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Abstract

Background: Genome editing by CRISPR-Cas9 technology allows large-scale screening of gene essentiality in

cancer. A confounding factor when interpreting CRISPR-Cas9 screens is the high false-positive rate in detecting

essential genes within copy number amplified regions of the genome. We have developed the computational tool

CRISPRcleanR which is capable of identifying and correcting gene-independent responses to CRISPR-Cas9 targeting.

CRISPRcleanR uses an unsupervised approach based on the segmentation of single-guide RNA fold change values

across the genome, without making any assumption about the copy number status of the targeted genes.

Results: Applying our method to existing and newly generated genome-wide essentiality profiles from 15 cancer

cell lines, we demonstrate that CRISPRcleanR reduces false positives when calling essential genes, correcting biases

within and outside of amplified regions, while maintaining true positive rates. Established cancer dependencies and

essentiality signals of amplified cancer driver genes are detectable post-correction. CRISPRcleanR reports sgRNA fold

changes and normalised read counts, is therefore compatible with downstream analysis tools, and works with multiple

sgRNA libraries.

Conclusions: CRISPRcleanR is a versatile open-source tool for the analysis of CRISPR-Cas9 knockout screens to identify

essential genes.
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Background
CRISPR-Cas9-based genome editing techniques are trans-

forming the landscape of genetic studies [1, 2]. The high

efficiency and specificity of the CRISPR-Cas9 system to

mutagenise genes through the introduction of DNA

double strand breaks (DSB), either at the level of individ-

ual genes or at genome-wide scale, enables the systematic

investigation of loss-of-function phenotypes.

We and others have developed genome-wide pooled

CRISPR knock-out (CRISPR-KO) screening strategies

[3–5]. A prominent application of CRISPR-KO screens

is the systematic identification of genes that are essential

for cancer cell fitness to identify strategies for the devel-

opment of novel targeted therapies. These studies typic-

ally introduce Cas9 endonuclease into cells, followed by

or alongside the introduction of a library of pooled

sgRNAs targeting the genome. The library usually

contains multiple single guide RNA (sgRNA) targeting

each gene to facilitate a robust identification of essential

genes. Analysis strategies compare the abundance of

sgRNAs between control and test samples to determine

which sgRNAs are differentially represented, thus target-

ing a gene that is potentially essential to the fitness of

the cancer cells. Several groups have performed these

types of screens to identify novel drug targets [6, 7]. A

recent landmark study has reported gene essentialities in
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342 cancer cell lines [8]. This will empower association

studies between gene essentialities and genomic/tran-

scriptomic features to develop biomarkers for patient

stratification.

One drawback of the CRISPR-KO screening system is

caused by its mode of action, namely DSB induction. DSBs

trigger a DNA damage response which can cause cell cycle

arrest and in some cases cell death [9–11]. This is prob-

lematic when performing whole-genome CRISPR-KO

screens in cancer cells because of frequent copy number

(CN) alterations in their genome, resulting in widespread

Cas9 induced DNA damage. Consequently, DSBs at genes

in amplified regions result in depletion of these genes in a

pooled CRISPR-KO screen regardless of their essentiality,

and thus they are erroneously called as fitness genes. This

can result in a high false-positive rate and correcting for

this CN-associated effect is crucial for the interpretation

of CRISPR-KO screening results. Solutions proposed thus

far encompass scanning the dataset for biased regions and

their removal from downstream analysis [12], resulting in

the exclusion of potentially biologically relevant genes

residing in CN-amplified regions, or to apply a piecewise

linear model to infer true gene dependencies based on CN

profiles across large panels of cell lines [8].

During the analysis of CRISPR-KO data we identified a

number of instances for which existing approaches for

correcting bias in CRISPR-KO data were unsuitable or

hampered further downstream analyses. To address this,

we developed CRISPRcleanR, a computational approach

implemented in open-source R and a Python packages,

which identifies biased genomic regions from CRISPR-KO

screens in an unsupervised manner and provides both

corrected read count and log fold change (logFC) values

of individual sgRNAs in such regions. Our method re-

duces false positive calls while keeping the true positive

rate of known essential genes largely unchanged, and

allows the detection of essential genes even within focally

amplified regions.

Results
Gene-independent responses in CRISPR-KO screens

We performed genome-wide CRISPR-KO screens on 15

human cancer cell lines (hereafter called ‘Project Score’),

which are a subset of the Genomics of Drug Sensitivity in

Cancer (GDSC) collection (Additional file 1: Table S1)

[13, 14]. This involved six tumour types with different

mutational processes, including high frequency of

single-nucleotide variants (large intestine, lung, and mel-

anoma) and CN variation (breast and ovary). We used the

Sanger Institute CRISPR library (version 1.0) targeting

18,010 genes (90,709 sgRNAs; ~ 5 sgRNAs per gene) [6].

The screens showed high consistency between technical

replicates in each cell line (median average correlation for

sgRNA counts = 0.83) and readily discriminated between

pre-defined fitness essential (FE) and non-essential genes

(median area under the Receiver Operating Characteristic

curve (AUROC) = 0.92) (Additional file 2: Figure S1) [15].

Additionally, a high true positive rate (TPR, or recall) was

observed for known essential genes assembled from the

Molecular Signature Database (MsigDB) [16] and from

literature [17] (median TPR across gene sets and cell lines

= 85% at 5% FDR).

When comparing CRISPR data and CN profiles for

each line, we confirmed a large negative effect for logFCs

of sgRNAs targeting genes in CN-amplified regions,

particularly with CN ≥ 8 (Additional file 2: Figure S2 and

Additional file 1: Table S2). Notably, sgRNA targeting

CN-amplified (CN ≥ 8) non-expressed genes (FPKM <

0.05) were significantly more depleted in six cell lines

than the rest of the sgRNA in the whole library. For

three cell lines (HT55, EPLC-272H, and MDA-MB-415),

the negative effect on logFC of sgRNA in CN-amplified

regions was comparable or greater than for FE genes

(Additional file 2: Figure S3 and Additional file 1: Table

S2). Collectively, using independent data, our analysis

confirms the systematic negative bias on sgRNA logFC

values in particular regions of the genome, which are

enriched for CN amplifications.

Variable effect of amplification on responses to CRISPR-

Cas9 targeting

To gain greater insight into CN-associated biases, we per-

formed a detailed analysis of the relationship between

sgRNA logFC values and CN at the level of individual CN

segments (Fig. 1a and Additional file 2: Figure S4). For

some cell lines, the negative bias on average logFC values

within segments was positively correlated with CN values

(EPLC-272H, NCI-H520, OVCAR-8, TOV-21G and

SW48). In other cell lines the bias effect on average logFC

was not observed (MDA-MB-436), plateaued (NCI-H2170),

or fluctuated as CN varied (MDA-MB-453, HT55 and

HuP-T3). These effects were preserved when only consider-

ing sgRNA targeting non-expressed genes (Fig. 1b and

Additional file 2: Figure S4), demonstrating that the nega-

tive logFCs are most likely independent of true gene essen-

tiality. In addition, we observed a wide range of average

logFC values for segments of a given CN (Fig. 1a, b), and

this is often larger than the variation between segments of

different CN, indicating that CN alone does not capture all

of the observed bias variance.

Furthermore, although in the majority of instances CN

segments matched segments of equal sgRNA logFCs

(Fig. 1c), we identified several CN segments with discon-

tinuous logFC patterns (Fig. 1d). Additionally, regions of

consistently depleted sgRNAs were identified also in

diploid regions of the genome. For example, the cell line

CL-40 harbours two copies of chromosome 16, but sev-

eral contiguous genes (of which many are not expressed)
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in region 16q23 exhibited a negative logFC across target-

ing guides (Fig. 1e).

Our results indicate that biases observed in CRISPR-KO

screens are often associated with CN alterations but are

heterogeneous, with poorly understood variation between

segments of differing CN, and variation within segments of

the same CN. Taken together, these results highlights the

value of an unsupervised approach, not dependent on CN

alone, to correct for biased regions in CRISPR-KO data.

CRISPRcleanR corrects bias in CRISPR-Cas9 datasets

In order to detect biased regions in an unsupervised

manner and correct corresponding sgRNA logFCs in

CRISPR-KO screening data, we developed CRISPR-

cleanR, a computational approach implemented in

open-source R and Python packages. CRISPRcleanR

applies a circular binary segmentation algorithm, origin-

ally developed for array-based comparative genomic

hybridization assay [18, 19], directly to the genome-wide

patterns of sgRNA logFCs across individual chromo-

somes in a cell line. It then detects genomic segments

containing multiple sgRNAs with sufficiently equal

logFCs. If these segments contain sgRNAs targeting a

minimum number of distinct genes then the sgRNA in

the segment are most likely responding to CRISPR-Cas9

targeting in a gene-independent manner, and logFCs

values are corrected via mean-Centering. Median-based

centering can also be applied for experimentally variable

data or in the presence of many outliers.

CRISPRcleanR embeds functions from the DNAcopy R

package [20] allowing users to customise their argu-

ments. Furthermore, it has several features that make it

statistically robust, versatile and practical for down-

stream applications: (i) it works in an unsupervised man-

ner, requiring no chromosomal CN information nor a

priori defined sets of essential genes; (ii) it implements a

logFC correction, making depletion scores for all genes

usable in follow up analyses; (iii) it examines logFC at

the sgRNA level to gain resolution and to account for

different levels of sgRNA on-target efficiency, and en-

ables the subsequent use of algorithms to call gene de-

pletion significance that require input data at the sgRNA

level (e.g. BAGEL [21]); (iv) by applying an inverse trans-

formation to corrected sgRNA logFCs, it computes cor-

rected sgRNA counts, which are required as input for

commonly used mean-variance modeling approaches,

such as MAGeCK [22], to call gene depletion/enrich-

ment significance; (v) lastly, CRISPRcleanR corrects

logFC values using data from an individual cell line and

with invariant performances, unlike other computational

correction approaches whose performances depend on

the number of analysed cell lines [8]; as a consequence,

EDC

B

A

Fig. 1 Heterogeneous gene-independent responses to CRISPR-Cas9 targeting. a Average logFC values of sgRNA within segments of equal CN

(excluding FE and histones) for three cell lines. Each circle represents a CN segment of the indicated copy number. Asterisks mark the CN at

which a significance difference (Welchs t-test, p < 0.05) is initially (starting point) and continuously (critical point) observed compared to logFC

values at CN = 2. Box-plots show the median, inter-quartile ranges and 95% confidence intervals. b Same as for A but considering only non-

expressed genes (FPKM < 0.05). (c,d,e) Segments of equal gene copy number and segments of equal sgRNA logFCs for selected chromosomes in

three cell lines
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CRISPRcleanR is suitable for the analysis of data from

both small- and large-scale CRISPR-KO studies.

When applied to Project Score data, CRISPRcleanR

effectively corrected the bias in sgRNA logFCs over a wide

range of chromosomal segments with variable CN alter-

ations. Furthermore, this included detection and correc-

tion of different level of biases in sgRNA logFCs within an

individual segment of equal CN (Fig. 2a, b). An immediate

result of the application of CRISPRcleanR to our data was

that biases in particularly high CN regions were strongly

attenuated over all the cell lines (Fig. 2c).

Overall, CRISPRcleanR reduced the recall of sgRNAs

targeting CN-amplified regions, including sgRNAs

targeting CN-amplified non-expressed genes, towards

expectation when classifying the whole library of

sgRNAs based on their logFCs (Fig. 2d). The correction

was also consistently observed at the gene level (average

logFCs of targeting sgRNAs) across all screened cell lines

at a fixed 5% FDR, with a median reduction in recall

equal to 72% and 88%, respectively for CN-amplified

and CN-amplified non-expressed genes (Fig. 2e and

Additional file 1: Table S3). This reduction was also

A B

D

C

E

Fig. 2 Unsupervised detection of segments of equal sgRNA logFCs and their correction. a and b Example segments of equal gene copy number

and equal sgRNA logFC values detected and corrected by CRISPRcleanR in two cell lines. c logFC values of sgRNAs of the entire library for all cell

lines grouped according to the copy number of their targeted gene before (left) and after (right) CRISPRcleanR correction. Box-plots show the

median, inter-quartile ranges and 95% confidence intervals. d Recall curves of sgRNA when classified as targeting amplified genes, amplified

non-expressed genes, FE genes, and non-essential genes before and after CRISPRcleanR correction, for an example cell line (EPLC−272H). e

Assessment of CRISPRcleanR correction comparing Recall at 5% FDR (top row) or area under the Recall curve (AURC, bottom row) of genes

in six predefined gene sets based on their uncorrected or corrected logFCs (averaged across targeting sgRNAs)
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observed at the level of the area under the overall recall

curves (AURCs), thus independent of a fixed depletion

significance threshold. Specifically, we observed the

median AURCs across all cell lines shifting from 0.74 to

0.51 (p = 0.02, Welch’s two sample t-test) and from 0.7

to 0.5 (p = 0.01), respectively, for CN-amplified and

CN-amplified non-expressed genes (Fig. 2e and

Additional file 1: Table S3). The reduction in AURC was

independent of whether amplified genes in cell lines

were identified using CN data from the GDSC or the

cancer cell line encyclopedia (CCLE). In contrast, for the

MsigDB known essential genes and the FE genes, the

reduction was negligible at less than 2%, with median

AURCs preserved at ≥0.82.

Excluding from the essentiality profiles the sgRNAs

targeting a priori known essential genes (taken from

MSigDB) before CRISPRcleanR correction yielded very

similar results as when imposing the constraint that, for

a segment to be corrected, it must contain sgRNA tar-

geting n = 3 different genes (Additional file 2: Figure S5).

This was determined by performing several correction

attempts varying n and considering or not FE and other

MSigDB essential genes. Thus, CRISPRcleanR can be

used in a completely unsupervised setting, without

making any assumption on gene essentiality.

CRISPRcleanR is effective using multiple sgRNA libraries

To investigate the versatility of CRISPRcleanR we assessed

its performance across different libraries of sgRNAs. For

the purpose of comparability we initially used our previ-

ously published dataset derived from screening the HT-29

cell line with the Brunello [23] and Whitehead [12] librar-

ies, using the same lentiviral vector as our library [24]. Of

note, despite all three libraries targeting 17,646 overlap-

ping genes, fewer than 5% of the 19-mer gRNA in the

libraries are overlapping in sequence. A similar reductions

in recall for CN-amplified genes (mean = 40 ± 2.7%), CN

amplified non-expressed genes (45 ± 5.7%), fitness

essential genes (2 ± 0.47%), and non-essential genes

(mean = − 3.8 ± 1.81%) was observed across all three

libraries (Fig. 3a, b). As a specific example, all three

libraries showed matching patterns of biased logFCs in

the same CN-amplified genomic region spanning the

proto-oncogene MYC on chromosome 8 (Fig. 3c).

CRISPRcleanR corrected the sgRNA logFC values for this

bias in all three libraries.

To further evaluate the compatibility of CRISPRcleanR

with different sgRNA libraries, we tested it on an inde-

pendent dataset of 342 cell lines using the Avana library

from Project Achilles [8] (Additional file 2: Figure S6).

We observed a reduction of false positive hits (average

recall at 5% FDR) for CN-amplified genes after correc-

tion from 0.10 to 0.04 (p = 6.23 × 10− 29) based on GIS-

TIC [25] copy number scores from the CCLE, from 0.27

to 0.08 (p = 1.64 × 10− 8) based on PicNic [26] copy

number scores from the GDSC [13], and from 0.03 to

0.001 (p = 10− 4) for non-expressed genes which are

CN-amplified according to either GISTIC or PicNic

scores. Additionally, true positive rates for known essen-

tial genes were slightly increased (average recall at 5%

FDR) for a priori known essential genes from MSigDB

[16] from 0.74 to 0.76 (p = 0.06), and significantly in-

creased for essential genes from [15] from 0.59 to 0.63

(p = 8 × 10− 4, Additional file 2: Figure S6). The recall

increment for known essential genes was greatest for

lower quality CRISPR-KO data, suggesting that CRISPR-

cleanR contributes to a signal improvement in noisy or

low quality data (Additional file 2: Figure S7). Taken to-

gether, these results show that CRISPRcleanR is suitable

for correcting bias in CRISPR-KO screening datasets

generated with a variety of different sgRNA libraries.

CRISPRcleanR preserves cell line essentiality profiles

We next determined whether the correction performed by

CRISPRcleanR alters the overall essentiality profile of a

given cell line. For Project Score data, we checked the pos-

ition of sets of top-depleted sgRNAs from uncorrected

logFCs along the profiles of corrected sgRNA logFCs by

means of precision/recall analysis (Fig. 4a, b). We ob-

served a median area under the precision/recall curve

(AUPRC) of 0.92 (min = 0.81 for HCC-15, max = 0.96 for

MDA-MB-436) for the top 50 depleted sgRNA, and a me-

dian AUPRC of 0.96 for the top 2500 depleted sgRNA

(min = 0.88 for HCC-15, max = 0.98 for MDA-MB-453).

Considering that an experiment typically yields ~ 6000

sgRNAs called as significantly depleted with our library,

this indicates that the CRISPRcleanR correction, while

reducing false-positive rates, does not have an unwanted

impact on the overall essentiality profile of a cell line.

To further assess the impact of CRISPRcleanR on gene

essentiality profiles, we compared all genes with a signifi-

cant gain or loss-of-fitness effect before and after CRISPR-

cleanR correction as this is the key phenotype measured

in CRISPR-KO screens (Additional file 2: Figure S8). For

Project Score data, we found CRISPRcleanR impacted on

the significant loss/gain-of-fitness effect for a median of

1.98% of all screened genes. This included a median of

24.69% genes significantly detected as exerting an effect

on cellular fitness (gain- or loss-of-fitness) and a median

of 17.02% of loss-of-fitness genes. The vast majority (88%)

of these attenuated loss-of-fitness genes were composed

of putatively false positive hits, involving genes which are

not expressed (FPKM < 0.05), located in CN-amplified

segments, prior known non-essential, or genes with a

weak loss-of-fitness effect when compared to the whole

set of genes called as loss-of-fitness in the uncorrected

data (average logFC over the 4th quartile). For a very small

number of genes (median 0.02% of genes, n = 28 unique
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genes total) the post-correction fitness effect was opposite

to that observed prior to the correction. A very similar

effect on significant genes following CRISPRcleanR cor-

rection was observed for the Project Achilles data (Add-

itional file 2: Figure S8). Thus, CRISPRcleanR preserves

the overall essentiality profile present in a cell line and

alters the significant fitness effects observed in the uncor-

rected data for only a minority of genes. Where correction

occurs, the majority of instances involve likely putative

false positive genes.

A

B C

Fig. 3 CRISPRcleanR is effective with multiple different sgRNA libraries. a Recall curves for three sgRNA libraries when classifying sgRNAs targeting

amplified genes, amplified non-expressed genes, FE genes, and non-essential genes using sgRNA logFCs before (first row of plots) and after (second

row of plots) CRISPRcleanR correction. b Variation of the area under the recall curve for sgRNAs targeting genes in six predefined sets, based on their

uncorrected/corrected logFCs, across the three different libraries (one circle per library). c Segments within chromosome 8 of equal gene copy number

juxtaposed to segments of equal sgRNA logFCs before and after CRISPRcleanR in HT-29 cells screened with three different sgRNA libraries. The position

of MYC is shown with a blue line
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CRISPRcleanR corrects sgRNA counts to enable mean-

variance modeling

MAGeCK is a widely used computational tool to call gene

depletion or enrichment in CRISPR-KO screens and is

based on mean-variance modelling of median-ratio nor-

malised sgRNA read-counts [22]. To make CRISPRcleanR

compatible with mean-variance modeling approaches

such as MAGeCK, we designed an inverse transformation

to derive corrected sgRNA treatment counts from

CRISPRcleanR corrected sgRNA logFC values. To bench-

mark our transformation, we compared results obtained

from executing MAGeCK using normalised uncorrected

and CRISPRcleanR corrected sgRNA counts by means of

recall estimation when classifying predefined gene sets.

The inverse transformation had an effect on both the

mean and variance of the sgRNA counts, with the greatest

impact on sgRNAs targeting genes in CN-amplified

regions, whose value was consistently shifted toward the

corresponding value in the plasmid/control condition

(Fig. 5a, b). Furthermore, we observed a strong reduction

in recall when classifying sgRNAs targeting genes in

biased regions (PicNic scores ≥8 or GISTIC ≥2), when

considering as positive predictions the sgRNAs called

significantly depleted by MAGeCK. The median reduction

was 75% for CN-amplified genes and 80% for

CN-amplified non-expressed genes at a 10% FDR, and

72% and 100% reductions at a 5% FDR (Fig. 5c and Add-

itional file 1: Table S4). In contrast, the effect on the recall

of FE and non-essential genes was negligible (median =

2.9% reduction) (Fig. 5c). Thus, the reverse transformation

post-correction enables the use of mean-variance model-

ling approaches such as MAGeCK for downstream calling

of significant depletion or enrichment of genes.

Robust detection of cancer dependencies following

CRISPRcleanR

Since a major application of CRISPR-KO screens is the

accurate identification of genes essential for cellular fitness

in defined molecular settings, we investigated the ability of

CRISPRcleanR to preserve the detection of expected cancer

gene dependencies in individual cell lines. To perform a

systematic analysis, we used CRISPRcleanR corrected

sgRNA counts and a set of 64 cancer driver genes [27]

which are modified by somatic mutation or CN amplifica-

tion. We considered CN amplifications at the segment level

(from [13]), thus including multiple genes in a segment.

Project Score cell lines included a total of 57 potential

dependencies, involving a total of 29 cancer driver genes

(9 mutated and 20 genes in amplified CN segments). Of

these, we detected 21 dependencies prior to CRISPR-

cleanR correction (MAGeCK FDR < 10%), and 16 of them

(76%) were preserved following CRISPRcleanR correction

(Additional file 2: Figure S9 and Additional file 1: Table

S5). Examples included SW48 carrying the EGFRg719s

mutation associated with depletion of EGFR targeting

sgRNA, and MDA-MB-453 carrying the PIK3CAh1047r

mutation associated with depletion of PIK3CA targeting

sgRNA (Fig. 6a).

CRISPRcleanR preserved the ability to selectively detect

cancer dependencies involving amplified cancer driver

genes. For example, MYC is amplified in the cell line

HT-29 and sgRNAs targeting MYC, as well as flanking

genes, are reported as significantly depleted when using

uncorrected logFCs (Fig. 6b). The logFC depletion is

greater for MYC compared to other genes in this region.

Following CRISPRcleanR correction, the sgRNAs target-

ing MYC remained significantly depleted, whereas those

targeting the co-amplified flanking genes were no longer

significant. A similar essentiality was selectively preserved

post-CRISPRcleanR correction in an amplified region of

chromosome 16 that contains ERBB2 in the NCI-H2170

cell line (Fig. 6c). Two of the dependencies attenuated

post correction involved co-amplification of two driver

genes; CDK12 co-amplified with ERBB2 in NCI-H2170

and CTTN co-amplified with CCND1 in MBA-MB-415

were no longer significant post correction. Similar results

were found using the Project Achilles data with an overall

retention rate of 80% (179 of 233) of dependencies post

A B

precision
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c
a

ll

50 500 2500

0.5

0.7

0.9

random performances

all cell lines

top dep sgRNAs

100 1000

A
U

P
R

C

1.0 0.6 0.2

0.0

0.4

0.8

top dep sgRNAs

50

100

500

1000

2500

Fig. 4 CRISPRcleanR retains overall essentiality profiles. a Example precision/recall curves in HuP-T3 cells for the indicated number of top depleted

sgRNAs after CRISPRcleanR correction, classified based on their un-corrected sgRNAs logFC rank position. b Area under the precision/recall curves

defined as for A for all cell lines. Box-plots show the median, inter-quartile ranges and 95% confidence intervals
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Fig. 5 (See legend on next page.)

Iorio et al. BMC Genomics  (2018) 19:604 Page 8 of 16



CRISPRcleanR correction (Additional file 2: Figure S9 and

Additional file 1: Table S5). Of the attenuated dependen-

cies, 41% (n = 44) involved genes co-amplified with

another driver gene. In addition, we observed in both

datasets a trend of increased significance (as measured by

FDR) of detected dependencies post-correction. Overall,

these results demonstrate that CRISPRcleanR allows for

the accurate detection of cancer driver gene dependencies

in CRISPR-KO datasets, including cancer genes residing

within CN-amplified regions.

Code availability and overview

CRISPRcleanR is implemented as an R [28] package and

as an interactive Python package with full documenta-

tion, tutorials, built in datasets to reproduce the results

in this manuscript, and is publically available (R package:

https://github.com/francescojm/CRISPRcleanR and Py-

thon package: https://github.com/cancerit/pyCRISPR-

cleanR). The Python implementation is dockerized

making it platform independent and usable in cloud

environments (https://dockstore.org/containers/quay.io/

wtsicgp/dockstore-pycrisprcleanr). CRISPRcleanR in-

cludes core functions for processing raw sgRNA count

files for generating corrected sgRNA logFC values and

corrected sgRNA counts for downstream analyses.

CRISPRcleanR also includes functions to measure and

visualise the extent and effect of the performed correc-

tion, the ability to detect CN-amplified non-expressed

genes (which can be used as positive controls), and

classification performances for a priori known sets of es-

sential/non-essential genes pre- and post-correction.

Discussion

In this study, we report CRISPRcleanR, a computational

tool that detects genomic segments of gene-independent

responses to CRISPR-KO in an unsupervised manner,

and applies a segment-by-segment correction at the

sgRNA-level for both fold-changes and read counts. The

correction substantially reduces false-positive calls

without altering true essentiality profiles and preserves

known cancer gene dependencies within and outside of

biased segments. CRISPRcleanR works on multiple

genome-wide sgRNA libraries, and resulting corrected

sgRNA logFC and read counts are compatible with

downstream analyses performed by methods such as

BAGEL or MAGeCK to statistically assess screen hits.

CRISPRcleanR works efficiently irrespective of the sam-

ple size of the analysed dataset, even in single sample

experiments.

Our motivation for developing CRISPRcleanR came

from the observation that biases in gene essentialities

observed in CRISPR-KO screens did not always show a

linear correlation to their CN status, although biased

segments are frequently associated with CN alteration.

Additionally, in most of the cell lines analysed, variation in

the mean logFCs of segments with the same CN were

often greater than those between segments with different

CN. Some cell lines showed greater bias in segments with

lower CN. We even identified multiple instances of dis-

continuous bias on sgRNA logFCs within a particular CN

segment, and biased responses within segments that are

not CN-amplified. These observations argue for the devel-

opment of methods such as CRISPRcleanR, which are in-

dependent of CN values for the analysis of CRISPR-KO

screening data, and indicate that biased responses are not

solely due to the amount of DNA damage and may also

be caused by additional factors, such as local genomic

structural variation (as recently reported in [29]).

CRISPRcleanR detects biased segments using

sgRNA-level logFC in an unsupervised manner, eliminat-

ing the requirement for cell line CN information. This

simplifies the analysis and is advantageous when reliable

CN information is not available for a cell line; for

example, when using a newly derived cancer cell model.

In addition, cancer genomes are dynamic and continu-

ously evolving, causing genetic variation between differ-

ent clones of the same cell line. Genetic drift may occur

during prolonged in vitro cell culture, due to different

growth conditions (e.G. media composition), or in

response to selective pressure (e.g drug treatment) and

genetic manipulation (e.g. gene-editing). Thus, the gen-

omic heterogeneity of cancer cells, even within clones of

the same cell line, may confound CN-based correction

methods when relying on pre-existing CN data, and

negatively impact identification of gene essentialities.

Furthermore, the performance of different copy number

calling algorithms is variable and depends on the under-

lying genomic data available, and as a result this can be

a further confounding factor when using CN-based cor-

rection methods. CRISPRcleanR overcomes these limita-

tions by effectively correcting for biases in CRISPR-KO

screens without requiring additional information about

(See figure on previous page.)

Fig. 5 CRISPRcleanR corrected sgRNA counts and downstream analysis with MAGeCK. a and b Normalised counts of sgRNAs of the transfected

libraries versus the control plasmid for FE and non-essential genes (first two rows of plots), CN amplified genes (third row) and CN non-expressed

genes (fourth row), for two example cell lines before (first and third column) and after (second and fourth column) CRISPRcleanR correction.

Essentialities for CN-amplified cancer driver genes such as MYC, ERBB2 and CCND1 are retained post correction. For the sake of readability only

genes with at least 10 copies have been highlighted. c Comparison of recall using MAGeCK for sgRNAs targeting genes in six predefined gene

sets when using as input CRISPRcleanR uncorrected and corrected sgRNAs counts
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the cell models screened, and without making assump-

tions about the underlying cause of bias.

Conclusion

CRISPRcleanR is a flexible tool implemented as R and

Python packages to correct gene-independent bias found

in whole-genome CRISPR-KO screens in an unsupervised

manner at a single sample level. CRISPRcleanR facilitates

the analysis of CRISPR-KO screens in cancer cells to iden-

tify essential genes.

Methods
Plasmids, cell lines and reagents

Cells were maintained in culture media as indicated in

Additional file 1: Table S1 in a 5% CO2 humidified incuba-

tor at 37 °C. The plasmids used in this study were from

the mutagenesis toolkit described in [6] and are available

through Addgene (Cas9–68,343; CRISPR sgRNA library -

67,989). Plasmids were packaged using the Virapower

(Invitrogen) system as per manufacturer’s instructions.

Genome-wide mutant library and screen

Cells were first transduced with lentivirus carrying Cas9 in

T75 flasks at ~ 80% confluence in the presence of poly-

brene (8 μg/ml). The following day, lentiviral containing

medium was replaced with complete medium. Blasticidin

selection was started on day 4 post transduction at a

concentration determined from a titration in the parental

cell line. Cas9 activity was assessed following selection

using the Cas9 functional assay as described in [6] and a

cut-off of 80% activity was applied (median = 89% activity

across all cell lines). Cas9-expressing cells were main-

tained in blasticidin prior to transduction with the sgRNA

library. Transduction with sgRNA library was carried out

at ~ 80% confluency with 3.3 × 107 cells in T150 or T525

(triple layer) flasks, depending on cell size and surface area

required, in technical triplicates. Cells were transduced

with a predetermined viral amount that gives rise to ~

30% transduction, measured by BFP expression by cytom-

etry, to ensure approximately 1 viral particle entering each

cell based on a Poisson distribution model. Based on these

initial cell numbers and transduction efficiency, the cover-

age of the sgRNA library (i.e. the number of cells contain-

ing each sgRNA) in each replicate was 100×. Puromycin

selection commenced at day 4 to select for cells that had

successful lentiviral integration. Actual library transduc-

tion efficiency and puromycin selection was analysed

using flow cytometry before and after puromycin selec-

tion, respectively. A minimum number of 5.0 × 107 cells

were maintained at all times to ensure library representa-

tion was maintained. The cells were harvested 14 days

post transduction and dry pellets were stored at − 80 °C.

Extraction of genomic DNA, PCR amplification of

sgRNAs and Illumina sequencing of sgRNAs were carried

out as described previously [3, 6]. The number of reads

for each sgRNA was determined using a script developed

in-house.

Data pre-processing and availability

sgRNA counts from both Project Score and Project Achil-

les (downloaded from: https://depmap.org/ceres/) were

normalised assembling one batch per cell line, including

the read counts from the matching library plasmid and all

final read counts replicates, with a median-ratio method

[30] to adjust for the effect of library sizes and read count

distributions, after filtering out sgRNAs with less than 30

reads in the plasmid. Depletions/enrichments for individ-

ual sgRNAs were quantified as log2 ratio between post

library-transfection read-counts and library plasmid

read-counts. Finally, sgRNAs were averaged across repli-

cates. This was performed executing the ccr.Normfold-

Changes function of the CRISPRcleanR R package.

Transcriptional and copy number data

Genome-wide substitute reads with fragments per kilo-

base of exon per million reads mapped (FPKM) for the

15 cell lines considered in this study were derived from

the dataset described in [31]. Genome-wide gene level

copy number data, derived from PicNic analysis of Affy-

metrix SNP6 segmentation data (EGAS00001000978) for

the cell lines in the Genomics of Drug Sensitivity 1000

(GDSC1000) cancer cell line panel [13], were down-

loaded from the GDSC data portal (dataset version: July

4th 2016), http://www.cancerRxgene.org. This dataset is

also available at http://ftp.sanger.ac.uk/pub/project/can-

cerrxgene/releases/release-6.0/Gene_level_CN.xlsx. For

each gene, the minimum copy number of any genomic

segment containing coding sequence was considered.

(See figure on previous page.)

Fig. 6 CRISPRcleanR enables detection of cancer gene dependencies. a Detection of EGFR and PIK3CA dependencies at the level of targeting

sgRNAs in mutant cancer cell lines. Rank position of sgRNAs targeting the indicated genes before (top) and after (bottom) CRISPRcleanR

correction. FE and non-essential genes are shown for comparison. b A CN-amplified region of chromosome 8 in HT-29 cell line including MYC

and 3 surrounding up-streaming/down-streaming genes. Expanded view of sgRNAs targeting MYC and its surrounding genes, with each gene

identified by a different colour. The heatmaps (first 7 columns) show ranked positions of the sgRNAs targeting the 7 considered genes (blue bars)

before (top heatmap) and after (bottom heatmap) CRISPRcleanR correction. The last two columns show rank positions for the sgRNAs targeting

FE genes (second last column) and non-essential genes (last column). c Same as for B but considering a region on chromosome 16 in the NCI-

H2170 cell line, including ERBB2 and four flanking upstreaming/downstreaming genes and CDK12
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Additionally, gene level Gistic [25] scores obtained by

processing Affymetrix SNP array data in the Cancer Cell

Line Encyclopaedia [32] repository were downloaded

from cBioPortal [33] (http://www.cbioportal.org/

study?id=cellline_ccle_broad#summary).

Analysis of gene-independent responses in cancer cell lines

For each cell line, segments of equal CN were identified by

using CN data from the GDSC data portal [13, 14] (as de-

tailed below), and assigned a mean-logFC value by averaging

across all of the sgRNAs targeting a segment. A CN bias

starting point was computed for each cell line as the copy

number value n > 2 such that statistically significant differ-

ences, as quantified by a Welch’s t-test, were observable be-

tween the mean-logFCs of segments of n CNs and those of

segments of 2 CN. A CN bias critical point was computed

for each cell line as follows. For each CN value n = 3, …,

m-1 (with m =maximal segment CN value observed in the

cell line under consideration), two univariate linear models

were fitted, considering segment CN values as observations

of the independent variable and the corresponding average

segment mean-logFCs as those of the dependent one. The

first model P(n) was fitted using CN values in {2, …, n} and

corresponding average segment mean-logFCs, while the

second one L(n) was fitted using CN values in {n + 1, ..., m}

and corresponding average segment mean-logFCs. The bias

critical point was then defined as the value n providing the

large absolute difference between the slopes of the corre-

sponding fitted models P(n) and L(n).

Calling significantly depleted sgRNAs and genes based on

log fold-changes

All sgRNA were ranked by average logFCs derived from

screening an individual cell line. This ranked list was

used to classify sgRNAs targeting genes from two

gold-standard reference sets of FE and non-essential

genes [15, 21]: from now the essential-sgRNAs (E) and

the non-essential-sgRNAs (N). For each rank position k,

a set of predictions P(k) = {s ∈ E ∪N : ϱ(s) ≤ k}, with ϱ(s)

indicating the rank position of s, was assembled and

corresponding Precision (or Positive Predicted Value,

PPV(k)) was computed as:

PPV kð Þ ¼ P kð Þ∩Ej j= P kð Þj j:

Subsequently the largest rank position k∗ corresponding

to a 0.95 Precision (equivalent to a False Discovery Rate

(FDR) = 0.05) was determined as.

k� ¼ maxNk¼1 1−PPV kð Þ ≤ 0:05f g:

Finally, a 5% FDR logFCs threshold F∗ was determined

as the logFCs of the sgRNAs s such that k(s) = k∗, and all

the sgRNAs of the entire library with a logFC < F∗ were

considered significantly depleted at this FDR level.

To call depletion significance at a gene level, the same

procedure was followed but averaging logFCs of sgRNAs

targeting the same gene prior to the analysis, and con-

sidering ranks and positive/negative sets of genes instead

of sgRNAs.

For the follow up analyses on the effect of correcting

sgRNA treatment counts (computed as detailed below) we

used the test function of the MAGeCK python package,

indicating none as the value of the parameter specifying

the normalisation method to use prior to the analysis, as a

median-ratio normalisation was already applied to the

analysed count files prior CRISPRcleanR correction.

Receiver operating characteristic analyses

Across the different analyses, standard ROC indicators

were computed considering as prediction sets signifi-

cantly depleted sgRNAs (or genes) at a fixed level of 5%

FDR (computed as detailed in the previous section or

output by the MAGeCK tool), or genome-wide profiles

of essentiality (as ranked lists of sgRNA logFCs, in some

instances averaged on a per gene basis) to compute over-

all indicator curves, and using different positive/negative

control sets (detailed below). To this aim, we made use

of functions included in the pROC R package [34].

For the positive controls, sets of a priori essential genes

were assembled by downloading relevant gene signatures

from the MSigDB [16] (Additional file 1: Table S6). A list

of ribosomal protein gene was derived from [17]. The

consensual signatures resulting from this curation are

available as individual data objects in the CRISPRcleanR R

package.

Segmentation analysis and logFC correction

Genome-wide essentiality profiles in the form of lists of

sgRNAs logFC were sorted according to the genomic

coordinates of the individual sgRNAs (library annotation

and coordinates derived from [6]) using the function

ccr.logFCs2chromPos of the CRISPRcleanR R package.

Then, a circular binary segmentation algorithm [18, 19]

was applied using the ccr.GWclean function of the

CRISPRcleanR R package, with a significance threshold to

accept change-points p = 0.01, 10,000 permutations for

p-value computation, a minimal number of 2 markers per

region, and making use of the function segment from the

DNAcopy R package [20] with other parameters set to

default values.

Subsequently, sgRNA included in a segment had their

logFCs mean-centered (across that segment) if collectively

targeting at least n = 3 different genes, without pre-filtering

any essential gene (differently from the sliding window

approach used in [9]). This correction assumes that the true

signal of loss/gain-of-fitness effect exerted by knocking-out
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a CN amplified gene sums up to a possible

gene-independent impact on cellular fitness induced by

targeting with CRISPR-Cas9 the chromosomal segment

where that gene resides. By subtracting the logFCs mean to

the sgRNA in the same detected biased segment, the

gene-independent effect is flattened letting true fitness

signals emerge. The possibility of using a median-based

centering as a more robust alternative when the data is par-

ticularly noisy and/or many outliers are present (verifiable

through a preliminary inspection of the uncorrected

logFCs), for example due to dysfunctional or especially

toxic sgRNAs, is also present in the implementation of

CRISPRcleanR.

The minimal number n of targeted genes that a biased

segment should contain in order to be corrected was

adaptively determined by executing different trials of

segments’ detection and correction varying n ∈ {2, 3, 5, 10}

and excluding/not-excluding from the analysis sets of a

priori known essential genes assembled from MSigDB (as

detailed in the previous section), collectively the filter set.

Removing the filter set from a reference set of the FE

genes yielded a test set. Areas under the recall curve

(AURCs) were then computed evaluating the classification

performances using as positive controls the test set, CN

amplified genes, and CN amplified non-expressed genes

(determined for each cell line) were then computed, across

each trial using targeting sgRNAs’ logFCs before/after

correction. For each of the positive control sets, reduction

of recall (recall) were computed by comparing AURCs

obtained before/after CRISPRcleanR correction.

Results showed that n = 3 provided the largest reduc-

tion of recall (Additional file 2: Figure S5) of CN ampli-

fied and CN amplified non-expressed genes, and the

lowest reduction of recall of the test set. Most import-

antly, this was observed invariantly with respect to

removing/not-removing the filter set prior the analysis.

As a conclusion, all the corrections presented in this

manuscript were executed with this setting (n = 3 and

without pre-filtering any gene). CRISPRcleanR package

uses these settings by default, although offering to the

user the possibility of changing them.

Comparison of results across different libraries

Data from the mutagenesis of the HT-29 cell lines with

the Brunello and Whitehead libraries were downloaded

from the supplementary material of [24] and processed

as described in the section Data pre-processing and

availability. Correction outcomes were computed as de-

tailed in Receiver Operating Characteristic analyses.

Correction of sgRNA counts

We derived CRISPRcleanR corrected treatment count

values for individual experiment technical replicates

from the corresponding CRISPRcleanR corrected

sgRNAs’ logFCs. To this aim, for each individual sgRNA,

we first compute a CRISPRcleanR corrected treatment

count averaged-across-replicate (first 7 formulas below),

then we computed corrected treatment counts for indi-

vidual replicates from this averaged value partitioning it

across replicates proportionally to original (uncorrected)

count values.

Formally, for each individual single guide RNA, a cor-

rected treatment count ti was computed observing that:

N ¼ E log2
ti

c

� �

with N =CRISPRcleanR corrected logFCs for the sgRNA

under consideration, i = 1, …, n, where n = number of

treatment replicates, and c = counts of the sgRNA in the

plasmid, and E indicates the mean function.

This implies

N ¼

Pn
i¼1 log2 ti=cð Þ

n

⟹nN ¼
X

n

i¼1

log
2
ti−

X

n

i¼1

log
2
c ¼

X

n

i¼1

log
2
ti−n log

2
c

⟹nN þ n log
2
c ¼

X

n

i¼1

log
2
ti:

Assuming, for simplicity that all the ti are the same

(= t),

nN þ n log2c ¼ n log2ti

⟹2
Nþ log

2
c ¼ t

⟹t ¼ c2N ¼ E tð Þ:

To derive the corrected counts for the individual repli-

cates (which are obviously different from each other) from

their mean, we keep constant the proportions seen in the

uncorrected counts with respect to the sum of the counts

across replicates:

E tð Þ ¼

Pn
i¼1ti

n

⟹nE tð Þ ¼
X

n

i¼1

ti

⟹ti ¼ n E tð Þ
t�i
T � ¼ nc2N

t�i
T �

where t�i is the count of the sgRNA under consideration

before correction in the i-th replicate and T∗ is their over-

all sum across replicates.
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CRISPRcleanR performances with respect to data quality

Cell lines from Project Achilles were grouped into 10

equidistant bins based on the quality of the corresponding

profiles of gene essentiality, in increasing order. Data qual-

ity was quantified by the recall at 5% FDR for MSigDB

[16] essential genes based on uncorrected fold-change

rank positions. For each bin a variation of Recall pre/

post-CRISPRcleanR correction was quantified, for 9 pre-

defined gene sets, encompassing prior known essential/

non-essential genes, copy number amplified genes and

non expressed genes, as detailed in the previous sections.

Evaluation of CRISPRcleanR correction on fitness gene

calling

Gain/loss-of-fitness effect false discovery rate (FDR)

scores were obtained by applying MAGeCK before/after

CRISPRcleanR correction on the sgRNA counts from

Project Score and Project Achilles. Percentages of atten-

uated fitness genes were computed as the ratio of genes

with a significant gain/loss-of-fitness FDR (fitness genes),

from the analysis of the uncorrected sgRNAs but not

from the analysis of the corrected ones, with respect to

the whole set of screened genes or the set of fitness

genes detected in the uncorrected data, respectively.

Percentages of distorted fitness genes were computed as

the ratio of fitness genes detected in the uncorrected

data which where still detected as fitness genes in the

corrected data but with an opposite effect. Similar ratios

were computed for attenuated/distorted loss-of-fitness

and gain-of-fitness genes individually. The loss-of-fitness

genes attenuated post-correction were further parti-

tioned sequentially into the following disjoint sets across

cell lines: non-expressed (with an FPKM < 0.05), copy

number amplified (with a Gistic score > 1 or a PicNic

copy number value > 2), prior-known non-essential (ac-

cording to [15]), mild-phenotype (with a depletion logFC

in the uncorrected data, averaged across targeting

sgRNAs, falling over the 4th quartile of the logFCs of all

the loss-of-fitness genes). Only cell lines with good qual-

ity data (recall for essential genes from [15] at 5% FDR >

0.5) and all data type (GISTIC and PicNic copy number,

and basal expression FPKMs) available were included in

this analysis.

Retention of cancer driver gene dependencies following

CRISPRcleanR correction

We performed a systematic unbiased case-by-case probing

of putative oncogene addictions, by evaluating how

corresponding dependencies are detected prior/post

CRISPRcleanR correction, using data from Project Score

and Project Achilles. From a list of 64 high confidence

oncogenes [27], we considered those harbouring a cancer

driver event (CDE), i.e. a cancer driver somatic mutation

or a CN amplification as defined in [13], in at least one

cell line of the two considered panels. For the Project

Achilles, the analysis was restricted to 239 cell lines with

genomic data available in [13]. The considered CN amplifi-

cations were at the chromosomal segment level and many

of them included more than one oncogene. For each CDE

observed in a given cell line, we then compared the loss/

gain-of-fitness effect of the involved oncogene(s) observed

prior/post-CRISPRcleanR in that cell line, quantified as

MAGeCK FDRs. For Project Score, this resulted into 57

tested dependencies involving 29 CDEs (9 mutations and

20 CNAs encompassing multiple genes on the same seg-

ments). For Project Achilles, this resulted into 507 tested

dependencies: 37 CDFEs (26 mutations and 11 CNAs

encompassing multiple genes on the same segments).

Additional files

Additional file 1: Table S1. Project Score cell lines included in the study

with annotations and screening description. Table S2. Quantification of

copy number-associated bias before and after CRISPRcleanR correction.

Table S3. Recall reduction following CRISPRcleanR correction across control

gene-sets and cell lines. Table S4. Recall reduction post CRISPRcleanR

correction across controls (mean-variance modeling). Table S5. Cancer

driver gene dependencies following CRISPRcleanR correction. Table S6. List

of gene signatures downloaded from MSigDB and used as positive controls.

(ZIP 6330 kb)

Additional file 2: Figure S1. CRISPR-KO screening data quality assessment.

(A) Average correlation between sgRNAs read-count replicates across cell lines.

(B) Receiver operating characteristic (ROC) curve obtained from classifying

fitness essential (FE) and non-essential genes based on the average logFC

of their targeting sgRNAs. An example cell line OVCAR-8 is shown. (C) Area

under the ROC (AUROC) curve obtained for cell lines from classifying FE and

non-essential genes based on the average logFC of their targeting sgRNAs. (D)

Recall for sets of a priori known essential genes from MSigDB and from literature

when classifying FE and non-essential genes across cell lines (5% FDR). Each

circle represents a cell line and coloured by tissue type. Box and whisker plots

show median, inter-quartile ranges and 95% confidence intervals. (E) Genes

ranked based on the average logFC of targeting sgRNAs for OVCAR-8 and

enrichment of genes belonging to predefined sets of a priori known essential

genes from MSigDB, at an FDR equal to 5% when classifying FE (second last

column) and non-essential genes (last column). Blue numbers at the bottom

indicate the classification true positive rate (recall). Figure S2. Assessment of

copy number bias before and after CRISPRcleanR correction across cell lines.

sgRNA logFC values before and after CRISPRcleanR for eight cell lines are shown

classified based on copy number (amplified or deleted) and expression status.

Copy number segments were identified using Genomics of Drug Sensitivity

in Cancer (GDSC) and Cell Line Encyclopedia (CCLE) datasets. Box and whisker

plots show median, inter-quartile ranges and 95% confidence intervals. Asterisks

indicate significant associations between sgRNA LogFC values (Welchs t-test,

p< 0,005) and their different effect sizes accounting for the standard deviation

(Cohen’s D value), compared to the whole sgRNA library. Figure S3. CN-

associated effect on sgRNA logFC values in highly biased cell lines. For 3 cell

lines, recall curves of non-essential genes, fitness essential genes, copy number

(CN) amplified and CN amplified non-expressed genes obtained when

classifying genes based on the average logFC values of their targeting

sgRNAs. Figure S4. Assessment of CN-associated bias across all cell lines.

LogFC values of sgRNAs averaged within segments of equal copy number

(CN). One plot per cell line, with CN values at which a significant differences

(Welchs t-test, p < 0.05) with respect to the logFCs corresponding to CN = 2

are initially observed (bias starting point) and start to significantly increase

continuously (bias critical point). CN-associated bias is shown for all sgRNA,

when excluding FE genes and histones, and for non-expressed genes only.

Box and whisker plots show median, inter-quartile ranges and 95% confidence

intervals. Figure S5. CRISPRcleanR correction varying the minimal number of

genes required and the effect of fitness essential genes. Recall reduction of (A)
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amplified or (B) amplified not-expressed genes versus that of fitness essential

and other prior known essential genes, when comparing CRISPRcleanR

correction varying the minimal number of genes to be targeted by sgRNA in

a biased segment (default parameter is n = 3). Similar results were observed

when performing the analysis including or excluding known essential genes.

Figure S6. CRISPRcleanR performances across 342 cell lines from an

independent dataset. Recall at 5% FDR of predefined sets of genes based

on their uncorrected or corrected logFCs (coordinates on the two axis)

averaged across targeting sgRNAs for 342 cell lines from the Project Achilles.

Figure S7. CRISPRcleanR performances in relation to data quality. The

impact of data quality on recall at 5% false discovery rate (FDR) assessed

following CRISPRcleanR correction for predefined set of genes. Project

Achilles data (n = 342 cell lines) was binned based on the quality of

uncorrected essentiality profile. This is obtained by measuring the recall at

5% FDR for predefined essential genes (from the Molecular Signature

Database) and grouping the cell lines in 10 equidistant bins (1 lowest quality

and 10 highest quality) when sorting them based on this value. Recall

increment for fitness essential genes was greatest for the lower quality data,

indicating that CRISPRcleanR can improve true signal of gene depletion in

low quality data. Figure S8. Minimal impact of CRISPRcleanR on loss/gain-

of-fitness effects. (A) The percentage of genes where the significance of their

fitness effect (gain- or loss-of-fitness) is altered after CRISPRcleanR for Project

Score and Project Achilles data. The upper row shows correction effects for

all screened genes and the lower row for the subset of genes with a

significant effect in the uncorrected data. Each dot is a separate cell line.

Blue dots indicate the percentage of genes where significance is lost or

gained post correction. Green dots indicate the percentage of genes where

the fitness effect is distorted and the effect is opposite in the uncorrected

data. (B) The majority of the loss-of-fitness genes impacted by correction are

putative false positive effects affecting genes which are either not-expressed

(FPKM < 0.5), amplified, known non-essential, or exhibit a mild phenotype

in the screening data. (C) Summary of overall impact of CRISPRcleanR on

fitness effects following correction when considering data for all cell lines.

The colors reflect the percentage of genes with a loss-of-fitness, no

phenotype or gain-of-fitness effect which are retained in the corrected data.

Figure S9. CRISPRcleanR retains cancer driver gene dependencies in Project

Score and Achilles data. (A) Each circle represents a tested cancer driver

gene dependency (mutation or amplification of a copy number segment)

and the statistical significance using MaGeCK before (x-axis) and after (y-axis)

CRISPRcleanR correction, across the two screens. Plots in the first row show

depletion FDR values pre/post-correction, whereas those in the second row

show depletion FDR values pre-correction and enrichment FDR values post-

correction. (B) Details of the tested genetic dependencies and whether they

are shared before and after CRISPRcleanR correction at two different thresh-

olds of statistical significance (5 and 10% FDR, respectively for 1st and 2nd

row of plots). The third row indicates the type of alteration involving the

cancer driver genes under consideration and the total number of cell lines

with an alteration. (ZIP 191 kb)
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