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Abstract

Natural language understanding involves read-

ing between the lines with implicit background

knowledge. Current systems either rely on pre-

trained language models as the sole implicit

source of world knowledge, or resort to ex-

ternal knowledge bases (KBs) to incorporate

additional relevant knowledge. We propose

an unsupervised framework based on self-talk

as a novel alternative to multiple-choice com-

monsense tasks. Inspired by inquiry-based dis-

covery learning (Bruner, 1961), our approach

inquires language models with a number of

information seeking questions such as “what

is the definition of ...” to discover additional

background knowledge. Empirical results

demonstrate that the self-talk procedure sub-

stantially improves the performance of zero-

shot language model baselines on four out of

six commonsense benchmarks, and competes

with models that obtain knowledge from ex-

ternal KBs. While our approach improves

performance on several benchmarks, the self-

talk induced knowledge even when leading to

correct answers is not always seen as helpful

by human judges, raising interesting questions

about the inner-workings of pre-trained lan-

guage models for commonsense reasoning.

1 Introduction

Human level natural language understanding in-

volves reading between the lines and relying on

implicit background knowledge. Consider the sen-

tence: Alice let Bob stand in front of her at the con-

cert. Using physical and social commonsense – (i)

Bob and Alice want to see the stage, and (ii) If Bob

is taller, they would block Alice’s view – one can

infer that Alice is taller than Bob. Such examples

are ubiquitous across natural language understand-

ing (NLU) tasks such as reading comprehension

(Hirschman et al., 1999) and recognizing textual

entailment (Dagan et al., 2013), and even more

so in tasks dedicated to commonsense reasoning

such as the Winograd schema challenge (Levesque

et al., 2012). Most current NLU models rely on pre-

trained language models (LMs; e.g. Radford et al.,

2019; Devlin et al., 2019; Raffel et al., 2020). The

standard practice is to fine-tune a pre-trained LM in

a supervised manner on task-specific data. Alterna-

tively, LM score is used to rank answer choices in

a zero-shot setup (Wang et al., 2019; Bosselut and

Choi, 2019). In both setups, pre-trained LMs yield

improved performance upon prior methods, greatly

due to the world knowledge that such LMs capture,

having been trained on massive texts (Petroni et al.,

2019; Davison et al., 2019).

Despite the performance boost, LMs as knowl-

edge providers suffer from various shortcomings:

(i) insufficient coverage: due to reporting bias,

many trivial facts might not be captured by LMs

because they are rarely written about (Gordon and

Van Durme, 2013). (ii) insufficient precision: the

distributional training objective increases the prob-

ability of non-facts that are semantically similar

to true facts, as in negation (“birds cannot fly”;

Kassner and Schütze, 2020). LMs excel in predict-

ing the semantic category of a missing word, but

might predict the wrong instance in that category

(e.g., depending on the phrasing, BERT sometimes

predicts red as the color of a dove). Finally, (iii)

limited reasoning capabilities: it is unclear that

LMs are capable of performing multiple reasoning

steps involving implicit knowledge.

To increase the coverage of high-precision world

knowledge and facilitate multi-hop reasoning by

making intermediate reasoning steps explicit, prior

work incorporated KBs (e.g. ConceptNet; Speer

and Havasi, 2012) and knowledge-informed mod-

els into LM-based models (Xia et al., 2019; Bosse-

lut and Choi, 2019; Chen et al., 2019).
In this paper, we study pre-trained LMs as an

alternative to external KBs in providing knowledge
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Because Brett found an internship while in college but Ian was unable to, Brett found a job less quickly after 
graduation. The purpose of the internship is to help people find jobs.  s11

min
i
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Because Brett found an internship while in college but Ian was unable to, Ian found a job less quickly after 
graduation. The purpose of the internship is to help people find jobs.  s12

Because Brett found an internship while in college but Ian was unable to, Brett found a job less quickly after 
graduation. The definition of “job” is to be employed by someone.

s
k1

Because Brett found an internship while in college but Ian was unable to, Ian found a job less quickly after 
graduation. The definition of “job” is to be employed by someone.

s
k2

min
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i1)

Figure 1: Model illustration for WinoGrande. Each answer choice (Brett, Ian) is assigned to the concatenation of

the context and a clarification. The score for each choice is the best LM score across clarifications (2 in this case).

to commonsense question answering tasks. We

propose an unsupervised model that uses an LM as

the answer scorer, and a (possibly different) LM as

a knowledge source. We formulate the process of

obtaining relevant knowledge as a self-talk, inquiry-

based discovery learning (Bruner, 1961), with the

following steps: 1) seeking out knowledge by gen-

erating natural-language “clarification questions”

conditioned on a given context, 2) generating their

corresponding answers (“clarifications”), and 3) in-

corporating the clarifications as additional context.

Our model does not rely on external knowledge

or additional supervision. Yet, we show that on

4 out of 6 tasks it substantially improves upon a

zero-shot baseline that relies on LM score alone

and performs on par, and sometimes better than,

models that use external knowledge sources.

Integrating external knowledge warrants discern-

ing relevant and helpful facts for solving a particu-

lar instance. LMs further require identifying that

a clarification is factually-correct. We show that

even among the clarifications that helped the pre-

diction, humans perceived many as unhelpful or

even incorrect, demonstrating that LM-based mod-

els often solve problems correctly for seemingly

incorrect reasons. Our results call for future re-

search on robust and correct knowledge integration

to LM-based question answering systems.

2 Tasks

We focused on the multiple-choice question answer-

ing tasks detailed below. Each instance consists of

an optional context, an optional question, and sev-

eral answer choices.

COPA: Choice of Plausible Alternatives (Gor-

don et al., 2012): Asking about either a plausible

cause or a plausible result, among two alternatives,

of a certain event expressed in a simple sentence.

CommonSenseQA: commonsense Question

Answering (Talmor et al., 2019): General ques-

tions about concepts from ConceptNet. To increase

the challenge, the distractors are related to the tar-

get concept either by a relationship in ConceptNet

or as suggested by crowdsourcing workers.

MC-TACO: Multiple Choice Temporal com-

monsense (Zhou et al., 2019): Questions about

temporal aspects of events such as ordering, dura-

tion, frequency, and typical time. The distractors

were selected in an adversarial way using BERT.1

Social IQa: Social Interaction Question An-

swering (Sap et al., 2019b): Questions regarding

social interactions, based on the ATOMIC dataset

(Sap et al., 2019a). Contexts describe social inter-

actions and questions refer to one of a few aspects

(e.g. the subject’s motivation, following actions,

etc.). The answers were crowdsourced.

PIQA: Physical Interaction Question Answer-

ing (Bisk et al., 2020): Questions regarding phys-

ical commonsense knowledge. Contexts are goals

derived from an instruction website, typically in-

volving less prototypical uses of everyday objects

(e.g., using a bottle to separate eggs). The answers

were crowdsourced, and an adversarial filtering al-

gorithm was used to remove annotation artifacts.2

WinoGrande (Sakaguchi et al., 2020): A large-

scale version of WSC that exhibits less bias thanks

to adversarial filtering and use of placeholders in-

stead of pronouns. As opposed to WSC that was cu-

rated by experts, WinoGrande was crowdsourced

with a carefully designed approach that produces

diverse examples which are trivial for humans.

3 Models

A given instance consists of an optional context c,

an optional question q, and answer choices: aki=1
.

We first describe the baseline model, which makes

1To make this task compatible with the other tasks, we
only kept a single correct answer per instance, making our
results not comparable to previously reported results.

2Word associations and dataset-specific features that are
not informative for the task are identified by a strong baseline
and removed (Gururangan et al., 2018; Zellers et al., 2018).
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Taylor was doing her job so she put the money in the drawer. 

job, money 

job 

money

work
type of 

motivated by goal 

Job is a type of work. You would work because you want money. Job to earn money.

What will Taylor do next?

xWant 

As a result, Taylor wants to keep the money in the drawer.

Job to earn money to keep the money in the drawer   

Figure 2: Generating a single clarification using ConceptNet, Google Ngrams, and COMeT (Social IQa instance).

the prediction based on the instance alone (§3.1).

We then describe a knowledge-informed model that

relies on external resources (§3.2). Finally, we dis-

cuss our self-talk model, which uses a pre-trained

LMs to produce clarifications (§3.3).

3.1 LM-only Baseline

We use a pre-trained language model LMs to score

the plausibility of different text fragments. We ex-

periment with the various LMs provided by the

transformers package (Wolf et al., 2019): GPT

(Radford et al., 2018), GPT2 (Radford et al., 2019,

all sizes), a distilled GPT2 (Sanh et al., 2019), and

XLNet (Yang et al., 2019, both sizes).

We assign each of the answer choices ai into the

combination of the context and the question, and

obtain opti = combine(c, q, ai). The combine
function is computed differently for each task. For

example, in COPA, where the question might be

either about the cause or the effect of the context,

we create the following texts for cause: “[context].

As a result, [choice]” and for effect: “[context].

The cause for it was that [choice]”.

We denote the score of each answer choice as

score(ai) = CE(opti), where CE is cross-entropy

loss defined as:

CE(t1...tn) = − 1

n

∑n
i=1

log2 pLMs
(ti | t1...ti−1).

We predict the ai with the lowest score as the cor-

rect answer, which is the most likely option accord-

ing to LMs: y = argmini score(ai).

3.2 Baseline Model with External Knowledge

In the setup illustrated in Figure 1, each instance

consists of an additional clarification list: CL =
{cl1, ..., clm}. Those are text fragments contain-

ing potentially relevant knowledge for solving the

instance. For example, the clarification “The pur-

pose of the internship is to help people find jobs”

might help answering the question “which of Brett

and Ian found a job less quickly after gradua-

tion?”. We don’t expect all the clarifications to

be relevant and helpful for answering the main

question. Instead, the model relies on the single

clarification that increases its belief of a certain

answer choice. Thus, the score of each answer

choice is selected as the score of the text con-

taining the clarification that most supports it, i.e.,

whose combination with it yields the minimal loss:

score(ai) = mincl∈CLCE(opti + cl).
Again we predict y = argmini score(ai).

We extract clarifications from the following

sources, exemplified in Figure 2.

ConceptNet. Similarly to previous work, we ex-

tract relation paths between words from the con-

text and the question, and words from the answer

choices. Since we incorporate the knowledge into

the model as text, we convert each ConceptNet re-

lation to a natural language template as in Davison

et al. (2019). We limit the path length to 2 edges in

order to maintain high precision.

Corpus. For pairs of words from the context and

question and from the answer choices, we extract

their joint occurrences (with minimum frequency

of 100) in Google N-grams (Brants and Franz,

2006). This yields text fragments of up to 5 words

rather than well-formed sentences, with the poten-

tial of describing the relationship between the two

words (Shwartz and Dagan, 2018).

COMeT. COMeT (Bosselut et al., 2019) is a

knowledge base construction model trained on the

ATOMIC resource (Sap et al., 2019a) which con-

sists of everyday situations along with multiple

commonsense dimensions such as their causes, ef-

fects, pre- and post-conditions, etc. We generate

all the dimensions unless we can generate specific

relations that are more likely to help. Specifically,

in Social IQa, we heuristically try to understand

which type of relation in COMeT the question asks

for. In COPA, we use the pre-condition relations for

cause questions (xIntent, xNeed) and the post-

condition relations for effect questions (xEffect,
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Because Brett found an internship while 
in college but Ian was unable to,         found 
a job less quickly after graduation. 

Question Generation:

Because Brett found an internship while 
in college but Ian was unable to,         found 
a job less quickly after graduation. 

What is the purpose of

Answer Generation:

 the internship? 

LM

The purpose of                                is the internship

The purpose of the internship is to help people find jobs.

What is the purpose of

Question &  

Answer Prefixes

What is the purpose of 
The purpose of           is 

 the internship?

LM
help people find jobs

Figure 3: Generating a clarification with LM: 1) Gen-

erate a question, conditioned on the context (pink) and

question prefix (yellow). 2) Generate an answer, condi-

tioned on the context, generated question and a corre-

sponding answer prefix. The clarification is a concate-

nation of the answer prefix and generated text (green).

xReact, xWant, oEffect, oReact, oWant).

When possible, we replace personX with the syn-

tactic subject of the context or the question.

3.3 Self-talk Model

Our proposed model makes the prediction identi-

cally to Figure 1, but extracts the clarifications from

pre-trained LMs. We treat the knowledge extrac-

tion from LMs as a process of self-asking clarifica-

tion questions about the context and “discovering”

their answers. Figure 3 exemplifies this process

for WinoGrande with a generator language model

LMg. For the sake of simplicity, the illustration

depicts the process of generating a single pair of

clarification question and answer.

We start by generating multiple clarification

questions conditioned on the context, by 1) con-

catenating one of several question prefixes, which

we curated for each task (e.g. “What is the purpose

of”, see Table 6 in the appendix); and 2) gener-

ating 5 questions for each prefix using Nucleus

sampling with p = 0.2, i.e., sampling from the top

20% tokens (Holtzman et al., 2019).3 We limit the

question length to up to 6 additional tokens.

For each well-formed question that we obtained

at the previous step, e.g. “What is the purpose of the

internship?”, we generate multiple answers using a

3
p = 0.2 is significantly lower than the standard value of

p = 0.9 in the literature. We optimized for factual correctness,
and our preliminary experiments have shown that lower p

values produce texts that are more faithful to the LM training
corpus, at the price of being more bland.

similar method. Each question prefix corresponds

to an answer prefix. We use the concatenation of

the context, generated clarification question, and

answer prefix as the prompt for generating an an-

swer (clarification). We limit the answer length

to 10 generated tokens, and use Nucleus sampling

with p = 0.5. We generate 10 answers for each

clarification question and keep all the well-formed

clarifications. Note that the clarification questions

themselves are only means to generate the clarifi-

cations, and they are not used by our model.4

Since we did not train the clarification genera-

tor to ask sensical, relevant, and helpful questions,

nor did we train the answer generator to generate

coherent and factually correct answers, we can as-

sume that some of the generated clarifications do

not provide useful information to the model.

4 Results

Table 2 displays the performance of the best model

in each category according to the development

accuracy. We report the performance of the fol-

lowing models: majority baseline, LM baseline

(Baseline), LM-based model with external knowl-

edge (Ext. Knowledge), Self-talk, supervised mod-

els from prior work when applicable (Pre. Sup),

and human performance. Our zero-shot models

are highlighted in purple. As expected, the over-

all performance is worse for the zero-shot models

compared to the state-of-the-art supervised models,

but they perform substantially better than the ma-

jority baselines on most tasks, with the exception

of WinoGrande where they only slightly outper-

form it. Among the LM-based models, self-talk

performs on par or within a few points from the

external knowledge model.

Best Knowledge Source. Among the knowledge

informed models, COMeT achieves the best perfor-

mance across tasks. This likely happens because

COMeT can dynamically generate predictions for

any context, while the other two knowledge sources

are static and lack coverage.

Table 1 shows the relative improvement in ac-

curacy points compared to the zero-shot baseline,

4In some datasets, an instance consists of a question. In
this case, we can use the instance question as a “clarification”
question and generate additional clarification questions similar
to it. For example, the Social IQa context “Austin fought
for Quinn’s life, but they eventually died on the operating
table.”, the LM answers the question “Why did Austin do this?”
directly with: “Austin did this because they wanted to keep
him alive” (the correct answer is “Because Austin wanted to
save Quinn”).
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COMeT ConceptNet Google Ngrams GPT Distil-GPT2 GPT2 GPT2-M GPT2-L GPT2-XL XLNet XLNet-L

COPA 10.25 6.87 7.50 7.25 5.37 7.12 7.37 4.37 7.75 6.87 7.37

CSQA 0.39 -3.23 -0.30 -4.04 -3.79 -3.58 -3.09 -3.26 -3.65 -3.91 -3.55

MC-TACO 1.90 3.35 3.53 2.36 2.59 3.15 2.56 3.06 2.92 1.84 1.75

Social IQa 2.74 1.21 1.49 1.71 1.87 1.66 1.75 1.95 2.24 1.74 1.79

PIQA 3.77 4.07 4.36 4.01 3.61 3.80 3.89 3.88 3.96 3.82 4.10

WinoGrande 0.01 -0.01 -0.11 0.13 -0.17 -0.03 -0.04 0.04 0.08 -0.10 -0.25

Table 1: Relative improvement upon the zero-shot baseline in terms of development accuracy, for each knowledge

source averaged across LMs for each dataset.

Dataset Model LM Knowledge Dev Test

Source Acc. Acc.

COPA

Majority 55.0

Baseline Distil-GPT2 53.0

Ext. Knowledge GPT2-L COMeT 69.0

Self-talk Distil-GPT2 Distil-GPT2 66.0

Pre. Sup T5 94.8

Human 100.0

Majority 20.9

Baseline GPT-L 37.2 34.0

Common Ext. Knowledge GPT-XL COMeT 39.7 36.2

SenseQA Self-talk GPT-L GPT-M 32.4 26.9

Pre. Sup Albert ensemble 83.7 76.5

Human 88.9 88.9

Majority 40.3 43.0

MC Baseline GPT2-M 53.1 50.6

TACO External Knowledge GPT2-XL COMeT 58.8 55.6

Self-talk GPT2-XL GPT2-XL 59.9 58.0

Majority 33.6 33.7

Baseline GPT2-L 41.1 41.1

COMeT-CGA∗ COMeT 49.6 51.9

Social Ext. Knowledge GPT2-XL COMeT 47.5 45.3

IQa Self-talk GPT2-XL GPT2-L 46.2 43.9

Pre. Sup RoBERTa-large 76.6 77.1

Human 86.9 84.4

PIQA

Majority 50.5 50.4

Baseline GPT2-XL 62.6 63.4

Ext. Knowledge GPT2-XL COMeT 69.6 68.4

Self-talk GPT2-XL GPT2-M 70.2 69.5

Pre. Sup RoBERTa-large 79.2 77.1

Human 94.9 94.9

Majority 50.4 50.4

Baseline GPT2-XL 54.8 54.8

Wino Ext. Knowledge GPT2-XL COMeT 55.4 53.7

Grande Self-talk GPT2-XL GPT 54.7 55.1

Pre. Sup∗∗ T5 86.5 84.6

Human 94.1 94.0

Table 2: Best setup for each model type, according to

development accuracy (excluding unpublished leader-

board submissions). Test accuracy is reported when

labels are available or leaderboard submission was

possible. ∗COMeT-CGA (Bosselut and Choi, 2019)

is a zero-shot model performing probabilistic infer-

ence over generated inferences from a COMeT model

trained on GPT2. ∗∗ (Lin et al., 2020).

for each knowledge source averaged across LMs

for each dataset. Interestingly, the relative improve-

ment is fairly uniform across knowledge sources,

but it varies substantially across tasks. While some

tasks benefit from any added knowledge, others

benefit from none.

We also experimented with combining the

clarifications from all the knowledge sources,

which didn’t prove beneficial except for MC-

TACO (where it added +7.9 points to the dev ac-

curacy, bringing it to 66.7). We assume that some

resources added noise, making the whole smaller

than the sum of its parts.

5 Analysis

While the performance on the end task serves as an

extrinsic evaluation for the quality of the generated

clarifications, we are also interested in evaluating

it intrinsically. From preliminary experiments we

know that there is a high ratio of noisy clarifica-

tions. We thus focus on and analyze two types of

clarifications: useful (§5.1) and harmful (§5.2).5

5.1 Useful Clarifications

We define a clarification as useful if (a) it is the

clarification with the best LM score in its instance

(i.e., the clarification used in practice); and (b) the

instance was incorrectly predicted by the zero-shot

baseline but correctly predicted by the self-talk

model. We sampled up to 50 useful clarifications

for each combination of task and knowledge source,

using the best performing LM (See Table 3 in

the appendix for examples). We showed crowd-

sourcing workers an instance along with a clarifi-

cation question and its answer, and asked them: 1)

whether the question is grammatical, not entirely

grammatical but understandable, or completely not

understandable; and if the answer was anything but

“completely not understandable”, 2) whether the

question is relevant, i.e. on topic with the instance.

We asked the same questions about the answer, in

addition to: 3) whether the answer is factually cor-

rect or likely true; and 4) whether the answer adds

helpful information to solve the instance.

The annotation task was carried out in Amazon

Mechanical Turk. To ensure the quality of annota-

tions, we required that the workers be located in the

US, UK, or Canada, and have a 99% approval rate

for at least 5,000 prior tasks. We aggregated annota-

tion from 3 workers using majority vote. The anno-

tations yielded moderate levels of agreement, with

5We omitted COPA from the analysis due to its small size.
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COMET ConceptNet Distil-GPT2 GPT2 GPT2-M GPT2-XL GPT2-L GPT XLNet XLNet-L

WinoGrande 72.00 43.80 36.00 61.20 83.00 68.00 71.10 67.90 72.70 83.30

Social IQa 90.00 56.00 66.00 74.00 72.00 76.00 76.00 80.00 36.00 52.00

MC-TACO 66.00 12.50 26.30 46.80 62.00 56.00 54.00 43.80 50.00 33.30

PIQA 72.00 40.00 38.00 62.00 72.00 60.00 66.00 35.00 75.00 33.30

CSQA 66.00 55.20 44.40 48.70 66.00 72.00 64.00 100.00 - 48.10

WinoGrande 60.00 43.80 40.00 24.50 46.80 46.00 53.30 39.30 45.50 33.30

Social IQa 76.00 42.00 28.00 48.00 36.00 42.00 50.00 50.00 22.00 28.00

MC-TACO 60.00 12.50 42.10 46.80 48.00 60.00 54.00 29.20 40.60 33.30

PIQA 62.00 44.00 24.00 44.00 44.00 42.00 36.00 0.00 50.00 33.30

CSQA 48.00 86.20 50.00 51.30 54.00 62.00 58.00 80.00 - 51.90

WinoGrande 34.00 12.50 20.00 14.30 34.00 24.00 31.10 35.70 27.30 33.30

Social IQa - 20.00 - - - - - - - -

MC-TACO 20.00 0.00 15.80 23.40 30.00 42.00 32.00 31.20 18.80 33.30

PIQA 28.00 6.00 14.00 16.00 30.00 26.00 24.00 5.00 25.00 33.30

CSQA 30.00 34.50 33.30 25.60 46.00 50.00 42.00 80.00 - 37.00

Figure 4: Ratio of clarifications considered as relevant (top), factually correct (middle), and helpful (bottom),

among the useful and grammatical or understandable clarifications for each task and knowledge source. Answers

in Social IQa were evaluated for helpfulness when the clarification question was different from the main question.

Grammatical
Understandable Gibberish

64.94%

60.47%

40.64%

Relevant

Correct

Helpful

0 25 50 75

Figure 5: Human evaluation of the clarifications, ag-

gregated across tasks and knowledge sources. Left: ra-

tio of grammatical, not entirely grammatical but under-

standable, and completely not understandable clarifica-

tions. Right: percent of grammatical/understandable

clarifications considered relevant, correct, and helpful.

Fleiss’ Kappa κ = 0.43 (Landis and Koch, 1977).

Among the different categories of annotations we

measured pairwise accuracy, which ranged from

60.41% (the answer is factually correct) to 92.26%

(the question is completely not understandable).

For the sake of brevity, we focus on the analysis

of the answers to the clarification questions. The

left part of Figure 5 shows that across tasks and

resources, most clarifications are grammatical or at

least understandable. Among the clarifications con-

sidered grammatical or understandable, the right

part of the figure shows the percentage of clarifi-

cations considered relevant, correct, and helpful.

Most clarifications were considered relevant to the

context and factually correct, but only 40% on av-

erage were considered helpful. Considering that

these are all clarifications that indeed helped the

model, this is an interesting though not completely

unexpected finding: the model utilizes knowledge

that humans wouldn’t consider as helpful.6

6Seemingly unhelpful clarifications may yet increase the

Restating
4.1%
Correct
12.4%

Incorrect
16.2%

Relevant
18.5%

Irrelevant
24.7%

Nonsensical
19.9%

Figure 6: Types of errors caused by the harmful clarifi-

cations across all tasks and knowledge sources.

Breaking down by knowledge source, Figure 4

shows the ratio of clarifications considered by hu-

mans as relevant (top), factually correct (middle),

and helpful (bottom), for each task and knowledge

source. XLNet performs worse on all measures.

ConceptNet’s clarifications are often judged as ir-

relevant likely because they are limited to a very

specific type of clarification (the relationship be-

tween a pair of terms). It’s not too surprising that

clarifications generated by LMs were sometimes

judged as factually incorrect. We also note that

COMeT generated factually correct clarifications

for Social IQa (which is based on ATOMIC, on

which COMeT was trained), and ConceptNet gen-

erated factually correct clarifications for Common-

SenseQA (which is based on ConceptNet).

Table 3 demonstrates the types of knowledge

in useful and relevant clarifications, showing that

pre-trained LMs do particularly well in definitions.

LM score by adding relevant lexical cues. A manual examina-
tion of a sample of answers judged as relevant but unhelpful
revealed that 53.33% were answers for unhelpful questions,
20% were correct but unhelpful, 16.67% were factually incor-
rect, 10% were helpful to some extent (containing knowledge
deemed too trivial by the annotators), and 10% had corre-
sponding unanswerable instances.
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Task Source Instance Clarification

Preconditions

CSQA

ConceptNet
Q: Working on the elaborate task was taxing, it require extreme what? Q: What is the relationship between ‘working’ and ‘concentration’?

Choices: holding, concentration, energy, job, energy A: In order for working to happen, concentration needs to happen.

COMeT

Q: When you travel you should what in case of unexpected costs? Q: What do they want as a result?

Choices: go somewhere, energy, spend frivolously, fly in airplane,

have money

A: As a result, they want to make sure they have enough money.

GPT2-XL

C: [...] Mark Bailey didn’t dream of becoming a judge. Q: What happened first?

MC- Q: How many years did it take for Mark to become a judge? A: The first thing that happened was he went to law school

TACO Choices: 63 years, [...], 7 months, 180, 7 weeks, 7 years, [...], 7 hours and became an attorney.

Social

GPT2-M

C: Carson was at a friends house and decided to play video games. Q: What does Carson need to do before this?

IQa Q: What does Carson need to do before this? A: Before doing that, Carson first had to get his mother’s permission

Choices: know about their friends house, of though about playing

video games, of thought about their friend

before playing the game.

Social Commonsense

Wino

COMeT

C: Neil looked all over the neighborhood for their missing dog until Q: What does Neil feel as a result?

Grande Samuel called and got their dog back. A: As a result, Neil feels happy to have the dog back.

Choices: Neil, Samuel

Definitions and Lexical Knowledge

PIQA COMeT

Q: how to sanitize a toothbrush Q: What does you want as a result?

Choices: [...] antibacterial mouthwash into a small toilet bowl [...]

soak your toothbrush [...] [...] antibacterial mouthwash into a small

A: As a result, you wants to get rid of germs.

cup [...] soak your toothbrush [...]

Wino

Grande
GPT2-L

C: During the summer, I like visiting the zoo more than the aquar-

ium because the is inside.

Choices: zoo, aquarium

Q: What is the definition of ’zoo’?

A: The definition of a ’zoo’ is an area where people can see ani-

mals in captivity.

Social

IQa
ConceptNet

C: Jan had been on vacation in Hawaii for a week. Last night, she

finally returned home. Q: What will Jan want to do next? Choices:

return to her family, Return to work, Leave for another vacation.

Q: What is the relationship between ‘vacation’ and ‘work’?

A: Vacation is the opposite of work.

Functions

CSQA DistilGPT2

Q: What do professors primarily do?

Choices: master physics, state facts, wear wrinkled tweed jackets,

school students, teach courses

Q: What is the main function of a professor’s teaching career,?

A: The main function of a professor’s teaching career, is to teach

students how they can improve their knowledge.

Table 3: Example of relevant useful clarifications and the type of knowledge they provide.

5.2 Harmful Clarifications

Symmetrically, we also study the harmful clarifi-

cations. A clarification is harmful if (a) it is the

clarification with the best LM score in its instance;

and (b) the instance was correctly predicted by the

zero-shot baseline but incorrectly predicted by the

self-talk model. We sampled up to 25 harmful clari-

fications from the predictions of the best setup (LM

and knowledge source) for each task, and manually

categorized the errors into the following types.

1. Irrelevant: the clarification was off topic.

2. Nonsensical or ungrammatical: the clarifica-

tion was not a complete sentence, or had other

grammar or meaning issues.

3. Relevant: the clarification contributed relevant

knowledge but it wasn’t enough for predicting

the correct answer.

4. Factually Incorrect: the clarification made a

factually incorrect statement, often in support

of one of the distractors.

5. Correct: the clarification yielded an alternative

correct answer for the main instance.

6. Restating the instance: the clarification re-

peated the context or the main question.

7. Wrong sense: the clarification interpreted a

word from the instance in the wrong sense.

8. Dataset error: the instance is incorrect or lacks

information required for answering it correctly.

Figure 6 shows the percent of each error type

across all the tasks and knowledge sources. The

majority of clarifications are irrelevant, ungram-

matical or nonsensical, or relevant but not helpful

for making the correct prediction. We judged a

non-negligible 12.4% of the clarifications as pro-

viding alternative correct answers, phrased differ-

ently from the gold answer. Table 4 provides an

instance for each error type.7

6 Related Work

6.1 External Knowledge in Neural Models

Approaches for incorporating external knowledge

into a neural model consist of several compo-

nents: (1) the task addressed; (2) neural model; (3)

knowledge sources; and (4) incorporation method.

Most models target tasks that require common-

sense knowledge, such as the story cloze test

(Mostafazadeh et al., 2016) and machine compre-

hension tasks (Kočiskỳ et al., 2018; Ostermann

7See Figures 8 and 9 in the appendix for a breakdown of
error types by task and knowledge source.
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Task Know. Source Instance Clarification

Irrelevant

PIQA GPT2-XL
Q: how do you sit a baby in a restaurant? Q: What is the definition of “a good time”?

Choices: place them in a booster seat., place them on the table. A: The definition of “a good time” is not the same as

what constitutes an acceptable meal.

Nonsensical or ungrammatical

Social IQa XLNet
C: Cameron went out of their way to help a friend who was in need of

help. Q: How would Cameron feel after helping?

Q: How would Cameron feel after helping?

Choices: Cameron then frustrated., Cameron then happy., Cameron

then annoyed.

A: Cameron felt they were doing, but then he realized

that.

Relevant

WinoGrande GPT2-XL
The children were not vaccinated, which was fine with Betty but

annoyed Mary. believed they made kids autistic.

Q: What does it mean to be “autistic”?”

A: Be “autistic” means to have problems in social inter-

action and communication skills.Choices: Betty, Mary

Factually Incorrect

WinoGrande COMeT
Derrick really liked working in Human Resources and William wanted

to work at the same company, and subsequently offered a position.

Q: What will Derrick want as a result?

Choices: Derrick, William A: As a result, Derrick wants to go to work with them

Correct

CSQA
Google

Ngrams

Q: What do people usually feel when falling in love? Q: -

Choices: getting married, pain, happiness, getting married, suffering A: Suffering from unrequited love.

Restating the instance

CSQA COMeT
Q: Billy set aside a block of time for having fun after work. Why

might he do this?

Q: What will Billy want as a result?

Choices: happiness, stress relief, pleasure, ocean, may laugh A: As a result, they want to do something fun.

Wrong Sense

MC-TACO ConceptNet
C: [...] Islam thrived as a strong, male-dominated religion of

individuality [...] preaching brotherhood [...].

Q: What is the relationship between brotherhood and al-

cohol?

A: You are likely to find brotherhood in a fraternity

house. You are likely to find alcohol in a fraternity

house.

Q: What happened after Islam became popular in the region?

Choices: they drank liquor, it died off, it expanded even further,

they drank alcohol, it died out, it died down

Table 4: An example for each of the error types among the harmful clarifications.

et al., 2018; Clark et al., 2018; Talmor et al.,

2019). The neural component has recently shifted

from biLSTM to transformer-based representations,

specifically pre-trained LMs (Devlin et al., 2019;

Liu et al., 2019).

With respect to the knowledge source, the vast

majority of papers rely on ConceptNet to extract

relation paths between concepts and entities iden-

tified in the input (Speer and Havasi, 2012, see

an example in Figure 2). Additional resources in-

clude WordNet (Lin et al., 2017; Wang and Jiang,

2019), retrieval or statistics mind from corpora (Lin

et al., 2017; Mitra et al., 2019; Joshi et al., 2020),

knowledge base embeddings (Chen et al., 2019;

Xiong et al., 2019), hand-crafted rules (Lin et al.,

2017; Tandon et al., 2018), and tools such as senti-

ment analyzers (Chen et al., 2019) and knowledge-

informed LMs (Bosselut and Choi, 2019).

The external knowledge is typically incorporated

into the neural model by learning a vector represen-

tation of the symbolic knowledge (e.g. subgraphs

from ConceptNet), and attending to it via attention

mechanism when representing the inputs (Bauer

et al., 2018; Paul and Frank, 2019; Lin et al., 2019).

Alternative approaches include using the knowl-

edge to score answer candidates and prune implau-

sible ones (Lin et al., 2017; Tandon et al., 2018),

and training in a multi-task setup via auxiliary tasks

pertaining to knowledge (Xia et al., 2019).

To the best of our knowledge, our method is the

first to generate knowledge from pre-trained lan-

guage models and incorporate it as external knowl-

edge into a question answering model. Concur-

rently, Latcinnik and Berant (2020) used one lan-

guage model to generate hypotheses and another

language model as an answer scorer for Common-

SenseQA.

6.2 Extracting Knowledge from LMs

Pre-trained LMs such as GPT2 (Radford et al.,

2019) and BERT (Devlin et al., 2019) capture vari-

ous types of world knowledge. Petroni et al. (2019)

showed that such LMs can be used in a KB comple-

tion task over ConceptNet and Wikidata (Vrandečić

and Krötzsch, 2014) by converting KB relations

into natural language templates and querying the

LM for the missing part in the triplet (concept1,

relation, concept2). For instance, querying BERT

for suitable substitutes to the mask in “Dante was

born in [MASK]” assigns the highest probability to

Rome. Davison et al. (2019) similarly showed that

BERT assigns higher scores to natural language

fragments of true rather than fictitious ConceptNet

triplets, and semi-automated the template creation

by using GPT2 to score hand-crafted templates.

While both works have shown somewhat promis-

ing results, other work showed that knowledge ex-

tracted from LMs is expectantly not always ac-
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curate. Specifically, Kassner and Schütze (2020)

showed that negated facts are also considered likely

by the LM, while Logan et al. (2019) pointed out

that LMs may over-generalize and produce incor-

rect facts such as “Barack Obama’s wife is Hillary”.

6.3 Generating Questions and Explanations

There are numerous research directions investigat-

ing automatic question generation (Vanderwende,

2008). Motivations vary from data augmentation to

QA tasks (Du et al., 2017; Dhingra et al., 2018; Du

and Cardie, 2018; Sachan and Xing, 2018; Fabbri

et al., 2020) through conversational machine read-

ing (Saeidi et al., 2018; Pan et al., 2019), simplify-

ing questions to make them more easily answerable

(Buck et al., 2018; Talmor and Berant, 2018; Perez

et al., 2020), to using questions as means for other

purposes such as sentence representation and sum-

marization (Guo et al., 2018; Potash and Suleman,

2019).

In particular, our work is pertinent to previous

work in producing clarification questions and expla-

nations. Rao and Daumé III (2019) worked on ques-

tions from forums (e.g. Stack Exchange). They

proposed a model that generates clarification ques-

tions and corresponding answers for a given ques-

tion, using the question’s comments (clarification

questions and answers) as supervision. Question-

answer pairs were scored based on how much rele-

vant information they add to the context.

Shen et al. (2019) developed an active learning

framework for image captioning that learns to de-

tect uncertainty about generated words and ask nat-

ural language questions to reduce its uncertainty. A

visual question answering (VQA) model provides

an answer which is then used to change the caption.

The framework is trained with reinforcement learn-

ing, but the gold standard captions are used during

a warmup steps and the VQA model is supervised.

Klein and Nabi (2019) proposed a joint ques-

tion generation and question answering framework.

They fine-tuned GPT2 on a question answering

dataset to generate a question and an answer span

for a given passage, and trained BERT to answer

the generated question given the passage. Finally,

Rajani et al. (2019) proposed a model for Com-

monSenseQA that generates explanations for its

predictions. They collected human explanations

and used them to fine-tune LMs to automatically

generate explanations. These explanations were

then added as additional inputs. The shortcoming

of this approach is that it requires collecting spe-

cific human explanations for each new dataset.

7 Discussion and Conclusion

We presented an unsupervised framework for mul-

tiple choice commonsense tasks that generates and

integrates background knowledge from pre-trained

LMs. On most tasks, it performs substantially bet-

ter than the baseline and similarly to a model that

had access to external knowledge resources.

We have listed several shortcomings of using

pre-trained LMs as knowledge providers: (i) in-

sufficient coverage, (ii) insufficient precision, and

(iii) limited reasoning capabilities. Despite their

insufficient precision compared to a KB like Con-

ceptNet, we showed that clarifications generated

by LMs resulted in similar or superior empirical

gains. Among the clarifications used in practice by

the answer scorer, about 60% of those that yielded

a correct prediction and 12% of those that yielded

an incorrect prediction were judged by humans as

factually correct.

By design, our model makes a single additional

reasoning step explicit, aiming to facilitate reason-

ing about implicit inferences. A preliminary exper-

iment in which we incorporated clarification pairs

to facilitate two hops got mixed results. An interest-

ing future direction is to generate each clarification

in response to the previous ones, in a dialogue setup

(Saeidi et al., 2018). Another challenge is the “nee-

dle in a haystack” problem of the clarifications, and

one way to address it is to develop a model that

is capable of “introspection”, specifically knowing

what it doesn’t know. A more structured knowl-

edge generation might also make the combination

of various knowledge sources more successful.

Filling in knowledge gaps and making implicit

intermediate reasoning steps explicit is impera-

tive going forward. We hope that our frame-

work will facilitate future research in this area.

Our code and data will be made available upon

publication. Our code and data is available at

github.com/vered1986/self talk.
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Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2463–2473, Hong Kong, China. As-
sociation for Computational Linguistics.

Peter Potash and Kaheer Suleman. 2019. Playing log
(n)-questions over sentences. In EmeCom workshop
@ NeurIPS 2019.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. -.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. -.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring
the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Re-
search, 21(140):1–67.

Nazneen Fatema Rajani, Bryan McCann, Caiming
Xiong, and Richard Socher. 2019. Explain Your-
self! Leveraging Language Models for Common-
sense Reasoning. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4932–4942, Florence, Italy. Associa-
tion for Computational Linguistics.
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A Question and Answer Prefixes

We came up with question and answer prefixes

by experimenting with a few generic prefixes and

observing what generally yields accurate answers.

For example, we observed that LMs are not very

good at causal and temporal relationships but are

pretty good at definitions. For the datasets whose

instances include questions (e.g. Social IQa) we

also used the corresponding question prefixes.

Table 6 presents the question and answer prefixes

used for each task. “ ” in the answer prefix is

replaced with the generated question (excluding

the question mark), e.g. “What is the definition of

a cat?” yields the answer prefix: “The definition

of a cat is”. The Social IQa templates correspond

to COMeT dimensions. X is replaced with the

syntactic subject of the sentence.

B Best Language Model

Table 5 shows the average development accuracy

of the LMs across the different knowledge sources.

In general there is a preference to GPT-2, and in

particular to the larger models, except for COPA in

which the distilled version works best. A possible

explanation might be that the language model dis-

tillation reduces the likelihood of rare words (Tang

and Lin, 2018), which works well for the simple

sentences in COPA. The XLNet models perform

poorly, perhaps due to their smaller training corpus

(16GB vs 40GB in GPT-2, both using web text).
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GPT Distil-GPT2 GPT2 GPT2-M GPT2-L GPT2-XL XLNet XLNet-L

COPA 58.64 63.73 59.73 61.82 60.64 57.91 51.91 49.45

CSQA 27.57 25.45 25.64 27.74 31.75 31.22 21.47 20.79

MC-TACO 47.72 48.75 50.06 52.99 56.61 58.05 34.18 37.03

Social IQa 41.62 40.39 41.80 43.39 44.39 45.50 33.12 33.65

PIQA 57.91 59.63 61.95 65.57 67.89 69.59 49.24 48.80

WinoGrande 52.18 50.94 51.16 50.18 52.85 54.04 49.07 48.74

Table 5: Average self-talk accuracy for each LM answer scorer, averaged across knowledge sources.

COMET ConceptNet Distil-GPT2 GPT2 GPT2-M GPT2-XL GPT2-L GPT XLNet XLNet-L

WinoGrande 94.00 93.70 92.00 83.60 93.70 96.00 88.90 85.70 81.80 83.30

Social IQa 96.00 90.00 94.00 92.00 94.00 94.00 94.00 94.00 50.00 62.00

MC-TACO 94.00 62.50 84.30 89.40 94.00 96.00 98.00 87.40 78.20 100.00

PIQA 98.00 78.00 70.00 84.00 88.00 74.00 84.00 55.00 50.00 66.60

CSQA 94.00 96.50 88.90 89.70 90.00 98.00 96.00 100.00 - 81.40

Figure 7: Ratio of clarifications considered by humans as grammatical or understandable among the useful

clarifications for each task and knowledge source.

Dataset Question Prefix Answer Prefix

COPA

&

CSQA

What is the definition of The definition of is

What is the main purpose of The purpose of is to

What is the main function of a The main function of a is

What are the properties of a The properties of a are that

What is a is

What happened as a result of As a result of ,

What might have caused The cause of was

MC

TACO

How long did this take? This lasted for

How often does this happen? Every

How many times did this happen? This happened

What happened first? The first thing that happened was

What happened last? The last thing that happened was

Social

IQa

What will X want to do next? X wanted

What will X want to do after? X wanted

How would X feel afterwards? X felt

How would X feel as a result? X felt

How would X feel after? X felt

How would you describe X? X is a

What kind of person is X? X is a

How would you describe X as a person? X is a

Why did X do that? X did this because they wanted

Why did X do this? X did this because they wanted

Why did X want to do this? X did this because they wanted

What does X need to do beforehand? Before doing that, X first had to

What does X need to do before? Before doing that, X first had to

What does X need to do before this? Before doing that, X first had to

What did X need to do before this? Before doing that, X first had to

What will happen to X? X

What will happen to X next? X

What will X do next? X

What did X do? What X did was

PIQA

How to The way to do is

How do you The way you do is

How can one One can by

What can be used for can be used for

What can one do in order to In order to , one can

What should you use for For , you should you use

What is the definition of The definition of is

What are the properties of a The properties of a are that

What is a is

Wino

Grande

What is the definition of The definition of is

What is the main purpose of The purpose of is to

What is the main function of a The main function of a is

What are the properties of a The properties of a are that

What is is

What does it mean to means

Table 6: Question & answer prefixes used for each task.

C Analysis

C.1 Useful Clarifications

Figure 7 shows, for each task and knowledge

source, the ratio of useful clarifications that were

considered by humans as either grammatical or at

least understandable. The majority of the helpful

clarifications are considered as grammatical. The

XLNet models are slightly worse in terms of gram-

maticality. For example, the clarification question

“What are the properties of a you sharpen a pencil,?”

and the answer “The properties of a you sharpen

a pencil, are that it will not break or be dulled”

generated for the PIQA instance “sharpen a pencil”

by XLNet-base. Despite its grammar errors, the

answer was still useful for a LM to determine the

correct answer.

C.2 Harmful Clarifications

0%

25%

50%

75%

100%

CSQA PIQA Social IQa WinoGrande MCTaco

Other Wrong sense Dataset error
Restating the instance Correct Factually Incorrect
Relevant Nonsensical or ungrammatical Irrelevant

Figure 8: Types of errors caused by the harmful clarifi-

cations, for each task, across all knowledge sources.

Figure 8 breaks down by task the type of errors

found in the harmful clarifications. In Social IQa

and CommonSenseQA, many alternative correct

answers are generated, but this doesn’t happen in

WinoGrande, that by design only allows for one

correct answer. Clarifications in MC-TACO are

more than average irrelevant. In the future, it would

be interesting to investigate whether this is due to

inherent lack of temporal commonsense in LMs or

due to misguided attempts to extract it.

Figure 9 similarly breaks down the errors by
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Figure 9: Types of errors caused by the harmful clarifi-

cations, for each knowledge source, across all tasks.

knowledge source. All knowledge sources ex-

cept for ConceptNet make incorrect statements,

but LMs also tend to make nonsensical statements,

especially XLNet. ConceptNet tends to generate

irrelevant clarifications (about the relationship be-

tween two unimportant terms). Being a static re-

source, is was also insensitive to the word senses.

Google Ngrams, the only other static knowledge

source, didn’t suffer from this issue. This is likely

because a polysemous term x related to y in one of

its senses wouldn’t typically co-occur with y in its

non-related senses (Shwartz and Dagan, 2016).


