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Unsupervised Clustering with Spiking Neurons by
Sparse Temporal Coding and Multi-Layer RBF

Networks
Sander M Bohte, Han La Poutré, Joost N Kok

Abstract— We demonstrate that spiking neural networks
encoding information in the timing of single spikes are capa-
ble of computing and learning clusters from realistic data.
We show how a spiking neural network based on spike-time
coding and Hebbian learning can successfully perform unsu-
pervised clustering on real-world data, and we demonstrate
how temporal synchrony in a multi-layer network can induce
hierarchical clustering. We develop a temporal encoding of
continuously valued data to obtain adjustable clustering ca-
pacity and precision with an efficient use of neurons: in-
put variables are encoded in a population code by neurons
with graded and overlapping sensitivity profiles. We also
discuss methods for enhancing scale-sensitivity of the net-
work and show how the induced synchronization of neurons
within early RBF layers allows for the subsequent detection
of complex clusters.

Keywords— Spiking neurons, unsupervised learning, high-
dimensional clustering, complex clusters, Hebbian-learning,
synchronous firing, sparse coding, temporal coding, coarse
coding.

I. Introduction

It is well known that cortical neurons produce all-or-none
action potentials, or spikes, but the timing of these pulses
has only recently been recognized as a possible means of
neuronal information coding. As the biological evidence
has been mounting, e.g. [1], it has been shown theoretically
that coding with the timing of single spikes allows for pow-
erful neuronal information processing [2]. Furthermore, it
has been argued that coordinated spike-timing could be in-
strumental in solving dynamic combinatorial problems [3].
Since time-coding utilizes only a single spike to transfer
information, as apposed to hundreds in firing-rate coding,
the paradigm could also potentially be beneficial for effi-
cient pulse-stream VLSI implementations.

These considerations have generated considerable inter-
est in time-based artificial neural networks, e.g. [4], [5],
[6], [7], [8], [9]. In particular, Hopfield [10] presents a
model of spiking neurons for discovering clusters in an in-
put space akin to Radial Basis Functions. Extending on
Hopfield’s idea, Natschläger & Ruf [5] propose a learning
algorithm that performs unsupervised clustering in spiking
neural networks using spike-times as input. This model en-
codes the input patterns in the delays across its synapses
and is shown to reliably find centers of high-dimensional
clusters. However, as we argue in detail in section II, this
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method is limited in both cluster capacity as well as in
precision.

We present methods to enhance the precision, capacity
and clustering capability of a network of spiking neurons
akin to [5] in a flexible and scalable manner, thus overcom-
ing limitations associated with the network architecture.
Inspired by the local receptive fields of biological neurons,
we encode continuous input variables by a population code
obtained from neurons with graded and overlapping sensi-
tivity profiles. In addition, each input dimension of a high
dimensional dataset is encoded separately, avoiding an ex-
ponential increase in the number of input neurons with
increasing dimensionality of the input data. With such en-
coding, we show that the spiking neural network is able
to correctly cluster a number of datasets at low expense
in terms of neurons while enhancing cluster capacity and
precision. The proposed encoding allows for the reliable
detection of clusters over a considerable and flexible range
of spatial scales, a feature that is especially desirable for
unsupervised classification tasks as scale-information is a-
priori unknown.

By extending the network to multiple layers, we show
how the temporal aspect of spiking neurons can be further
exploited to enable the correct classification of non-globular
or interlocking clusters. In a multi-layer RBF network, it
is demonstrated that the neurons in the first layer center
on components of extended clusters. When all neurons
in the first RBF layer are allowed to fire, the (near) syn-
chrony of neurons coding for nearby components of the
same cluster is then distinguishable by a subsequent RBF
layer, resulting in a form of hierarchical clustering with de-
creasing granularity. Building on this idea, we show how
the addition of lateral excitatory connections with a SOM-
like learning rule enables the network to correctly separate
complex clusters by synchronizing the neurons coding for
parts of the same cluster. Adding lateral connections thus
maintains the low neuron count achieved by coarse coding,
while increasing the complexity of classifiable clusters.

Summarizing, we show that temporal spike-time cod-
ing is a viable means for unsupervised computation in a
network of spiking neurons, as the network is capable of
clustering realistic and high-dimensional data. Adjustable
precision and cluster capacity is achieved by employing a
1-dimensional array of graded overlapping receptive fields
for the encoding of each input variable. By introducing
a multi-layer extension of the architecture we also show
that a spiking neural network can cluster complex, non-
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Gaussian clusters. Combined with our work on supervised
learning in spiking neural networks [11], these results show
that single spike-time coding is a viable means for neural
information processing on real-world data within the novel
paradigm of artificial spiking neural networks.

The paper is organized as follows: we describe the spik-
ing neural network and limitations in section II. In section
III we introduce a means of encoding input-data such to
overcome these limitations, and clustering examples using
this encoding are given in section IV. In section V we show
how the architecture can be extended to a multi-layer RBF
network capable of hierarchical clustering, and in section
VI we show how the addition of lateral connections enables
the network to classify more complex clusters via synchro-
nization of neurons within an RBF layer. A discussion of
the results and conclusions are given in section VII.

II. Networks of delayed spiking neurons

In this section, we describe the spiking neural network
as introduced for unsupervised clustering in [5], as well as
the results and open questions associated with this type of
network.

The network architecture consists of a fully connected
feedforward network of spiking neurons with connections
implemented as multiple delayed synaptic terminals (fig-
ure 1a). A neuron j in the network generates a spike when
the internal neuron state variable xj , the “membrane po-
tential”, crosses a threshold ϑ. This neuron j, connected to
a set of immediate predecessors (“pre-synaptic neurons”)
Γj , receives a set of spikes with firing times ti, i ∈ Γj .
The internal state variable xj(t) is determined by the time-
dynamics of the impact of impinging spikes on neuron j.
As a practical model, we use the Spike Response Model
(SRM) introduced by Gerstner [12], where the time-varying
impact of a spike on a post-synaptic neuron is described by
a spike-response function, also referred to as Post-Synaptic
Potential (PSP). Depending on the choice of suitable spike-
response functions one can adapt the SRM to reflect the
dynamics of a large variety of different spiking neurons.
In the SRM description, the internal state variable xj(t) is
simply the sum of spike-response functions ε(t, ti) weighted
by the synaptic efficacy wij :

xj(t) =
∑

i∈Γj

wijε(t − ti). (1)

In the network as introduced in [5], an individual con-
nection consists of a fixed number of m synaptic terminals,
where each terminal serves as a sub-connection that is as-
sociated with a different delay and weight (figure 1a, inset).
The delay dk of a synaptic terminal k is defined by the dif-
ference between the firing time of the pre-synaptic neuron,
and the time when the post-synaptic potential resulting
from terminal k starts rising. This PSP is then weighted
by the synaptic efficacy wk

ij . The input to a neuron j be-
comes:

xj(t) =
∑

i∈Γj

m∑

k=1

wk
ijε(t − ti − dk). (2)

Input patterns can be encoded in the synaptic weights
by local Hebbian delay-learning where, after learning, the
firing time of an output neuron reflects the distance of the
evaluated pattern to its learned input pattern thus realiz-
ing a kind of RBF neuron [5]. For unsupervised learning,
a Winner-Take-All learning rule modifies the weights be-
tween the input neurons and the neuron first to fire in the
output layer using a time-variant of Hebbian learning: if
the start of a PSP at a synapse slightly precedes a spike in
the output neuron, the weight of this synapse is increased,
as it had significant influence on the spike-time via a rela-
tively large contribution to the membrane potential. Ear-
lier and later synapses are decreased in weight, reflecting
their lesser impact on the ouput neuron’s spike time. For
a weight with delay dk from neuron i to neuron j we use

∆wk
ij = ηL(∆t) = η(1 − b)e−

(∆t−c)2

β2 + b, (3)

after [5] (depicted in figure 1b), where the parameter b de-
termines the effective size of the integral over the entire
learning window (usually negative), β sets the width of the
positive part of the learning window, and c determines the
position of this peak. The value of ∆t denotes the time dif-
ference between the onset of a PSP at a synaptic terminal
and the time of the spike generated in the winning output
neuron. The weight of a single terminal is limited by a min-
imum and maximum value, respectively 0 and wmax, where
learning drives the individual weights of the synaptic ter-
minals to one of the extremes. For a single connection, the
minimal number of consecutive delayed synaptic weights
driven to wmax is determined by the width parameter β: if
an input neuron were to precede the firing of the output-
neuron by a fixed amount ∆tij , the set of connecting de-
layed terminals that is positively reinforced is determined
by the width of the positive part of the learning window.
This thus results in a minimal value for the efficacy be-
tween an input neuron that codes for part of a cluster, and
the corresponding output neuron, both in length of time,
as well as in size. Larger efficacies can be learned when the
size of a cluster extends over a larger temporal width (i.e.,
∆tij varies), and more weights are thus driven to the max-
imal value. If the temporal variation becomes too large,
the average delayed weight adjustment due to (3) becomes
negative, as the integral over the learning-window is then
negative, and all weights converge to zero, thus ignoring
input neurons that only contribute “noise” (see also [5]).
This dynamic recruitment of delayed terminals negates the
need for overall weight normalization (see also the delay
selection in [13]).

An input (data-point) to the network is coded by a pat-
tern of firing times within a coding interval T∆ and each
input neuron is allowed to fire at most once during this
interval. In our experiments, we set T∆ to [0 – 9] ms and
delays dk to {1, . . . , 15} [ms] in 1 ms intervals (m = 16),
after [5]. For the experiments, the parameter values for the
learning function L(∆t) are set to: b = −0.2, c = −2.85,
β = 1.67, and η = 0.0025. To model the (strictly excita-
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tory) post-synaptic potentials, we used an α-function:

ε(t) =
t

τ
e(1− t

τ ), (4)

with τ = 3.0 ms, implementing leaky-integrate-and-fire
spiking neurons. The parameter values are taken from [5];
deviations from these defaults in experiments are noted.

To clarify the rationale behind the selection of the respec-
tive parameters, we briefly discuss their effects. Contrary
to the experiments in [5], the majority of the input-neurons
in our network does not fire: we found that a larger value
of c was required to select a stable subset of synaptic ter-
minals. Values between approximately 2 and 3(ms) yielded
stable results. For smaller and in particular larger values,
the selected delayed terminals tended to drift either to zero
or out of range, effectively negating the connection. In the
experiments, any value of β that selected a minimum of
three consecutive delayed terminals typically yielded bet-
ter results than other settings. Provided that the value c
results in stable weight selection, the values of b and β de-
termine the minimal extent of the clusters learned. Despite
this minimal extend, we do not lose generality with these
fixed parameters, provided that we use the input-encoding
as outlined in Section III.

Previous Results and Open Questions. In [5]
Natschläger & Ruf showed that artificially constructed
clusters of inputs firing within the encoding interval are cor-
rectly clustered in an unsupervised manner, but the type of
clusters they consider limits applicability. For N input neu-
rons, a cluster C in [5] is of dimensionality M ≤ N , with
M -dimensional location {s1, . . . sM}, si being the spike-
time of input neuron i. For such a setup it was found that
the RBF neurons converged reliably to the centers of the
clusters, also in the presence of noise and randomly spiking
neurons.

In practice, problems arise when applying this scheme
to more realistic data. A first issue concerns the coding
of input: following the aforementioned method, we were
not able to successfully cluster data containing significantly
more clusters than input-dimensions, especially in the case
of low dimensionality. This problem is associated with the
minimum width β of the learning function L(∆t), leading
to a fixed minimal spatial extent of a learned cluster, po-
tentially (much) larger than the actual cluster size. In fact,
for 2-dimensional input containing more than two clusters,
the above algorithm failed in our experiments for a wide
range of parameters. Furthermore, the finite width of the
learning rule effectively inhibits the detection of multiple
nearby clusters of smaller size relative to the width of the
learning function, requiring advance knowledge of the effec-
tive cluster-scale. Hence, to achieve practical applicability,
it is necessary to develop an encoding that is scalable in
terms of cluster capacity and precision and that is also ef-
ficient in terms of the number of input-neurons required.
In the following section, we present improvements to the
architecture that address these issues.

III. Encoding continuous input variables in
spike-times

To improve the encoding precision and clustering capac-
ity, we introduce a method for encoding input-data by pop-
ulation coding. The aim of this encoding is to increase the
temporal distance between the temporal input-patterns as-
sociated with respective (input) data-points. Since we use
delayed terminals with a resolution of 1 ms, the discrimi-
natory power of the unsupervised learning rule is naturally
limited to approximately this resolution. The encoding in-
creases the temporal distance between points, and thus the
separability of clusters. Although our encoding is simple
and elegant, we are not aware of any previous encoding
methods for transforming continuous data into spike-time
patterns and therefore, we describe the method in detail.

As a means of population coding, we use multiple local
receptive fields to distribute an input variable over multiple
input neurons. Such a population code where input vari-
ables are encoded with graded and overlapping activation
functions is a well-studied method for representing real-
valued parameters (e.g.: [14], [15], [16], [17], [18], [19]). In
these studies, the activation function of an input-neuron is
modeled as a local receptive field that determines the firing
rate. A translation of this paradigm into relative firing-
times is straightforward: an optimally stimulated neuron
fires at t = 0, whereas a value up to say t = 9 is assigned
to less optimally stimulated neurons (depicted in figure 2).

For actually encoding high-dimensional data in the man-
ner described above, a choice has to be made with respect
to the dimensionality of the receptive-fields of the neurons.
We observe that the least expensive encoding in terms of
neurons is to independently encode the respective input
variables: each input-dimension is encoded by an array of
1-dimensional receptive fields. Improved representation ac-
curacy for a particular variable can then be obtained by
sharpening the receptive fields and increasing the number
of neurons [18]. Such coarse coding has been shown to be
statistically bias-free [15] and in the context of spike-time
patterns we have applied it successfully to supervised pat-
tern classification in spiking neural networks [11].

In our experiments, we determined the input ranges of
the data, and encoded each input variable with neurons
covering the whole data-range. For a range [In

min . . . In
max]

of a variable n, m neurons were used with Gaussian recep-
tive fields. For the ith neuron coding for variable n, the cen-
ter of the Gaussian was set to In

min+ 2i−3
2 · {In

max−In
min}

m−2 (m >
2), positioning one input neuron outside the data-range at
both ends. The width was set to σ = 1

γ
{In

max−In
min}

m−2 (with
m > 2). For γ, a range of values was tried, and, unless
stated otherwise, for the experiments a value of 1.5 was
used, as it produced the best results. For each input pat-
tern, the response values of the neurons encoding the re-
spective variables were calculated, yielding N × m(n) val-
ues between 0 and 1 (N : dimension of data, m(n): num-
ber of neurons used to encode dimension n). These val-
ues were then converted to delay times, associating t = 0
with a 1, and increasingly later times up to t = 10 with
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lower responses. The resulting spike-times were rounded to
the nearest internal time-step, and neurons with responses
larger than t = 9 were coded to not fire, as they were
considered to be insufficiently excited. The encoding of a
single input-value a by receptive field population coding is
depicted in figure 2.

The temporal encoding of input-variables thus obtained
has two important properties: by assigning firing times
to only a small set of significantly activated neurons we
achieve a sparse coding, enabling us to process only a list
of “active” connections, instead of all connections (event-
based network simulation, e.g. [6]). Also, by encoding
each variable independently, we achieve a coarse coding
where each variable can be encoded by an optimal number
of neurons while maintaining an efficient use of neurons.

IV. Clustering with Receptive Fields

We investigate the clustering capabilities of spiking neu-
ral networks where the input is encoded with receptive
fields. With such encoding, each data-point is translated
into a multi-dimensional vector of spike-times (spike-time
vector). Clustering relies on a single output neuron firing
earlier then the other output neurons for data-points from
a single cluster. The optimal activation of such an out-
put neuron is achieved when the spikes of input neurons
arrive at the output neuron simultaneously. This is what
the Hebbian learning-rule (3) accomplishes, provided that
the input lies within a particular cluster. If the distance
between clusters is sufficient, the winner-takes-all compe-
tition between output neurons tunes these output neurons
to the spike-time vectors associated with the centers of the
respective clusters. The activation of a neuron for a given
pattern then depends on the distance between the optimal
and actual spike-time vector, resulting in increasingly later
firing times (or none) with increasing distance from the
cluster-center. We will use this diverging temporal firing
pattern later for subsequent multi-layer clustering.

The encoding described in Section III enhances capacity
and precision as compared to the original architecture in
[5]. In this Section, we show this for a number of artificial
and real-world datasets, both for low- as well as for high-
dimensional input. In section IV-A, we show examples of
improved capacity and precision, in section IV-B a method
for enhanced scale-sensitivity is shown, and in section IV-C
a examples of real-world clustering tasks are given.

A. Capacity

In this section, we report on experiments that show how
the outlined encoding allows for increased capacity, e.g.
by encoding variables with more neurons, many different
clusters can be separated.

In experiments, we cluster input consisting of two sepa-
rately encoded variables, and found that a network with 24
input neurons (each variable encoded by 12 neurons) was
easily capable of correctly classifying 17 evenly distributed
clusters, demonstrating a significant increase in the clus-
tering capacity (figure 3a). After presenting 750 randomly
chosen data-points, all 1275 cluster points were correctly

classified. In figure 3b the correct clustering of less regular
input is shown. In general, we found that for such single
layer RBF networks, capacity was only constrained by clus-
ter separability. By decreasing the width of the receptive
fields while increasing the number of neurons, increasingly
narrowly separated clusters could be distinguished (just as
predicted by theoretical work on the properties of receptive
field encodings, e.g. [18]).

B. Scale sensitivity

Encoding input variables with local receptive fields in-
corporates an inherent choice of spatial scale sensitivity by
fixing the width of the Gaussian; using a mix of neurons
with varying receptive field widths proved to significantly
enhance the range of detectable detail. In experiments, we
found that the use of a mixture of receptive field sizes in-
creased the range of spatial scales by more than an order of
magnitude on a number of artificially generated datasets,
and in general the clustering reliability improved.

The multi-scale encoding was implemented by assigning
multiple sets of neurons to encode a single input dimension
n. For different scales, say I and J , each scale was encoded
with increasingly less neurons, scale I encoded with ni neu-
rons and scale J with nj neurons, with ni < nj . As a set
of neurons is evenly spread out over the data range, the
width of the receptive field scales inversely proportional to
the number of neurons, achieving multi-scale sensitivity as
illustrated in the clustering example in figure 4. Data con-
sisted of one large (upper left) and two small (upper right)
Gaussian clusters. The input variables were encoded with
15 neurons for the variable along the x-axis, and 10 in-
put neurons for the y-variable. These neurons were given a
mixture of receptive field widths, 3 broad and 7 tight Gaus-
sians for the y-variable, and 5 broad and 10 tight Gaussians
for the x-variable (depicted in the side panels). The width
σt of the tight Gaussians was set to 1

γ (Imax−Imin)/(m−2),
with γ = 1.5. The width σb of the broad Gaussians was set
to 1

γ (Imax − Imin)/(m + 1), with γ = 0.5. This results in
widths of respectively σb = 4.5 and σt = 1.2 (y-axis), and
σb = 3 and σt = 0.5 (x-axis). The tight Gaussians were
distributed along the respective axes as outlined in Sec-
tion III, the broad Gaussians were all evenly placed with
their centers inside the respective data-ranges, with center
i placed at In

min + i · {In
max−In

min}
m+1 . Note that the width of

the small clusters is still substantially smaller than the re-
ceptive field sizes of the tight Gaussians. As the spike-time
vectors for a particular data-point are derived from the ac-
tivation values of the population of neurons, the spike-time
vectors corresponding to the respective cluster centers are
still sufficiently distant to make discrimination possible.

The learning-rule successfully centered the output-
neurons on the clusters, even though the large cluster is
almost an order of magnitude larger than the two small
clusters combined. When using a uniform receptive field
size, the same size network often failed for this example,
placing two neurons on the large cluster and one in be-
tween the two small clusters. Similar configurations with
other datasets showed the same behavior, demonstrating
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increased spatial scale sensitivity when encoding the input
with multiple sets of receptive field sizes.

In an unsupervised setting, scale is typically not, or not
well, known (e.g. [20]). Encoding the input with a mixture
of receptive widths thus adds multi-scale sensitivity while
maintaining the network architecture and learning rule.

C. Clustering of realistic data

Good results were also obtained when classifying more
realistic and higher dimensional data. As an example of
relatively simple but realistic data, we clustered Fisher’s 4-
dimensional Iris data-set. The input was encoded in 4 × 8
input neurons, classification yielded 92.6 ± 0.9 % correct
classification (over 10 runs, with 1 failing clustering re-
moved and with parameter settings as outlined in section
II). Alternative clustering methods, like k-means1 and a
Self-Organizing Map (SOM)2, yielded somewhat worse re-
sults, see table ??. Since our SOM and k-Means methods
can probably be improved upon, this result indicates that
the clustering capability of the RBF network is at least
competitive with similar methods.

To assess the feasibility of using the RBF network for
clustering in high-dimensional data, a number of artifi-
cial data-sets (10-D+) were generated (not shown). In all
experiments, the spiking RBF network correctly classified
these datasets.

To show the viability of clustering with spiking neural
networks on a more “real-life” unsupervised clustering task,
we trained the network to classify a set of remote sens-
ing data. This task is a more realistic example of unsu-
pervised clustering in the sense that the data consists of
a large number of data-points, has non-Gaussian classes,
and probably contains considerable noise. The distribu-
tion of the data-points over the classes is also ill-balanced:
some classes have many data-points and others only a few
(e.g. grasslands vs. houses). As an example, we took
a 103 × 99 = 10197 data-points of the full 3-band RGB
image shown in figure 5a, and compared the classification
obtained by the RBF network of spiking neurons to that
of a SOM-network, both for the detection of 17 classes. As
a benchmark, we use the results obtained by the UNSUP
clustering algorithm for remote sensing [21] on the entire
image (figure 5b). Figure 5c shown the classification of the
area with a SOM-network, and figure 5d shows the clas-
sification by the spiking neural network. Note that both
methods required approximately the same amount of com-
puter runtime. When comparing figures 5c and 5d to the
UNSUP classification, visual inspection shows that the re-
spective classifications do not differ much, although some
clusters detected by the RBF network are due to multiple
neurons centered on the same class: both RBF and SOM
classifications seem reasonable. Although the correctness
of remote sensing classifications is notoriously difficult to
determine due to lack of ground evidence (labeled data),
the results show that our RBF network is robust with re-

1from SOMToolbox at www.cis.hut.fi/projects/somtoolbox/.
2from Matlab R12.

spect to ill-balanced, non-Gaussian and noisy real-world
data.

Summary. The experiments show that capacity and
precision in spiking RBF networks can be enhanced such
that they can be used in practice. The simulation of spik-
ing neurons in our implementation is quite computation-
ally intensive as compared to the optimized clustering by
UNSUP (minutes vs. seconds), but takes approximately
the same amount of time as SOM methods, and is only
somewhat slower than k-Means (though run in Matlab).
Possible speedups could be accomplished by using more
computationally efficient spiking neural network models,
for instance by taking a spike as an “event” and interpo-
lating all deterministic effects between these events, e.g.
the time-evolution of the membrane-potential under a set
of preceding PSP’s [22].

V. Hierarchical clustering in a multi-layer
network

With a few modifications to the original network, we can
create a multi-layer network of spiking neurons that is ca-
pable of hierarchical clustering based on temporal cluster
distance. Cluster boundaries in real data are often subjec-
tive, and hierarchical classification is a natural approach to
this ambiguity, e.g. [23]. By classifying data with increas-
ing or decreasing granularity based on a cluster-distance
measure, multiple “views” of a dataset can be obtained.
To enable hierarchical clustering in spiking RBF neurons,
we observe that the differential firing times of output neu-
rons are a monotonic decreasing function of spatial sepa-
ration, e.g. the further a data-point lies from the center of
a neuron, the later the neuron fires. This could serve as a
cluster-distance measure.

To achieve such hierarchical clustering, we created a
multi-layer network of spiking neurons. Given a suitable
choice of neurons within the layers, respective layers yield
the classification of a data-point at a decreasing level of
granularity as compared to the classification in a previ-
ous layer. The combined classification of all layers then
effectively achieves hierarchical classification. To enable
hierarchical classification with decreasing granularity, the
neural population decreases for subsequent layers, and all
n neurons within a layer are allowed to fire such that the
next layer with m neurons cay extract up to m clusters
from “input” n neurons firing, with m < n. The clustering
mechanism is maintained by only modifying the weights for
the winning neuron within a layer.

To implement hierarchical clustering in such a fashion,
we added a second RBF layer to the network as described
above, and successfully trained this network on a multi-
tude of hierarchically structured datasets. An example is
shown in figure 6: the data contained two clusters each
consisting of two components. The winner-take-all classi-
fication found in the first RBF layer is shown in figure 6a,
and correctly identifies the components of the two clusters.
For a configuration as in figure 6a, the receptive field of
any RBF neuron extends over the accompanying compo-
nent. In this case, the evaluation of a single data point
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elicits a response from both neurons in the cluster, albeit
one somewhat later than the other. The neurons centered
on the other cluster are insufficiently stimulated to elicit a
response. This disparate response is sufficient for the sec-
ond layer to concatenate the neurons in the first layer into
two clusters (figure 6b). Thus, as we extend the network
with subsequent RBF layers comprising of fewer neurons,
in effect we achieve hierarchical clustering with decreasing
granularity: nearby components are compounded in the
next layer based on relative spatial proximity as expressed
in their temporal distance.

In unsupervised learning, the determination of the num-
ber of classes present in the dataset is a well-known prob-
lem in competitive winner-take-all networks, as it effec-
tively is determined a-priori by the number of output neu-
rons, e.g. [24]. In the hierarchical clustering example, we
tuned the number of neurons to the number of compo-
nents and clusters. In an RBF layer with more units than
clusters or components, typically multiple output-neurons
will become centered on the same cluster, especially when
clusters consisted of multiple components. Correct classi-
fication is only reliably achieved when the number of RBF
neurons matches the number of clusters, see also [5]. How-
ever, in the case of more neurons than components/clusters
the same hierarchical clustering principle holds, as multi-
ple neurons centered on the same component are identi-
fiable by their strong synchrony. Hence the relative syn-
chronization of nearby neurons is an important clue when
reading the classification from a layer, as well as an ef-
fective means of coding for further (hierarchical) neuronal
processing. Note that the problem is rather one of extrac-
tion than of neuronal information processing, as multiple
synchronized neurons are effectively indiscriminable down-
stream and can hence be considered to be one neuron.

VI. Complex clusters.

In this section, we show how temporal synchrony can
be further exploited for separating interlocking clusters
by binding multiple correlated RBF neurons via the ad-
dition of reciprocal excitatory lateral connections to the
first RBF-layer, thus enhancing the network clustering ca-
pabilities.

Cluster boundaries in real data are often subjective. Hi-
erarchical clustering is only part of the solution, as some
measure for grouping components into subsequent clusters
has to be implemented. For complex clusters, separate
parts of the same cluster can easily be spatially separated
to the point where the neuronal receptive fields no longer
overlap: a neuron coding for one part will no longer re-
spond when a data-point belonging to another part of the
same cluster is presented. Another issue relates to the mea-
sure for concatenating components into clusters: only those
components that have a certain density of data points “in
between” should be concatenated, as implemented for in-
stance in the UNSUP clustering algorithm [21]. The situ-
ation is depicted in figure 7. The analogous problem ex-
ists when discriminating different clusters that are nearby.
In both cases, when such clusters are covered by multiple

neurons that are concatenated in a next layer, they might
suffer from the fact that some of these neurons belonging
to different clusters are in fact closer together than to other
neurons in the same cluster (and thus fire closer together).

We present a SOM-like addition to the network to over-
come this problem: by adding excitatory lateral connec-
tions to an RBF-layer and using a competitive SOM-like
rule for modifying connections, nearby neurons become
tightly coupled and are in effect bound together as they
synchronize their firing times. As only the weights between
temporally proximate neurons are augmented, ultimately
neurons centered on the same cluster are synchronized due
to the data points that lie “in between” neighboring neu-
rons. These points elicit approximately the same time-
response from the nearest neurons, strengthening their mu-
tual connections. This process does not take place for neu-
rons coding for different clusters, due to the relative lack
of “in between” points (figure 7). As a set of neurons syn-
chronize their respective firing-times when a data-point ly-
ing within a cluster-structure is presented to the network,
the temporal response from the first RBF layer enables a
correct classification in the second layer.

We implemented such lateral connections in a multi-layer
network and successfully classified a number of artificial
datasets consisting of interlocking clusters. The lateral con-
nections were modeled as the feedforward connections, al-
beit with only one delay d1 = 1 ms. The lateral connections
from the winning neuron are adapted using a “difference of
Gaussians (DOG)” or “Mexican hat” learning function:

L(∆t) = e−∆t2/b2{(1 − c)e−∆t2/β2
+ c}, (5)

with b = 4.5, c = −0.2, β = 0.8. The “Mexican hat”
learning functions defines the temporal difference for which
connections are strengthened or weakened, where β de-
termines the temporal width of the positive part of the
learning function, and b determines the width of the weight
depressing trough. During learning, the maximal allowed
strength of the lateral connections is slowly increased from
0 to a value sufficiently strong to force connected neurons
to fire. Experiments with these connections incorporated
in the multi-layer network yielded the correct classification
of complex, interlocking clusters. An example is shown in
figure 8.

Summarizing, the addition of lateral excitatory con-
nections with competitive SOM-learning synchronizes spa-
tially correlated neurons within an RBF layer. This tem-
poral property then enables the correct clustering of com-
plex non-linear clusters in a multi-layer network, without
requiring additional neurons.

VII. Discussion and Conclusions

We have shown that temporal spike-time coding in a
network of spiking neurons is a viable paradigm for unsu-
pervised neural computation, as the network is capable of
clustering realistic and high-dimensional data. We inves-
tigated clustering for continuously valued input and found
that our coarse coding scheme of the input data was effec-
tive and efficient in terms of required neurons. In a test on
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“real-life” data, our coarse coding approach proved to be
effective on the unsupervised remote-sensing classification
problem.

To detect non-globular or complex interlocking clusters
we introduced an extension of the network to allow for mul-
tiple RBF-layers, enabling hierarchical clustering. When
we added excitatory lateral connections we showed that
a competitive SOM-like lateral learning rule enhances the
weights between neurons that code for nearby, uninter-
rupted cluster-parts. This learning leads to synchroniza-
tion of neurons coding for the same cluster and was shown
to enable the correct classification of larger cluster-like
structures in a subsequent layer. Hence the combination of
multi-layer RBF and competitive SOM-like lateral learn-
ing adds considerably to the clustering capabilities, while
the number of neurons required remains relatively small.
Also, we demonstrated how a local Hebbian learning-rule
can both induce and exploit synchronous neurons resulting
in enhanced unsupervised clustering capabilities, much as
theorized in neurobiology.

The intuitive approach to within-layer synchronization
as an aide for clustering is inspired by efforts to implement
image-segmentation in neural networks via dynamic syn-
chronization of spiking neurons that code for those parts
of an image that are part of the same object, e.g. [7],
[8], [9]. Clustering entails the classification of a data-point
in terms of other data-points with “similar” properties in
some, potentially high-dimensional, input-space, and is not
necessarily concerned with the spatial organization of the
data (e.g. the UNSUP remote sensing method used for fig-
ure 5). As such, clustering is essentially a different problem.
For clustering, it is important that the number of neurons
involved scales moderately with increasing dimensionality
of the data, whereas image-segmentation is inherently two
or three dimensional and is not, or less, subject to this re-
striction. However, our results lend further support for the
use of precise spike timing as a means of neural computa-
tion and provide common ground in terms of the coding
paradigm for these different problems.

We want to emphasize that the main contribution of this
paper lies in the demonstration that neural networks based
on the alternative and possibly biologically more plausible
coding paradigm are effective and efficient for unsupervised
clustering tasks when using the encoding and architectural
strategies we described. Our results with supervised learn-
ing in spike-time based neural networks [11] strengthen this
case and contribute to establishing that spike-time coding
is a viable neural information processing strategy.
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Iris clustering
method error training-set

Spiking RBF 92.6% ± 0.9%
k-Means 88.6% ± 0.1%

SOM 85.33% ± 0.1%

TABLE I

Unsupervised clustering of Fisher’s Iris-dataset. The k-Means method was set to k = 3, SOM was run with 3 output neurons.

Fig. 1. (a) Network connectivity and a single connection composed of multiple delayed synapses. Neurons in layer J receive connections from
neurons Γj in layer I. Inset: a single connection between two neurons consists of m delayed synaptic terminals. A synaptic terminal k

is associated with a weight wk
ij , and delay dk. A spike from neuron i thus generates m delayed spike-response functions (ε(t− (ti + dk)),

the sum of which generates the membrane-potential in neuron j. (b) Graph of the learning function L(∆t). The parameter ∆t denotes
the time-difference between the onset of a PSP at a synapse and the time of the spike generated in the target neuron.

Fig. 2. Encoding with overlapping Gaussian receptive fields. An input value a is translated into firing times for the input-neurons encoding
this input-variable. The highest stimulated neuron (5), fires at a time close to 0, whereas less stimulated neurons, as for instance neuron
7, fire at increasingly later times.
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Fig. 3. (a) Some 17 clusters in 2-d space, represented by two one-dimensional input variables, each variable encoded by 12 neurons (5 broadly
tuned, 7 sharply tuned).(b) Classification of 10 irregularly spaced clusters. For reference, the different classes as visually extractable were
all correctly clustered, as indicated by the symbol/graylevel coding.

Fig. 4. (a) Three clusters (upper left and upper right) of different scale with noise (crosses). (b,c) Insets: actual classification. Respective
classes are marked with diamonds, squares, and circles. Noise outside the boxes or points marked by x’s did not elicit a spike and were
thus not attributed to a class. Side panels: graded receptive fields used.
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Fig. 5. (a) The full image. Inset: image cutout actually clustered. (b) Classification of the cutout as obtained by clustering the entire
image with UNSUP. (c) Classification of the cutout as obtained by clustering with SOM algorithm. (d) Spiking neural network RBF
classification of the cutout image after learning from 70,000 randomly drawn data-points from the 103x99 image.

Fig. 6. Hierarchical clustering in a 2 layer RBF network. (a) Clustering in the first layer consisting of 4 RBF neurons. Each data-point is
labeled with a marker designating the winning neuron (squares, circles, crosses, and dots). (b) Clustering in the second layer, consisting
of 2 RBF neurons. Again each data-point is labeled with a marker signifying the winning neuron (crosses and dots).
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Fig. 7. Weights connecting different part of a single cluster. Given two clusters of data-points (solid circles) classified by three RBF neurons
(elliptic receptive fields), data-points between two RBF neurons strengthen the mutual lateral connections (solid arrows), whereas the
connections to the equidistant third RBF neuron are not due to the lack of points “in between”.

Fig. 8. Clustering of two interlocking clusters in a multi-layer RBF network. (a) classification in the first layer: 11 outputs, the two clusters
are spread over respectively 5 (upper cluster) and 6 neurons (lower cluster). The respective classifications are denoted by different markers
and gray levels. (b) Incorrect clustering in the second layer with two RBF neurons and input from (a), without lateral connections. (c)
Incorrect classification as obtained in a single-layer network. (d) Correct classification (100%) in the second layer, with lateral connections.
Each input variable was encoded by 12 input neurons (3 broadly and 9 sharply tuned).


