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Abstract

Recent work has shown that optical flow estimation can be
formulated as a supervised learning problem. Moreover, con-
volutional networks have been successfully applied to this
task. However, supervised flow learning is obfuscated by the
shortage of labeled training data. As a consequence, exist-
ing methods have to turn to large synthetic datasets for easily
computer generated ground truth. In this work, we explore if
a deep network for flow estimation can be trained without su-
pervision. Using image warping by the estimated flow, we de-
vise a simple yet effective unsupervised method for learning
optical flow, by directly minimizing photometric consistency.
We demonstrate that a flow network can be trained from end-
to-end using our unsupervised scheme. In some cases, our re-
sults come tantalizingly close to the performance of methods
trained with full supervision.

Introduction
Massive amounts of digital videos are generated every
minute. This has posed new challenges for effective video
analytics. Estimating pixel-level motions, also known as op-
tical flow, is a basic building block for early-stage video
analysis. Optical flow is a classic problem in computer vi-
sion and has many real-world applications, including au-
tonomous driving, video segmentation and video semantic
understanding (Menze and Geiger 2015). However, accurate
estimation of optical flow remains a challenging problem
(Sun, Roth, and Black 2014; Butler et al. 2012).

Deep learning has drastically advanced all frontiers of
AI, in particular computer vision. We have witnessed a cor-
nucopia of Convolutional Neural Networks (CNN) achiev-
ing superior performance in a large array of computer vi-
sion tasks, including image denoising, image segmentation
and object recognition. Several recent advances also al-
low for pixel-wise predictions like semantic segmentation
(Long, Shelhamer, and Darrell 2015) and trajectory anal-
ysis (Lin et al. 2017). However, the ravenous appetite to
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Figure 1: The presented network architectures of our Dense
Spatial Transform Flow (DSTFlow) network that consists of
three key components: localization layer based on a similar
structure of flowNet, sampling layer based on dense spatial
transform which is realized by a bilinear interpolation layer
in this paper and the final loss layer. All the layer weights
are learned end-to-end through backpropagation.

labeled data becomes the main limitation of deep learn-
ing methods. This is even pronounced for the problem ad-
dressed in this paper: optical flow estimation that needs
dense labels with per-pixel motion between two consecutive
frames. Getting such optical flow ground-truth for realistic
videos is extremely challenging (Butler et al. 2012). Hence
state-of-the-art deep learning methods (Fischer et al. 2015;
Mayer et al. 2016) turn to synthetically labeled dataset, by-
passing the tedious and difficult pixel-level labeling step. A
crowd-sourcing based study (Altwaijry et al. 2016) shows
that human participants are mainly relying on the global ap-
pearance cues for perceiving motion and human are less at-
tentive to the fine-grained pixel-level correspondences.

Is pixel-level supervision indispensable for learning opti-
cal flow? Recent work on learning from video has shown
that via some quality control, effective feature represen-
tation (Wang and Gupta 2015; Li et al. 2016) and even
cross-instance key-point matching (Zhou et al. 2016) can
be obtained by unsupervised or semi-supervised learning.
Another observation is that the human brain bears a vi-
sual short-term memory (VSTM) module (Hollingworth
2004), which is mainly responsible for understanding visual
changes, and an infant without any teaching by the age of
2.5 months is able to discern occlusion, containment, and
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covering events which requires motion understanding (Bail-
largeon 2004). These computational and biological studies
suggest that we can potentially learn optical flow without
(or with very little) ground-truth labels. In this work, we ex-
plore whether a neural network can be trained entirely based
on photometric consistency and without supervision.

Given two input images, our network starts with a local-
ization net using the FlowNet structure (Fischer et al. 2015).
Localization net outputs the pixel-level translation estima-
tion. This is fed into a bilinear sampling net to generate the
spatially warping feature map. Finally the photometric er-
ror between the warped feature map from the source image
and the target image is taken as the loss, measured by the
objective function widely used in learning-free variational
methods (Brox et al. 2004). Our network can be regarded as
a pixel-level embodiment tailored for optical flow of the re-
cently proposed Spatial Transformer Network (STN) (Jader-
berg et al. 2015), which is originally designed for object
level transformation modeling. Another fundamental differ-
ence is that STN learns the transformation in the context of
recognition using object level supervision, while our method
utilizes a loss in a fully unsupervised setting.

The main result of our paper is that the deep network
trained using our unsupervised scheme, approaches the level
of performance of fully supervised training. We believe that
this is largely due to our end-to-end training, which allows
the network to leverage context information within a large
region for inferring local motion. To this end, we summarize
our main contributions as follows.

1) To our best knowledge, this is one of the first works for
learning optical flow using a deep neural network without
any supervision. Our work is fundamentally different from
the state-of-the-art learning-free methods DeepFlow (Wein-
zaepfel et al. 2013) or EpicFlow (Revaud et al. 2015), and
the supervised deep learning approach FlowNet (Fischer et
al. 2015) and DispNet (Mayer et al. 2016).

2) We propose a novel optical flow network which can be
seen akin to the pipeline of Spatial Transformer Network
(Jaderberg et al. 2015), leveraging the loss function used
in variational methods (Brox et al. 2004) without supervi-
sion, for end-to-end unsupervised learning for optical flow
estimation. While the gains are modest, we believe this is a
promising direction for future exploration.

3) Finally, to enable comparison and further innovation,
we will provide a public Caffe (Jia et al. 2014) implementa-
tion of our method after the release of this paper.

Related work

We address the problem of unsupervised learning of optical
flow using a convolutional network from videos. To begin
with, we provide a brief survey of recent methods on opti-
cal flow estimation and learning from video. Our method is
inspired by the spatial transformer network (Jaderberg et al.
2015), which are discussed in the last part of this section.

Optical flow Optical flow is a classic problem in com-
puter vision. Despite the abundant literature on the topic, it
is still very challenging (Sun, Roth, and Black 2014). Many
optical flow methods are based on variational method which

formulated as an energy minimization problem (Horn and
Schunck 1981). This paradigm relies on the photometric
consistency of color and gradient, as well as spatial smooth-
ness of natural images. While being attractive, such methods
can get stuck in local minima with error accumulation across
scales, and tend to fail against large displacements.

To tackle this issue, Large Displacement Optical Flow
(LDOF) (Brox and Malik 2011) combines local descriptor
matching with the variational method. Local descriptors e.g.
HOG (Mikolajczyk and Schmid 2005) are extracted in rigid
local frames and matched across the images. These match-
ing results are used to initialize flow estimation, which are
further optimized using variational method within a coarse-
to-fine pyramid. Xu et. al (Xu, Jia, and Matsushita 2012)
further integrates more advanced matching methods such as
SIFT-flow (Liu, Yuen, and Torralba 2011) and PatchMatch
(Barnes et al. 2010) to increase the accuracy of flow.

HOG-like features are recently replaced by a CNN-
inspired patch matching scheme: DeepMatching (Revaud
et al. 2016), leading to state-of-the-art DeepFlow method
(Weinzaepfel et al. 2013). DeepFlow follows a fine-to-
coarse procedure. It starts with local patch matching, builds
a progressively lower resolution matching map via max-
pooling (LeCun et al. 1998), and followed by the tradi-
tional energy minimization framework. The successive work
EpicFlow (Revaud et al. 2015) improves DeepFlow by
leveraging contour cues to constrain the flow map. This
is done by a sparse-to-dense interpolation from an initial
set of matches, where the weights are defined by edge-
aware geodesic distance. Both DeepFlow and EpicFlow are
learning-free in the sense that features are hand-crafted and
no learning is involved.

While optical flow estimation is well-established, little
has been done using end-to-end convolutional network until
recent work (Fischer et al. 2015). Rather than rely on hand-
designed features, FlowNet (Fischer et al. 2015) poses opti-
cal flow as a supervised learning task and utilize an end-to-
end convolutional network to predict the flow field. DispNet
(Mayer et al. 2016) extends this idea to disparity and scene
flow estimation. However, these neural network methods re-
quire strong supervision for training. Specifically, training of
both the FlowNet and DispNet is enabled by large synthet-
ically generated datasets. In this work, we explore whether
unsupervised learning can be used instead.

Finally we emphasize learning to match with CNN is not
a brand-new idea (Zbontar and LeCun 2015; Zagoruyko and
Komodakis 2015; Fischer et al. 2015). Unlike learning to
match local patches (Zbontar and LeCun 2015; Zagoruyko
and Komodakis 2015), our method directly predict the pixel-
level offsets of an input frame pair. While our network is
similar to (Fischer et al. 2015), our training is completely un-
supervised. To our best knowledge, the most relevant work
is (Zhou et al. 2016). Our method differs from (Zhou et al.
2016) in three aspects: i) they leverage additional 3-D CAD
model to establish the cross-instance correspondence chain,
and as a result the training images need to be similar or in
the same category as the available CAD models; ii) they use
a cycle-consistency loss which need to involves four images
one time; iii) they mainly address the cross-instance match-
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ing problem and do not focus on the optical flow scenario
which usually involve consecutive video frames. Therefore,
our contribution is orthogonal to these previous work.

Learning from video There is an emerging interest for
learning visual representations from video itself, in a semi-
supervised or unsupervised manner. Seminal work (van
Hateren and Ruderman 1998; Hurri and Hyvarinen 2003) are
based on Independent Component Analysis (ICA) using the
concept of temporal coherence. Srivastava et. al (Srivastava,
Mansimov, and Salakhutdinov 2015) use the Long Short
Term Memory (LSTM) (Hochreiter and Schmidhuber 1997)
Encoder-Decoder framework to learn video representations.
Goroshi et. al (R. Goroshin and LeCun 2015) propose to
perform feature learning from videos by imposing the con-
straint that temporally close frames should have similar fea-
ture representations. Moreover, Wang and Gupta (Wang and
Gupta 2015) learn general-purpose CNN feature by enforc-
ing that the tracked patches in different frames should have a
similar visual representation. (Agrawal, Carreira, and Malik
2015) exploits the awareness of ego-motion as supervision
for feature learning, whereby the global transformation re-
garding the ego-motion is assumed given by camera pose.
However, while in previous approaches the training objec-
tive was used as a surrogate to encourage the network to
learn a useful representation, our primary goal is to train an
optical flow model at pixel-level, and the learned representa-
tion associated with the network is simply a useful byprod-
uct. In this spirit, our work is akin to the idea of learning
edge detector from video (Li et al. 2016). However, the de-
signed network and objective are both very different as edge
detection once involves only a single image while optical
flow need to match pixels across a pair of frames.

Learning by disentangling pose and identity Opti-
cal flow seeks to estimate the motion of pixels or local
patches. However, vanilla CNNs only have limited pre-
defined pooling mechanism to handle spatial variations.
To enable more flexible spatial transformation capabili-
ties, (Hinton, Krizhevsky, and Wang 2011) learn a hierar-
chy of units that locally transform their input for gener-
ating small rotations to an input stereo pair. (Cheung et
al. 2014) propose an auto-encoder with decoupled seman-
tic units representing pose and identity. More recently, Spa-
tial Transformer Network (STN) is proposed by (Jaderberg
et al. 2015) as an attention mechanism (Mnih et al. 2014;
Ba, Mnih, and Kavukcuoglu 2015) capable of warping the
inputs to increase recognition accuracy. It takes as input the
image and produces the parameters for a pre-determined
transformation model which is used in turn to transform the
image. (Altwaijry et al. 2016) uses STN for image similarity
verification as the model can be trained with standard back-
propagation, unlike the attention mechanisms of (Mnih et
al. 2014; Ba, Mnih, and Kavukcuoglu 2015) that relied on
reinforcement learning techniques. Our method is inspired
by the paradigm of STN and injects a sampling layer to the
network which allows for end-to-end backpropagation.

Network and Training Procedure
Using a pair of images as input, our optical flow network can
be conceptually regarded as a Spatial Transformation Net-

Figure 2: Information flow of our neural network for un-
supervised optical flow learning. The convolutional layers
in the middle are similar to the the simplified version of
FlowNet (see Fig.2 in (Fischer et al. 2015)). As a result, sim-
ilar multi-scale loss summation is used to train the network.

work (Jaderberg et al. 2015) with three major components:
i) the localization part which outputs the pixel-level trans-
lation i.e. flow as shown in Fig.1 via a FlowNet structure;
ii) a bilinear sampling net for generating the warped frame
via the translation output by the localization net; iii) the final
layer involving a loss function regarding the discrepancy be-
tween the target image and the warped one from the source
image. The loss is similar to the classic objective function
used in previous work (Brox et al. 2004) based on the vari-
ational framework, but we use it to train the flow network
weights rather than estimating the flow map. We term our
network as Dense Spatial Transform Flow (DSTFlow) (see
Fig.1 for an overview), which is elaborated as follows:

Localization net We adopt the network structure from
FlowNet, and specifically the FlowNetSimple (see Fig.2 in
(Fischer et al. 2015)) as the network for computing the pixel-
level offset. FlowNet is so-far the few network allowing for
end-to-end flow map estimation i.e. pixel offset computing
and the model is differentially trainable by backpropagation.
One potential alternative is the network presented in Fig.2 of
the work (Zhou et al. 2016) which was intended for cross-
instance key point matching. We leave it for future work.

The localization layers take a pair of images as input, and
output the x-y flow fields. For simplicity and generality, we
stack both input images together with 3 × 2 = 6 chan-
nels, which we borrow from the FlowNetSimple (Fischer
et al. 2015). As shown in Fig.2, it is comprised by 10 con-
volutional layers followed by a refinement whose main in-
gredient is ‘upconvolutional’ a.k.a. ‘deconvolutional’ layers
(Zeiler and Fergus 2014), which can be seen as an unpool-
ing (extending the feature maps, as opposed to pooling) and
a convolution operations. We concatenate the ‘deconvolu-
tional’ output with the feature maps from the corresponding
‘conv’ layer and an unpooling flow prediction from previ-
ous scale. By doing so, both the high-level and fine-grained
information for the prediction layer can be well maintained.

Sampling net The sampling layer helps warp the input
feature map to a transformed output map using the output
transformation from the localization net. Specifically, each
(xs

i , y
s
i ) coordinate defines the spatial location in the input

feature map U where a sampling kernel is applied to get
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the value at a particular pixel i in the output feature map V .
While U c

nm is the value at location (m,n) of the input feature
map along channel c, and V c

i is the output one for pixel i.
To allow differentiable stochastic (sub)-gradient descent, we
adopt a bilinear sampling kernel:

V
c

i =

H∑

n=1

W∑

m=1

U
c

nmmax(0, 1− |xs

i −m|)max(0, 1− |ys

i − n|)

Backpropagation is done by computing partial derivatives:

∂V c

i

∂Uc
nm

=

H
∑

n=1

W
∑

m=1

max(0, 1 − |x
s

i
− m|)max(0, 1 − |y

s

i
− n|)

∂V c

i

∂xs

i

=

H
∑

n=1

W
∑

m=1

U
c

nm
max(0, 1 − |y

s

i
− n|)

⎧

⎪

⎪

⎨

⎪

⎪



0 if |m − xs

i
| ≥ 1

1 if m ≥ xs

i

−1 if m < xs

i

where
∂V c

i

∂ys

i

can be computed in a similar fashion.

Note that when we get the flow2 (see the right most brown
arrow in Fig.2) whose size is one fourth of the original
frame, we neither continue to repeat the deconv operation
nor just simply enlarge the size by traditional bilinear inter-
polation. Instead, we make an enlargement through spatial
bilinear transform which is a special case of our dense spa-
tial transform, not only saving cost both on time and space
via simplifying the network, but also incorporating enlarge-
ment into the end-to-end training of whole network. In an-
other word, we can seamlessly integrate the traditional bilin-
ear interpolation into our network pipeline.

Loss layer We follow the traditional loss function used
in learning-free variational methods (Brox et al. 2004; Brox
and Malik 2011) which resemble the original formulation of
(Horn and Schunck 1981). This is also motivated by the very
recent work (Chen and Koltun 2016) which shows that such
flow objective itself is sufficiently powerful to produce accu-
rate mappings even in the presence of large displacements.
It combines a data term that assumes constancy over time of
some image property and a spatial (and often smooth) term
modeling how the flow is expected to vary across image.
The data loss measures the discrepancy between one input
image and the warped image from the other image, based on
the predicted optical flow field. The smooth term models the
difference among the neighboring flow predictions. Here we
could interpret the loss as a surrogate relating to the desired
properties of the ground-truth, i.e. while we do not know
what the ground-truth is, we know how it should behave.

For image I1 and I2, as a common core feature of most
optical flow algorithms, we choose to model grey and gradi-
ent constancy by a Charbonnier penalty (Bruhn and Weick-

ert 2005) Ψ(s) =
√

(s2 + 0.0012): a differentiable variant
of the absolute value, and a robust convex function against
outliers and noises. It is also recommended by recent sys-
tematic evaluation in (Sun, Roth, and Black 2014).

ℓD =

∫

Ω

Ψ(|I2(x+ w)− I1(x)|
2

+ γ|∇I2(x+ w)−∇I1(x)|
2)dx (1)

The smooth term is modeled by:

ℓS =

∫

Ω

Ψ(|∇u(x)|2 + |∇v(x)|2)dx (2)

Table 1: Overview of datasets. GT denotes Ground Truth.
‘Flying Chairs’ is the synthetically generated dataset. KITTI
has two versions. Note in KITTI, single-view (s-view) sam-
ples are in pair and labeled with ground truth, and the multi-
view (m-view) is an extension set without ground truth. Note
‘Sintel Clean’ and ‘Sintel Final’ have the same size.

Dataset
Flying
chair

KITTI Benchmark Suite
Sintel2012 2015

s-view m-view s-view m-view

#frames 45744 778 8124 800 8400 1628
#pairs 22872 389 7736 400 8000 1593

#train pairs 22232 194 — 200 — 1041
#test pairs 640 195 — 200 — 552

has GT? yes sparse no sparse no yes

Incorporating the above terms, the overall loss as termed
by Dense Spatial Transform (DST) loss is1:

ℓdst = ℓD + αℓS (3)

Multi-scale loss accumulation FlowNet can output flow
in multi-scale which improve the predicted flow layer by
layer using multi-scale ground truth. Similarly, we im-
pose our DST loss on multi-scale input frame after down-
sampling. As shown in Fig.2, there are in total six loss lay-
ers. In summary, we use the summed loss to guide the in-
formation flow over the network. The parameters are up-
dated via standard backpropagation since all parts are dif-
ferentially trainable.

One shall note that our loss is dramatically different from
the endpoint error (EPE) loss used in the supervised learning
FlowNet, i.e. the Euclidean distance between the predicted
flow vector and the ground truth, averaged over all pixels.

Training Akin to the Flownet, we perform data augmen-
tation to avoid overfitting by imposing mirror, translate, ro-
tate, scaling (spatial augmentation), and contrast, gamma
and brightness transformation (chromatic augmentation).

We use Rectified Linear Units (ReLU) for all our non-
linearities, and train the networks with Stochastic Gradient
Descent. To handle the six multi-scale loss layers, we adopt
loss weight schedule (Mayer et al. 2016) which gradually
trains the network from bottom loss layers to top ones, until
adding them up for further training.

Finally we shall point out that although our network
consist of three parts and seems more complicated than
FlowNet, there will be only localization net involved dur-
ing test stage, which runs as fast the same as the FlowNet.

Experiments and Discussion

Datasets and peer methods

We evaluate our method on three modern datasets:
MPI-Sintel dataset (Butler et al. 2012) is obtained from

an animated movie which pays special attention to realis-
tic image effects. It contains multiple sequences including

1One can further add the matching term as used in (Brox and
Malik 2011; Revaud et al. 2016): �M =

∫
Ω
Ψ(|f1(x)−f2(x)|

2)dx
where f1(x) and f2(x) denote for feature vector extracted by cer-
tain means such as Sift and CNN. We leave this for future work.
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Table 2: Average endpoint errors i.e. EPE (in pixels) over occluded (OCC) and non-occluded areas (NOC) of our networks
compared to peer methods and the variation of our method on different datasets. DSTFlow(C+K) denotes train DSTFlow using
‘Chairs’ first, and then refine with ‘KITTI’. DSTFlow(C+S) denotes train DSTFlow using ‘Chairs’ first, and then refine with
‘Sintel’. f1-all:percentage of optical flow outlier over all the pixel. It counts the point correct only if the end-to-end error of this
point is < 3px or < 5% compared with the ground truth. Note the numbers with asterisk are the results of the networks on data
they were trained on, and hence are not directly comparable to other results as they tend to overfitting.

Method
Chairs KITTI2012 KITTI2015 Sintel Clean Sintel Final Time (Sec)

testing
train test train test train test train test

CPU GPU
occ noc occ noc occ noc fl-all fl-all occ noc occ noc occ noc occ noc

Epicflow 2.94 3.47 1.48 3.8 1.5 9.57 4.45 0.28 0.27 2.40 1.23 4.12 1.36 3.70 2.63 6.29 3.06 16 —
Deepflow 3.53 4.58 2.22 5.8 1.5 13.89 6.75 0.31 0.30 3.31 1.78 5.38 1.77 4.56 3.07 7.21 3.34 17 —

EPPM — — — 9.2 2.5 — — — — — — 6.49 2.68 — — 8.38 4.29 — 0.2
LDOF 3.47 13.73 4.62 12.4 5.6 18.23 9.05 0.37 — 4.29 2.83 7.56 3.43 6.42 4.41 9.12 5.04 65 2.5

FlowNetS(C+S) 3.04 7.52 4.25 9.1 5.0 14.19 8.12 0.51 — *3.66 *2.82 6.96 — *4.44 *3.99 7.76 — — 0.08

DSTFlow(Chairs) 5.11 16.98 9.21 — — 24.30 14.23 0.52 — 6.93 5.05 10.40 5.20 7.82 5.97 11.11 5.92 — 0.08
DSTFlow(KITTI) 6.86 10.43 3.29 12.4 4.0 16.79 6.96 0.36 0.39 7.10 5.26 10.95 5.87 7.95 6.16 11.80 6.70 — 0.08
DSTFlow(Sintel) 5.68 15.78 8.24 — — 23.69 13.88 0.55 — *6.16 *4.17 10.41 5.30 *7.38 *5.45 11.28 6.16 — 0.08
DSTFlow(C+K) 5.86 16.17 8.32 — — 22.93 12.81 0.48 — 7.51 5.74 — — 8.29 6.55 — — — 0.08
DSTFlow(C+S) 5.52 17.17 9.52 — — 25.98 15.89 0.53 — *6.47 *4.61 10.84 5.62 *6.81 *4.91 11.27 6.02 — 0.08

large/rapid motions. We use both the ‘clean’ and ‘final’ ver-
sion images to train the model.

KITTI dataset (Geiger, Lenz, and Urtasun 2012) con-
tains photos shot in city streets from a driving platform.
It offers greater challenges regarding with large displace-
ments, different materials, a large variety of lighting con-
ditions. ‘KITTI2012’ (Geiger et al. 2013) consists of 194
training pairs and 195 test pairs while KITTI2015 (Menze
and Geiger 2015) consists of 200 training pairs and 200 test
pairs. In both datasets, there are also multi-view extension
datasets which is 20 frames per scene but with no ground
truth provided. In our experiment, we make the multi-view
extended versions (without ground truth) of the two datasets
together as the training dataset with 13372 image pairs, and
use pairs with ground truth as our validation set with 194
pairs for ‘KITTI2012’ and 200 for ‘KITTI2015’ respec-
tively. Finally we test our model online using the testing pro-
tocol from KITTI website2. Note that we have excluded the
pairs with ground truth and their neighboring two frames in
multi-view datasets for unsupervised training to avoid the
mixture of training and testing samples.

Flying Chairs The dataset (Fischer et al. 2015) is a re-
cently released synthetic benchmark which consists of seg-
mented background images from Flickr on which the ran-
dom images of chairs from (Aubry et al. 2014) are over-
layed. Flownet (Fischer et al. 2015) has shown that it can be
used to train a model as supervision, although it is created
artificially. As the same with (Fischer et al. 2015) we split
the dataset into 22232 samples (i.e. image pairs) for training
and 640 samples for testing, respectively.

An overview of used datasets is given in Table 1. More
details for the datasets can be found in (Fischer et al. 2015).

We compare state-of-the-art methods including EpicFlow
(Revaud et al. 2015), EPPM (Bao, Yang, and Jin 2014),
DeepFlow (Weinzaepfel et al. 2013), LDOF (Brox and Ma-
lik 2011), FlowNet (Fischer et al. 2015). For the supervised
learning method FlowNet, we use the model publicly avail-
able on website which is termed as FlowNet+ft in (Fischer et

2http://www.cvlibs.net/datasets/kitti/user login.php

(a) Raw image (b) Ground truth (c) DSTFlow

(d) FlowNet (e) DeepFlow (f) EpicFlow

Figure 3: Examples of flow prediction on Chairs.

al. 2015). While here, we term it as FlowNet(C+S) which is
trained on ‘Chairs’ dataset and further finetuned on ‘Sintel’.
Note other peer methods are all learning-free.

Training and evaluation protocol

For loss function, we set α = 2 in Eq.3 and γ = 1 in Eq.1. In
line with (Fischer et al. 2015), we adopt the Adam method
and set its parameters β1 = 0.9 and β2 = 0.999. The start
learning rate λ is set by 1e−4 which decreases half for every
6000 iterations after first 30000 iterations. The batch size is
set to 64. For finetune, we start with a learning rate 1e− 5.

Note that since ‘Flying Chairs’ has abundant samples, we
tentatively use it to initialize our model from scratch using
our unsupervised training procedure, and then finetune the
model using the ‘KITTI’ and ‘MPI-Sintel’ data for perfor-
mance evaluation on these two datasets respectively.

Results and discussion

The evaluation results regarding with the endpoint error
(EPE) on the training and testing sets are reported in Table
2. Visual results are presented in Fig.3, Fig.4, Fig.5 for the
dataset ‘Flying Chairs’, ‘KITTI2012’ and ‘Sintel’ respec-

1499



(a) Raw image (b) Ground truth

(c) DSTFlow (d) FlowNet

(e) DeepFlow (f) EpicFlow

Figure 4: Examples of flow prediction on KITTI2012.

(a) Raw image (b) Ground truth

(c) DSTFlow (d) FlowNet

(e) DeepFlow (f) EpicFlow

Figure 5: Examples of flow prediction on Sintel.

tively. Our method DSTFlow is trained on the three datasets
respectively. To visualize the flow fields, we use the tool pro-
vided by Sintel (Butler et al. 2012). Flow direction is en-
coded with color and magnitude with color intensity.

Based on the quantitative results in Table 2, we present
our analysis for each variant of our method respectively:

DSTFlow(Chairs) It means the model is trained on
the Flying Chairs dataset by unsupervised learning. DST-
Flow(Chairs) achieves a reasonable performance on the test
set. Note that on the very challenging benchmark ‘Sintel Fi-
nal’, it performs very close to LDOF (Brox and Malik 2011),
and on the ‘KITTI2015’ training set, it also achieves simi-
lar performance compared with FlowNet on the metric f1-
all. These results are encouraging especially considering we
only use computer generated data for unsupervised learning.

DSTFlow(KITTI) and DSTFlow(C+K) We also train
our model on the ‘KITTI’ data. The label information is very
sparse on KITTI and a very small ratio of samples have label
information. Unsupervised learning is favored in such cases.

Specifically, we test two variants. DSTFlow(KITTI) de-

notes we use the filtered multi-view (without ground truth)
data that consists of 13372 image pairs as the training data
for unsupervised learning. Though the training set size is
smaller than ‘Flying Chairs’, it is significantly larger than
the hundreds of labeled image pairs in the KITTI dataset. In
contrast to DSTFlow(Chairs), it is trained on natural images.
The other version DSTFlow(C+K) is the model first trained
on the ‘Flying Chairs’ data and then refined by the ‘KITTI’
data, all in an unsupervised setting. We observe that in the
finetuning stage, it takes less iterations to get reasonable ob-
jective. It is also notable that DSTFlow(KITTI) outperforms
the learning-free method LDOF on both ‘KITTI’ 2012 and
2015, and even slightly better than the supervised learning
method FlowNet on the test set of ‘KITTI2012’ for the ‘non-
occluded’ case. On the training set of ‘KITTI2015’, DST-
Flow(KITTI) also performs competitively against its super-
vised counterpart FlowNet.

DSTFLOW(Sintel) and DSTFlow(C+S) Although Sin-
tel dataset only provides 1041 pairs of images for train-
ing, we still train a model from scratch on sintel by impos-
ing extensive data augmentation which is termed as DST-
FLOW(Sintel). DSTFlow(C+S) denotes training the model
using the ‘Flying Chairs’ data and finetuning the model us-
ing the ‘Sintel’ data. Though both models perform better on
the training set, they both degrade on the testing set com-
pared with DSTFlow(Chairs).

Potential on larger dataset without labeling Though at
present, our unsupervised model does not surpass state-of-
the-art supervised learning based models, we believe there
is some space to explore this possibility. The behind logic
is that currently the training datasets even for unsupervised
learning still have very limited size, e.g. even for the syn-
thetic dataset ‘Flying Chairs’, the number of image pairs is
less than 23000. Such status quo might not give full potential
to the unsupervised flow network. In this spirit, we conjec-
ture the unsupervised optical flow network can be further
improved given more training data without supervision.

Conclusion and Outlook

We have presented an end-to-end differentiable optical flow
network trained in a unsupervised fashion, which to our
knowledge is the first network for unsupervised optical flow
learning. Though its current performance slightly lags be-
hind state-of-the-arts, we believe it is a promising direction
due to the possibility of leveraging massive readily available
video data , and new loss function under the proposed frame-
work. One immediate future work is integrating the match-
ing term in (Brox and Malik 2011) for loss function.
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