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Abstract

Clustering is central to many data-driven appli-

cation domains and has been studied extensively

in terms of distance functions and grouping al-

gorithms. Relatively little work has focused on

learning representations for clustering. In this

paper, we propose Deep Embedded Clustering

(DEC), a method that simultaneously learns fea-

ture representations and cluster assignments us-

ing deep neural networks. DEC learns a map-

ping from the data space to a lower-dimensional

feature space in which it iteratively optimizes a

clustering objective. Our experimental evalua-

tions on image and text corpora show significant

improvement over state-of-the-art methods.

1. Introduction

Clustering, an essential data analysis and visualization

tool, has been studied extensively in unsupervised machine

learning from different perspectives: What defines a clus-

ter? What is the right distance metric? How to efficiently

group instances into clusters? How to validate clusters?

And so on. Numerous different distance functions and em-

bedding methods have been explored in the literature. Rel-

atively little work has focused on the unsupervised learning

of the feature space in which to perform clustering.

A notion of distance or dissimilarity is central to data clus-

tering algorithms. Distance, in turn, relies on represent-

ing the data in a feature space. The k-means cluster-

ing algorithm (MacQueen et al., 1967), for example, uses

the Euclidean distance between points in a given feature

space, which for images might be raw pixels or gradient-
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orientation histograms. The choice of feature space is cus-

tomarily left as an application-specific detail for the end-

user to determine. Yet it is clear that the choice of feature

space is crucial; for all but the simplest image datasets,

clustering with Euclidean distance on raw pixels is com-

pletely ineffective. In this paper, we revisit cluster analysis

and ask: Can we use a data driven approach to solve for

the feature space and cluster memberships jointly?

We take inspiration from recent work on deep learning for

computer vision (Krizhevsky et al., 2012; Girshick et al.,

2014; Zeiler & Fergus, 2014; Long et al., 2014), where

clear gains on benchmark tasks have resulted from learn-

ing better features. These improvements, however, were

obtained with supervised learning, whereas our goal is un-

supervised data clustering. To this end, we define a pa-

rameterized non-linear mapping from the data space X to

a lower-dimensional feature space Z, where we optimize

a clustering objective. Unlike previous work, which oper-

ates on the data space or a shallow linear embedded space,

we use stochastic gradient descent (SGD) via backpropaga-

tion on a clustering objective to learn the mapping, which

is parameterized by a deep neural network. We refer to

this clustering algorithm as Deep Embedded Clustering, or

DEC.

Optimizing DEC is challenging. We want to simultane-

ously solve for cluster assignment and the underlying fea-

ture representation. However, unlike in supervised learn-

ing, we cannot train our deep network with labeled data.

Instead we propose to iteratively refine clusters with an

auxiliary target distribution derived from the current soft

cluster assignment. This process gradually improves the

clustering as well as the feature representation.

Our experiments show significant improvements over state-

of-the-art clustering methods in terms of both accuracy and

running time on image and textual datasets. We evaluate

DEC on MNIST (LeCun et al., 1998), STL (Coates et al.,
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2011), and REUTERS (Lewis et al., 2004), comparing it

with standard and state-of-the-art clustering methods (Nie

et al., 2011; Yang et al., 2010). In addition, our experiments

show that DEC is significantly less sensitive to the choice

of hyperparameters compared to state-of-the-art methods.

This robustness is an important property of our clustering

algorithm since, when applied to real data, supervision is

not available for hyperparameter cross-validation.

Our contributions are: (a) joint optimization of deep em-

bedding and clustering; (b) a novel iterative refinement

via soft assignment; and (c) state-of-the-art clustering re-

sults in terms of clustering accuracy and speed. Our Caffe-

based (Jia et al., 2014) implementation of DEC is available

at https://github.com/piiswrong/dec.

2. Related work

Clustering has been extensively studied in machine learn-

ing in terms of feature selection (Boutsidis et al., 2009; Liu

& Yu, 2005; Alelyani et al., 2013), distance functions (Xing

et al., 2002; Xiang et al., 2008), grouping methods (Mac-

Queen et al., 1967; Von Luxburg, 2007; Li et al., 2004),

and cluster validation (Halkidi et al., 2001). Space does

not allow for a comprehensive literature study and we refer

readers to (Aggarwal & Reddy, 2013) for a survey.

One branch of popular methods for clustering is k-

means (MacQueen et al., 1967) and Gaussian Mixture

Models (GMM) (Bishop, 2006). These methods are fast

and applicable to a wide range of problems. However, their

distance metrics are limited to the original data space and

they tend to be ineffective when input dimensionality is

high (Steinbach et al., 2004).

Several variants of k-means have been proposed to address

issues with higher-dimensional input spaces. De la Torre &

Kanade (2006); Ye et al. (2008) perform joint dimension-

ality reduction and clustering by first clustering the data

with k-means and then projecting the data into a lower di-

mensions where the inter-cluster variance is maximized.

This process is repeated in EM-style iterations until conver-

gence. However, this framework is limited to linear embed-

ding; our method employs deep neural networks to perform

non-linear embedding that is necessary for more complex

data.

Spectral clustering and its variants have gained popular-

ity recently (Von Luxburg, 2007). They allow more flex-

ible distance metrics and generally perform better than k-

means. Combining spectral clustering and embedding has

been explored in Yang et al. (2010); Nie et al. (2011). Tian

et al. (2014) proposes an algorithm based on spectral clus-

tering, but replaces eigenvalue decomposition with deep

autoencoder, which improves performance but further in-

creases memory consumption.

Most spectral clustering algorithms need to compute the

full graph Laplacian matrix and therefore have quadratic

or super quadratic complexities in the number of data

points. This means they need specialized machines with

large memory for any dataset larger than a few tens of

thousands of points. In order to scale spectral clustering

to large datasets, approximate algorithms were invented to

trade off performance for speed (Yan et al., 2009). Our

method, however, is linear in the number of data points and

scales gracefully to large datasets.

Minimizing the Kullback-Leibler (KL) divergence be-

tween a data distribution and an embedded distribution has

been used for data visualization and dimensionality reduc-

tion (van der Maaten & Hinton, 2008). T-SNE, for instance,

is a non-parametric algorithm in this school and a paramet-

ric variant of t-SNE (van der Maaten, 2009) uses deep neu-

ral network to parametrize the embedding. The complexity

of t-SNE is O(n2), where n is the number of data points,

but it can be approximated in O(n log n) (van Der Maaten,

2014).

We take inspiration from parametric t-SNE. Instead of min-

imizing KL divergence to produce an embedding that is

faithful to distances in the original data space, we define

a centroid-based probability distribution and minimize its

KL divergence to an auxiliary target distribution to simul-

taneously improve clustering assignment and feature repre-

sentation. A centroid-based method also has the benefit of

reducing complexity to O(nk), where k is the number of

centroids.

3. Deep embedded clustering

Consider the problem of clustering a set of n points {xi ∈
X}ni=1

into k clusters, each represented by a centroid

µj , j = 1, . . . , k. Instead of clustering directly in the data

space X , we propose to first transform the data with a non-

linear mapping fθ : X → Z, where θ are learnable pa-

rameters and Z is the latent feature space. The dimen-

sionality of Z is typically much smaller than X in order

to avoid the “curse of dimensionality” (Bellman, 1961). To

parametrize fθ, deep neural networks (DNNs) are a natu-

ral choice due to their theoretical function approximation

properties (Hornik, 1991) and their demonstrated feature

learning capabilities (Bengio et al., 2013).

The proposed algorithm (DEC) clusters data by simultane-

ously learning a set of k cluster centers {µj ∈ Z}kj=1
in the

feature space Z and the parameters θ of the DNN that maps

data points into Z. DEC has two phases: (1) parameter ini-

tialization with a deep autoencoder (Vincent et al., 2010)

and (2) parameter optimization (i.e., clustering), where we

iterate between computing an auxiliary target distribution

and minimizing the Kullback–Leibler (KL) divergence to

https://github.com/piiswrong/dec
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it. We start by describing phase (2) parameter optimiza-

tion/clustering, given an initial estimate of θ and {µj}
k
j=1

.

3.1. Clustering with KL divergence

Given an initial estimate of the non-linear mapping fθ and

the initial cluster centroids {µj}
k
j=1

, we propose to im-

prove the clustering using an unsupervised algorithm that

alternates between two steps. In the first step, we com-

pute a soft assignment between the embedded points and

the cluster centroids. In the second step, we update the

deep mapping fθ and refine the cluster centroids by learn-

ing from current high confidence assignments using an aux-

iliary target distribution. This process is repeated until a

convergence criterion is met.

3.1.1. SOFT ASSIGNMENT

Following van der Maaten & Hinton (2008) we use the Stu-

dent’s t-distribution as a kernel to measure the similarity

between embedded point zi and centroid µj :

qij =
(1 + ‖zi − µj‖

2/α)−
α+1

2

∑
j′(1 + ‖zi − µj′‖2/α)−

α+1

2

, (1)

where zi = fθ(xi) ∈ Z corresponds to xi ∈ X after em-

bedding, α are the degrees of freedom of the Student’s t-
distribution and qij can be interpreted as the probability

of assigning sample i to cluster j (i.e., a soft assignment).

Since we cannot cross-validate α on a validation set in the

unsupervised setting, and learning it is superfluous (van der

Maaten, 2009), we let α = 1 for all experiments.

3.1.2. KL DIVERGENCE MINIMIZATION

We propose to iteratively refine the clusters by learning

from their high confidence assignments with the help of

an auxiliary target distribution. Specifically, our model is

trained by matching the soft assignment to the target distri-

bution. To this end, we define our objective as a KL diver-

gence loss between the soft assignments qi and the auxil-

iary distribution pi as follows:

L = KL(P‖Q) =
∑

i

∑

j

pij log
pij
qij

. (2)

The choice of target distributions P is crucial for DEC’s

performance. A naive approach would be setting each pi to

a delta distribution (to the nearest centroid) for data points

above a confidence threshold and ignore the rest. How-

ever, because qi are soft assignments, it is more natural

and flexible to use softer probabilistic targets. Specifically,

we would like our target distribution to have the following

properties: (1) strengthen predictions (i.e., improve clus-

ter purity), (2) put more emphasis on data points assigned

with high confidence, and (3) normalize loss contribution

of each centroid to prevent large clusters from distorting

the hidden feature space.

In our experiments, we compute pi by first raising qi to

the second power and then normalizing by frequency per

cluster:

pij =
q2ij/fj∑
j′ q

2

ij′/fj′
, (3)

where fj =
∑

i qij are soft cluster frequencies. Please

refer to section 5.1 for discussions on empirical properties

of L and P .

Our training strategy can be seen as a form of self-

training (Nigam & Ghani, 2000). As in self-training, we

take an initial classifier and an unlabeled dataset, then la-

bel the dataset with the classifier in order to train on its

own high confidence predictions. Indeed, in experiments

we observe that DEC improves upon the initial estimate

in each iteration by learning from high confidence predic-

tions, which in turn helps to improve low confidence ones.

3.1.3. OPTIMIZATION

We jointly optimize the cluster centers {µj} and DNN pa-

rameters θ using Stochastic Gradient Descent (SGD) with

momentum. The gradients of L with respect to feature-

space embedding of each data point zi and each cluster

centroid µj are computed as:

∂L

∂zi
=

α+ 1

α

∑

j

(1 +
‖zi − µj‖

2

α
)−1 (4)

×(pij − qij)(zi − µj),

∂L

∂µj

= −
α+ 1

α

∑

i

(1 +
‖zi − µj‖

2

α
)−1 (5)

×(pij − qij)(zi − µj).

The gradients ∂L/∂zi are then passed down to the DNN

and used in standard backpropagation to compute the

DNN’s parameter gradient ∂L/∂θ. For the purpose of dis-

covering cluster assignments, we stop our procedure when

less than tol% of points change cluster assignment between

two consecutive iterations.

3.2. Parameter initialization

Thus far we have discussed how DEC proceeds given ini-

tial estimates of the DNN parameters θ and the cluster cen-

troids {µj}. Now we discuss how the parameters and cen-

troids are initialized.

We initialize DEC with a stacked autoencoder (SAE) be-

cause recent research has shown that they consistently pro-

duce semantically meaningful and well-separated represen-

tations on real-world datasets (Vincent et al., 2010; Hin-

ton & Salakhutdinov, 2006; Le, 2013). Thus the unsuper-
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Table 1. Dataset statistics.
Dataset # Points # classes Dimension % of largest class

MNIST (LeCun et al., 1998) 70000 10 784 11%

STL-10 (Coates et al., 2011) 13000 10 1428 10%

REUTERS-10K 10000 4 2000 43%

REUTERS (Lewis et al., 2004) 685071 4 2000 43%

P

Q

L = KL(P||Q)

encoder decoder

DEC

input

reconstruction

feature

Figure 1. Network structure

vised representation learned by SAE naturally facilitates

the learning of clustering representations with DEC.

We initialize the SAE network layer by layer with each

layer being a denoising autoencoder trained to reconstruct

the previous layer’s output after random corruption (Vin-

cent et al., 2010). A denoising autoencoder is a two layer

neural network defined as:

x̃ ∼ Dropout(x) (6)

h = g1(W1x̃+ b1) (7)

h̃ ∼ Dropout(h) (8)

y = g2(W2h̃+ b2) (9)

where Dropout(·) (Srivastava et al., 2014) is a stochastic

mapping that randomly sets a portion of its input dimen-

sions to 0, g1 and g2 are activation functions for encoding

and decoding layer respectively, and θ = {W1, b1,W2, b2}
are model parameters. Training is performed by minimiz-

ing the least-squares loss ‖x − y‖2
2
. After training of one

layer, we use its output h as the input to train the next

layer. We use rectified linear units (ReLUs) (Nair & Hin-

ton, 2010) in all encoder/decoder pairs, except for g2 of the

first pair (it needs to reconstruct input data that may have

positive and negative values, such as zero-mean images)

and g1 of the last pair (so the final data embedding retains

full information (Vincent et al., 2010)).

After greedy layer-wise training, we concatenate all en-

coder layers followed by all decoder layers, in reverse

layer-wise training order, to form a deep autoencoder and

then finetune it to minimize reconstruction loss. The final

result is a multilayer deep autoencoder with a bottleneck

coding layer in the middle. We then discard the decoder

layers and use the encoder layers as our initial mapping be-

tween the data space and the feature space, as shown in

Fig. 1.

To initialize the cluster centers, we pass the data through

the initialized DNN to get embedded data points and then

perform standard k-means clustering in the feature space Z
to obtain k initial centroids {µj}

k
j=1

.

4. Experiments

4.1. Datasets

We evaluate the proposed method (DEC) on one text

dataset and two image datasets and compare it against other

algorithms including k-means, LDGMI (Yang et al., 2010),

and SEC (Nie et al., 2011). LDGMI and SEC are spec-

tral clustering based algorithms that use a Laplacian matrix

and various transformations to improve clustering perfor-

mance. Empirical evidence reported in Yang et al. (2010);

Nie et al. (2011) shows that LDMGI and SEC outperform

traditional spectral clustering methods on a wide range of

datasets. We show qualitative and quantitative results that

demonstrate the benefit of DEC compared to LDGMI and

SEC.

In order to study the performance and generality of dif-

ferent algorithms, we perform experiment on two image

datasets and one text data set:

• MNIST: The MNIST dataset consists of 70000 hand-

written digits of 28-by-28 pixel size. The digits are

centered and size-normalized (LeCun et al., 1998).

• STL-10: A dataset of 96-by-96 color images. There

are 10 classes with 1300 examples each. It also con-

tains 100000 unlabeled images of the same resolu-

tion (Coates et al., 2011). We also used the unlabeled

set when training our autoencoders. Similar to Doer-

sch et al. (2012), we concatenated HOG feature and a

8-by-8 color map to use as input to all algorithms.

• REUTERS: Reuters contains about 810000 English

news stories labeled with a category tree (Lewis et al.,

2004). We used the four root categories: corpo-

rate/industrial, government/social, markets, and eco-

nomics as labels and further pruned all documents that

are labeled by multiple root categories to get 685071
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Figure 2. Clustering accuracy for different hyperparameter choices for each algorithm. DEC outperforms other methods and is more

robust to hyperparameter changes compared to either LDGMI or SEC. Robustness is important because cross-validation is not possible

in real-world applications of cluster analysis. This figure is best viewed in color.

Table 2. Comparison of clustering accuracy (Eq. 10) on four datasets.

Method MNIST STL-HOG REUTERS-10k REUTERS

k-means 53.49% 28.39% 52.42% 53.29%

LDMGI 84.09% 33.08% 43.84% N/A

SEC 80.37% 30.75% 60.08% N/A

DEC w/o backprop 79.82% 34.06% 70.05% 69.62%

DEC (ours) 84.30% 35.90% 72.17% 75.63%

articles. We then computed tf-idf features on the 2000

most frequently occurring word stems. Since some

algorithms do not scale to the full Reuters dataset,

we also sampled a random subset of 10000 examples,

which we call REUTERS-10k, for comparison pur-

poses.

A summary of dataset statistics is shown in Table 1. For

all algorithms, we normalize all datasets so that 1

d
‖xi‖

2

2
is

approximately 1, where d is the dimensionality of the data

space point xi ∈ X .

4.2. Evaluation Metric

We use the standard unsupervised evaluation metric and

protocols for evaluations and comparisons to other algo-

rithms (Yang et al., 2010). For all algorithms we set the

number of clusters to the number of ground-truth categories

and evaluate performance with unsupervised clustering ac-

curacy (ACC ):

ACC = max
m

∑n

i=1
1{li = m(ci)}

n
, (10)

where li is the ground-truth label, ci is the cluster assign-

ment produced by the algorithm, and m ranges over all pos-

sible one-to-one mappings between clusters and labels.

Intuitively this metric takes a cluster assignment from an

unsupervised algorithm and a ground truth assignment and

then finds the best matching between them. The best map-

ping can be efficiently computed by the Hungarian algo-

rithm (Kuhn, 1955).

4.3. Implementation

Determining hyperparameters by cross-validation on a vali-

dation set is not an option in unsupervised clustering. Thus

we use commonly used parameters for DNNs and avoid

dataset specific tuning as much as possible. Specifically,

inspired by van der Maaten (2009), we set network dimen-

sions to d–500–500–2000–10 for all datasets, where d is

the data-space dimension, which varies between datasets.

All layers are densely (fully) connected.

During greedy layer-wise pretraining we initialize the

weights to random numbers drawn from a zero-mean Gaus-

sian distribution with a standard deviation of 0.01. Each

layer is pretrained for 50000 iterations with a dropout rate

of 20%. The entire deep autoencoder is further finetuned

for 100000 iterations without dropout. For both layer-wise

pretraining and end-to-end finetuning of the autoencoder

the minibatch size is set to 256, starting learning rate is

set to 0.1, which is divided by 10 every 20000 iterations,

and weight decay is set to 0. All of the above param-

eters are set to achieve a reasonably good reconstruction

loss and are held constant across all datasets. Dataset-

specific settings of these parameters might improve perfor-

mance on each dataset, but we refrain from this type of

unrealistic parameter tuning. To initialize centroids, we

run k-means with 20 restarts and select the best solution.
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(a) MNIST (b) STL-10

Figure 3. Each row contains the top 10 scoring elements from one cluster.

In the KL divergence minimization phase, we train with

a constant learning rate of 0.01. The convergence thresh-

old is set to tol = 0.1%. Our implementation is based

on Python and Caffe (Jia et al., 2014) and is available at

https://github.com/piiswrong/dec.

For all baseline algorithms, we perform 20 random restarts

when initializing centroids and pick the result with the

best objective value. For a fair comparison with previ-

ous work (Yang et al., 2010), we vary one hyperparameter

for each algorithm over 9 possible choices and report the

best accuracy in Table 2 and the range of accuracies in Fig.

2. For LDGMI and SEC, we use the same parameter and

range as in their corresponding papers. For our proposed

algorithm, we vary λ, the parameter that controls annealing

speed, over 2i× 10, i = 0, 1, ..., 8. Since k-means does not

have tunable hyperparameters (aside from k), we simply

run them 9 times. GMMs perform similarly to k-means so

we only report k-means results. Traditional spectral clus-

tering performs worse than LDGMI and SEC so we only

report the latter (Yang et al., 2010; Nie et al., 2011).

4.4. Experiment results

We evaluate the performance of our algorithm both quan-

titatively and qualitatively. In Table 2, we report the best

performance, over 9 hyperparameter settings, of each al-

gorithm. Note that DEC outperforms all other methods,

sometimes with a significant margin. To demonstrate the

effectiveness of end-to-end training, we also show the re-

sults from freezing the non-linear mapping fθ during clus-

tering. We find that this ablation (“DEC w/o backprop”)

generally performs worse than DEC.

In order to investigate the effect of hyperparameters, we

plot the accuracy of each method under all 9 settings (Fig.

2). We observe that DEC is more consistent across hyper-

parameter ranges compared to LDGMI and SEC. For DEC,

hyperparameter λ = 40 gives near optimal performance on

all dataset, whereas for other algorithms the optimal hyper-

parameter varies widely. Moreover, DEC can process the

entire REUTERS dataset in half an hour with GPU acceler-

ation while the second best algorithms, LDGMI and SEC,

would need months of computation time and terabytes of

memory. We, indeed, could not run these methods on the

full REUTERS dataset and report N/A in Table 2 (GPU

adaptation of these methods is non-trivial).

In Fig. 3 we show 10 top scoring images from each clus-

ter in MNIST and STL. Each row corresponds to a cluster

and images are sorted from left to right based on their dis-

tance to the cluster center. We observe that for MNIST,

DEC’s cluster assignment corresponds to natural clusters

very well, with the exception of confusing 4 and 9, while

for STL, DEC is mostly correct with airplanes, trucks and

cars, but spends part of its attention on poses instead of

categories when it comes to animal classes.

5. Discussion

5.1. Assumptions and Objective

The underlying assumption of DEC is that the initial clas-

sifier’s high confidence predictions are mostly correct. To

verify that this assumption holds for our task and that our

choice of P has the desired properties, we plot the mag-

nitude of the gradient of L with respect to each embedded

point, |∂L/∂zi|, against its soft assignment, qij , to a ran-

https://github.com/piiswrong/dec
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(a) Epoch 0 (b) Epoch 3 (c) Epoch 6

(d) Epoch 9 (e) Epoch 12
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(f) Accuracy vs. epochs

Figure 5. We visualize the latent representation as the KL divergence minimization phase proceeds on MNIST. Note the separation of

clusters from epoch 0 to epoch 12. We also plot the accuracy of DEC at different epochs, showing that KL divergence minimization

improves clustering accuracy. This figure is best viewed in color.

Table 3. Comparison of clustering accuracy (Eq. 10) on autoencoder (AE) feature.

Method MNIST STL-HOG REUTERS-10k REUTERS

AE+k-means 81.84% 33.92% 66.59% 71.97%

AE+LDMGI 83.98% 32.04% 42.92% N/A

AE+SEC 81.56% 32.29% 61.86% N/A

DEC (ours) 84.30% 35.90% 72.17% 75.63%

Figure 4. Gradient visualization at the start of KL divergence min-

imization. This plot shows the magnitude of the gradient of the

loss L vs. the cluster soft assignment probability qij . See text for

discussion.

domly chosen MNIST cluster j (Fig. 4).

We observe points that are closer to the cluster center (large

qij) contribute more to the gradient. We also show the raw

images of 10 data points at each 10 percentile sorted by qij .

Instances with higher similarity are more canonical exam-

ples of “5”. As confidence decreases, instances become

more ambiguous and eventually turn into a mislabeled “8”

suggesting the soundness of our assumptions.

5.2. Contribution of Iterative Optimization

In Fig. 5 we visualize the progression of the embedded rep-

resentation of a random subset of MNIST during training.

For visualization we use t-SNE (van der Maaten & Hinton,

2008) applied to the embedded points zi. It is clear that

the clusters are becoming increasingly well separated. Fig.

5 (f) shows how accuracy correspondingly improves over

SGD epochs.

5.3. Contribution of Autoencoder Initialization

To better understand the contribution of each component,

we show the performance of all algorithms with autoen-

coder features in Table 3. We observe that SEC and LD-

MGI’s performance do not change significantly with au-
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Table 4. Clustering accuracy (Eq. 10) on imbalanced subsample of MNIST.
❳

❳
❳
❳
❳
❳
❳
❳

❳
❳

Method

rmin
0.1 0.3 0.5 0.7 0.9

k-means 47.14% 49.93% 53.65% 54.16% 54.39%

AE+k-means 66.82% 74.91% 77.93% 80.04% 81.31%

DEC 70.10% 80.92% 82.68% 84.69% 85.41%

toencoder feature, while k-means improved but is still be-

low DEC. This demonstrates the power of deep embedding

and the benefit of fine-tuning with the proposed KL diver-

gence objective.

5.4. Performance on Imbalanced Data

In order to study the effect of imbalanced data, we sample

subsets of MNIST with various retention rates. For mini-

mum retention rate rmin, data points of class 0 will be kept

with probability rmin and class 9 with probability 1, with

the other classes linearly in between. As a result the largest

cluster will be 1/rmin times as large as the smallest one.

From Table 4 we can see that DEC is fairly robust against

cluster size variation. We also observe that KL divergence

minimization (DEC) consistently improves clustering ac-

curacy after autoencoder and k-means initialization (shown

as AE+k-means).

5.5. Number of Clusters
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Figure 6. Selection of the centroid count, k. This is a plot of Nor-

malized Mutual Information (NMI) and Generalizability vs. num-

ber of clusters. Note that there is a sharp drop of generalizability

from 9 to 10 which means that 9 is the optimal number of clusters.

Indeed, we observe that 9 gives the highest NMI.

So far we have assumed that the number of natural clusters

is given to simplify comparison between algorithms. How-

ever, in practice this quantity is often unknown. Therefore

a method for determining the optimal number of clusters is

needed. To this end, we define two metrics: (1) the standard

metric, Normalized Mutual Information (NMI), for evalu-

ating clustering results with different cluster number:

NMI (l, c) =
I(l, c)

1

2
[H(l) +H(c)]

,

where I is the mutual information metric and H is entropy,

and (2) generalizability (G) which is defined as the ratio

between training and validation loss:

G =
Ltrain

Lvalidation

.

G is small when training loss is lower than validation loss,

which indicate a high degree of overfitting.

Fig. 6 shows a sharp drop in generalizability when cluster

number increases from 9 to 10, which suggests that 9 is the

optimal number of clusters. We indeed observe the highest

NMI score at 9, which demonstrates that generalizability is

a good metric for selecting cluster number. NMI is highest

at 9 instead 10 because 9 and 4 are similar in writing and

DEC thinks that they should form a single cluster. This

corresponds well with our qualitative results in Fig. 3.

6. Conclusion

This paper presents Deep Embedded Clustering, or DEC—

an algorithm that clusters a set of data points in a jointly op-

timized feature space. DEC works by iteratively optimiz-

ing a KL divergence based clustering objective with a self-

training target distribution. Our method can be viewed as

an unsupervised extension of semisupervised self-training.

Our framework provide a way to learn a representation spe-

cialized for clustering without groundtruth cluster member-

ship labels.

Empirical studies demonstrate the strength of our proposed

algorithm. DEC offers improved performance as well as

robustness with respect to hyperparameter settings, which

is particularly important in unsupervised tasks since cross-

validation is not possible. DEC also has the virtue of linear

complexity in the number of data points which allows it to

scale to large datasets.
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Steinbach, Michael, Ertöz, Levent, and Kumar, Vipin. The

challenges of clustering high dimensional data. In New

Directions in Statistical Physics, pp. 273–309. Springer,

2004.



Unsupervised Deep Embedding for Clustering Analysis

Tian, Fei, Gao, Bin, Cui, Qing, Chen, Enhong, and Liu,

Tie-Yan. Learning deep representations for graph clus-

tering. In AAAI Conference on Artificial Intelligence,

2014.

van der Maaten, Laurens. Learning a parametric embed-

ding by preserving local structure. In International Con-

ference on Artificial Intelligence and Statistics, 2009.

van Der Maaten, Laurens. Accelerating t-SNE using tree-

based algorithms. JMLR, 2014.

van der Maaten, Laurens and Hinton, Geoffrey. Visualizing

data using t-SNE. JMLR, 2008.

Vincent, Pascal, Larochelle, Hugo, Lajoie, Isabelle, Ben-

gio, Yoshua, and Manzagol, Pierre-Antoine. Stacked de-

noising autoencoders: Learning useful representations in

a deep network with a local denoising criterion. JMLR,

2010.

Von Luxburg, Ulrike. A tutorial on spectral clustering.

Statistics and computing, 2007.

Xiang, Shiming, Nie, Feiping, and Zhang, Changshui.

Learning a mahalanobis distance metric for data cluster-

ing and classification. Pattern Recognition, 2008.

Xing, Eric P, Jordan, Michael I, Russell, Stuart, and Ng,

Andrew Y. Distance metric learning with application to

clustering with side-information. In NIPS, 2002.

Yan, Donghui, Huang, Ling, and Jordan, Michael I. Fast

approximate spectral clustering. In ACM SIGKDD,

2009.

Yang, Yi, Xu, Dong, Nie, Feiping, Yan, Shuicheng, and

Zhuang, Yueting. Image clustering using local discrim-

inant models and global integration. IEEE Transactions

on Image Processing, 2010.

Ye, Jieping, Zhao, Zheng, and Wu, Mingrui. Discrimina-

tive k-means for clustering. In NIPS, 2008.

Zeiler, Matthew D and Fergus, Rob. Visualizing and un-

derstanding convolutional networks. In ECCV. 2014.


