-6 to
7.92e-3), with average 5-year RFS rates of 88.1%, 74.0%, 59.5%
for subtypes 1 to 3, respectively. Furthermore, the patterns of RFS
were consistent with those in the discovery cohort (subtypes 1–3
corresponding to favorable, intermediate, and poor prognosis).

Imaging subtypes are associated with distinct molecular
pathways

Figure 5A shows the molecular pathways significantly enriched
in each imaging subtype (FDR < 0.25) based on GSEA. The
number of enriched pathways progressively increased from sub-
type 1 through subtype 3 (Fig. 5A; Supplementary Table S5). In
addition, we combined gene expression and CNV data and
computed the pathway activity scores for each imaging subtype
using the PARADIGM (44). Again, we observed a clear trend: the
number and activity (or inactivity) of dysregulated pathways
(FDR < 0.25) progressively increased from subtype 1 through
subtype 3 (Fig. 5B).

Discussion
We discovered 3 subtypes of breast cancer on the basis of

quantitative imaging phenotypes of the tumor and surrounding
parenchymal tissue and validated these imaging subtypes in an
independent multi-institutional cohort. We showed that the
imaging subtypes were associated with distinct molecular path-
ways and provided independent prognostic value beyond con-
ventional clinicopathologic factors. Furthermore, by building a
gene expression–based imaging subtype classifier,we showed that
the imaging subtypes stratified RFS in 5 independent cohorts
totalingmore than 1,000patients. These newly identified imaging
subtypes and associated findings warrant further validation in

Figure 3.

A, Selected 4 quantitative imaging features significantly associated with 3 imaging subtypes, including tumor volume, tumor sphericity, tumor homogeneity
measured at early enhancement phase, and background parenchymal enhancement (BPE) fraction with percentage enhancement > 0.6. B, Details of analyzing the
tumor and BPE for a representative patient from each imaging subtype. The tumor active function was measured and color-coded with signal enhancement
ratio (SER). BPE was measured and color coded with percentage enhancement at early enhancement phase.
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large prospective studies, and if successful, may serve as useful
biomarkers for personalized management of breast cancer.

Our findings offer an intriguing perspective on the biology of
breast cancer. The 3 imaging subtypes shared several disturbances
in biologic pathways that are implicated in breast cancer, includ-
ing DNA damage repair, pyrimidine metabolism, oocyte meiosis,
and spliceosome (Fig. 5A). Malfunction of DNA damage repair
can lead to mutation and chromosomal instability, a hallmark of
oncogenesis and tumor progression (45). Pyrimidinemetabolism
is a limiting step for DNA replication during mitosis (46). The
disturbance of pyrimidine metabolism is consistent with the fact
that the antimetabolite drugs such as fluorouracil and capecita-
bine are often effective treatments for breast cancer (47). In

addition, there is evidence showing that the extent of dysregula-
tion of genes involved in the spliceosome correlates with the
malignant behavior of breast cancer (48). In subtypes 2 and3 (but
not in subtype 1), the immune pathway of systemic lupus erythe-
matosus was found to be disturbed, which might correspond to
the enhanced intratumoral angiogenesis observed in these 2
subtypes (49). In subtype 3 (but not in subtypes 1 or 2), the
protein export pathwaywas disturbed.During tumor progression,
cancer cells activate immune infiltrate and endothelial cells to
increase the secretion and export of proteins into the tumor
microenvironment, such as cytokines and angiogenesis factors
that promote tumor growth (50). The disturbed pathways in
subtypes 2 and/or 3 could be the biologic reasons for their distinct

Table 1. Univariate and multivariate analyses of the imaging subtype and clinical risk factors for predicting RFS in the discovery cohort

Univariate Multivariate
Predictors HR (95% CI) P HR (95% CI) P

Imaging subtypea 2.11 (1.19–3.71) 0.010b 2.79 (1.21–6.44) 0.016b

Age 0.79 (0.53–1.19) 0.260 0.57 (0.30–1.09) 0.087
ER 0.60 (0.23–1.55) 0.289 0.57 (0.11–2.95) 0.499
PR 0.67 (0.25–1.75) 0.409 0.30 (0.06–1.50) 0.143
HER2 0.75 (0.24–2.29) 0.610 0.49 (0.10–2.34) 0.370
Histologic typec 0.97 (0.42–2.24) 0.940 0.73 (0.23–2.34) 0.602
Lymph node status 3.43 (1.16–10.14) 0.026b 3.42 (0.64–18.20) 0.149
Molecular subtyped 1.49 (0.84–2.65) 0.177 — —
aImage subtype was treated as a continuous variable, that is, subtype 1 was coded as 1, subtype 2 was coded as 2, subtype 3 was coded as 3.
bP < 0.05.
cThe invasive ductal carcinoma was coded as 1 and other types as 0.
dMolecular subtype includes luminal, HER2þ, and triple-negative, and it was not adjusted in multivariate analysis.

Figure 4.

Kaplan–Meier curves of RFS stratified by the imaging subtypes. The plots are for (A) the discovery cohort and (B–F) 5 independent validation cohorts, with
predicted imaging subtypes via gene expression–based imaging subtype classifiers built in TCGA cohort.
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imaging phenotypes and might explain their differential progno-
ses. Our study thus provides novel insight into the biologic
processes associated with the aggressiveness of breast cancers.

Our results show that imaging phenotypesmay be used to infer
dysregulated molecular pathways that can be targeted (Fig. 5B).
For example, imaging subtype 3 was characterized by the upre-
gulation of the c-Met, PI3K, and mTOR pathways. Targeted
therapies inhibiting these pathways are being actively tested in
clinical trials (51–53). Such therapies might prove to be most
effective in subtype 3, which had the worst prognosis, whereas in
subtype 2, theymight prove not be effective due to inactivation of
the corresponding pathways. Compared with subtypes 1 and 2,
subtype 3 had reduced reproducibility across discovery and val-
idation cohorts. This might reflect greater phenotypical diversity
or intertumor heterogeneity among this group, implying that
combinatory therapies targeting multiple pathways may be need-
ed for subtype 3.

On the basis of 2 independent pathway analyses (Fig. 5A and B),
we showed that the number and activity of dysregulated biologic
pathways had similar patterns across imaging subtypes, which was
consistent with their differential prognoses. Our findings support
the potential of imaging analysis to inform clinical trial design and
ultimately to help guide precision therapy of breast cancer.

The proposed image-based subtyping overcomes several key
challenges of current approaches for breast cancer classification.
Traditional analysis requires molecular profiling of the tumor
sampled in a small biopsy, which is limited by intratumor genetic
heterogeneity (5, 6, 54, 55) and other confounders such as normal
tissue contamination, making downstream class discovery suscep-
tible to sampling errors. In contrast, imaging provides a complete,
unbiased picture of the tumor. Thus, subtypes defined by quan-
titative imaging phenotypes may be more reliable. Our results
show that imaging subtypes were distinct from established IHC-
based or molecular subtypes, suggesting that imaging could pro-
vide complementary prognostic information. One key issue with
image-basedmarkers is that the scanner and acquisition protocols

such asMRfield strengths are often quite heterogeneous, and these
variations could limit the study power especially in multi-institu-
tional retrospective studies. Appropriate standardization and
harmonization of imaging data are critical to ensure more reliable
results. Another important advantage of our approach is that
imaging is often used clinically for treatment response evaluation
and long-term follow-up (9, 13). This opens the door to nonin-
vasive disease monitoring using imaging subtypes as surrogate
markers of underlyingmolecular activity,whichwould be farmore
tolerable to patients than frequent invasive biopsies.

Our work represents a major shift in direction from traditional
imaging genomics studies. Instead of finding imaging features
associated with predefined genomic properties, here we started
with an extensive characterization of imaging phenotypes and
applied unsupervised clustering for subtype discovery. A previous
study used a similar approach to identify imaging subtypes for
glioblastoma multiforme (GBM; ref. 56). Beside the apparent
differences in cancer types (GBM vs. breast cancer) and imaging
modalities (anatomical vs. functional MRI), there are several
important strengths of our study: (i) our image analysis extended
beyond the tumor and included background breast parenchyma,
thus providing amore detailed imaging characterization of tumor
invasion into surrounding tissue and (ii) we built gene expres-
sion–based imaging subtype classifiers and validated the prog-
nostic significance of these subtypes in multiple independent
cohorts. One recent breast cancer radiogenomic study (32) aimed
to identify the genomic underpinnings associated with individual
MRI-based radiomic features. On the other hand, our study
focused on discovering clinically relevant breast cancer subtypes
based on imaging phenotypes, which can be directly used to
stratify patients. While our radiogenomic study included molec-
ular features such as gene expression andCNV, itmaybebeneficial
to incorporate other types of -omic data (32) such as genetic
mutation, miRNA expression, and protein expression, which
could provide a more complete picture of the molecular char-
acteristics. Similar to previous radiogenomic studies, our work

Figure 5.

A, Stacked Venn plots of the significantly associated (FDR < 25%) KEGG pathways for 3 imaging subtypes with GSEA. B, Pathway activity scores for 3 imaging
subtypes. The pathways are from NCI Pathway Interaction Database Pathways, which are significantly (FDR < 25%) associated with 3 imaging subtypes with
PARADIGManalysis. The bar length indicates themagnitude of activity score. From2 independent pathway analyses,we observed consistent pathway dysregulation
patterns across imaging subtypes, which might explain the differential prognoses associated with the 3 imaging subtypes.
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identified correlative but not necessarily causative relations
between imaging phenotypes and molecular features. To mech-
anistically validate these imaging genomic associations, experi-
mental validation using a preclinical knock-out model will be
required, and this warrants further investigation in future studies.

Conclusions
We have identified 3 breast cancer subtypes on the basis of

quantitative imaging phenotypes of the tumor and surrounding
tissue. The 3 imaging subtypes reflect distinct underlying molec-
ular pathways and are associated with significantly different
survival. This work may serve as the basis for future prospective
studies to evaluate the imaging subtypes as potential biomarkers
for precision medicine.
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