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ABSTRACT The detection of abnormal electricity consumption behavior has been of great importance in

recent years. However, existing research often focuses on algorithm improvement and ignores the process of

obtaining features. The optimal feature set, which reflects customers’ electricity consumption behavior, has

a significant influence on the final detection results. Moreover, it is not straightforward to obtain datasets

with label information. In this paper, a method based on feature engineering for unsupervised detection

of abnormal electricity consumption behavior is proposed. First, the original feature set is constructed by

brainstorming in the feature engineering step. Then, the optimal feature set, which reflects the customers’

electricity consumption behavior, is obtained by features selected based on the variance and similarity

between them. After that, in the abnormal detection step, a density-based clustering algorithm, in which

the best clustering parameters are selected through iteration and evaluation, combined with unsupervised

clustering evaluation indexes, is used to detect abnormal electricity consumption behaviors. Finally, using the

load dataset of an industrial park, several typical feature strategies are applied for comparison with the feature

engineering proposed in this paper. To perform the evaluation, the label information of abnormal behaviors

is obtained by combining the original electricity consumption behavior detection results with abnormal data

injections. The abnormal detection method proposed has given good results and outperformed typical feature

strategies in an effective and generalizable way.

INDEX TERMS Abnormal detection, electricity consumption behavior, feature engineering, maximal

information coefficient, unsupervised learning.

I. INTRODUCTION

With the widespread use of smart meters and the con-

tinuous development of advanced metering infrastructures

(AMI), utilities are able to acquire fine-grained data about the

real electricity consumption of end-users [1], [2]. Moreover,

research on anomaly detection for electricity consumption

behavior based on data from smart meters has gained exten-

sive attention [3], [4]. Anomaly detection can regulate cus-

tomers’ electricity consumption behavior, reduce the losses

of power utilities, and maintain the security of the smart

grid [4], [5]. The data from smart meters indirectly reflect

customers’ electricity consumption behavior, and the essence

of anomalous behavior detection is to distinguish abnormal

data in the electricity consumption dataset [6], [7]. Generally,
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the data in abnormal detection include bad data and non-

technical loss (NTL) data, which are directly reflected in the

readings of smart meters. Nevertheless, there are fundamental

differences between bad data and NTL data. Bad data include

missing data as well as abnormal electricity consumption

patterns caused by force majeure in the process of data col-

lection, transmission, temporary power outages, or business

rectification [3]. The generation of bad data is inevitable,

objective, and temporary. The data in NTL are generated

by electricity theft under specific strategies, including meter

tampering, network intrusion, and measurement interruption,

which have the characteristics of continuity, subjectivity, and

illegality [8].

The problems with bad data, such as missing data, repeated

data, and exceptions, are easy to find and handle in the process

of data cleaning [9]. However, because of the large amount

of data, distinguishing bad data manually without a unified
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standard is subjective, and abnormal electricity consumption

patterns in bad data cannot be distinguished effectively from

normal patterns. At the same time, unplanned electricity con-

sumption in bad data and electricity theft in NTL have similar

performance on load curves and similar detection methods.

Therefore, the abnormal electricity consumption patterns in

bad data and electricity theft in NTL all belong to the category

of abnormal electricity consumption behavior.

Current research on abnormal electricity consumption

behavior detection generally follows the process of ‘‘feature

acquisition—abnormal detection’’ [10]–[12]. A feature, also

called an attribute or variable, represents a property of a

process or system that has beenmeasured or constructed from

the original input variables [13]. Through different feature

strategies, a series of electricity consumption behavior fea-

tures are obtained from the data set and are used to train

classifiers or to perform cluster analysis. However, existing

research mainly focuses on the improvement of classification

and clustering algorithms, while research on feature strategies

is not a popular issue. ‘‘Data and features determine the

upper limit of machine learning, while models and algo-

rithms only approach this upper limit’’ [14]. The feature set,

which can reflect customers’ electricity consumption behav-

ior based on load data, has played a decisive role in follow-up

research [15]. In fact, in two recent research reviews [3], [16],

feature engineering is considered to be a challenging field that

has been ignored in previous studies.

Feature engineering mainly focuses on the mining and

analysis of electricity consumption and load data in the exist-

ing research. Features can be divided into two categories

according to whether they are interpretable. One is the cat-

egory of interpretable features, such as the variability index,

the daily average load, and the peak-to-valley time. These

features generally rely on professional knowledge to execute

feature construction or adopt specific strategies to select fea-

tures from the commonly used electricity consumption fea-

ture set. The other is the category of noninterpretable features

generated by machine learning or deep learning algorithms,

such as a deep confidence network [9], an autoencoder [17],

or a convolutional neural network [18]. Obtaining a feature

set that can reflect customers’ electricity consumption is

the first step in detecting abnormal electricity consumption.

The features obtained by different feature strategies lead to

vast differences in the evaluation of anomaly detection algo-

rithms [19]–[21]. At present, there are several problems in the

research of customer electricity use features. The process of

constructing the electricity behavior feature set relies heavily

on professional knowledge. Features selected by experience

have the disadvantages of subjectivity and one-sidedness.

Additionally, customers have inherent electricity consump-

tion characteristics, and unified selection of features ignores

the differences between customers and can lead to the loss of

crucial information. Deep learning algorithms are a popular

research topic in feature engineering and are very effective

on feature engineering datasets. However, almost all of them

are based on a sample data set and require the dataset with

labels for model training in supervised learning. The number

of layers and parameters of deep learning algorithms means

that researchers must carry out experiments continuously,

and the extracted features are not interpretable. The deep

learning algorithms cannot be adjusted adaptively and have

some limitations when facing a new dataset.

After feature acquisition, the methods of detection can be

divided into supervised and unsupervised methods according

to whether label information is available in the dataset. Super-

vised methods include various classifiers and neural network

models, such as support vector machines [17], [22], extreme

learning machines [23], random forests [24], and deep learn-

ing algorithms. Unsupervised methods primarily include a

variety of clustering algorithms, e.g., k-means clustering [25],

fuzzy clustering [26], and other improved clustering meth-

ods [2], [27], [28]. However, as mentioned above, the labels

of abnormal electricity consumption data in most datasets are

difficult to obtain. Moreover, there is no standard to judge

whether the customer data represent normal electricity con-

sumption behavior and manual labeling is difficult to work

that lacks reliability [3]. Therefore, supervised methods have

certain limitations in practice, and unsupervised methods are

more suitable for actual needs.

In order to solve the above problems of features acqui-

sition in abnormal electricity consumption behavior detec-

tion, an unsupervised abnormal detection method based on

feature engineering for electricity consumption behaviors

is proposed. The proposed method consists of three parts:

data preparation, feature engineering, and anomaly detection.

First, data preprocessing is carried out to clean the data, and it

is a vital and indispensable step. Next, through feature engi-

neering, the optimal feature subset that reflects consumers’

energy consumption behavior is obtained. Then, the best

clustering parameters are found by iterative evaluation and

cluster evaluation. Finally, anomaly detection is performed by

a density-based clustering algorithm. The proposed method

is based on unsupervised learning and does not rely on sub-

jective experience and data. The optimal feature set obtained

by the proposedmethod can comprehensively and objectively

reflect the user’s electricity consumption behavior, and real-

ize abnormal detection.

ORGANIZATION OF THE PAPER

Section II discusses the related concepts of feature engineer-

ing and provides an overview of the existing studies related to

electricity consumption feature strategies in anomaly detec-

tion. Section III proposed the abnormal detection method

and elaborates on each component of the method in detail.

Section IV shows the experimental results and compares them

with previous works. Finally, the conclusion and discussion

are discussed in Section V.

A. ABBREVIATIONS AND ACRONYMS

Abnormal data injection (ADI), advanced metering infras-

tructure (AMI), clustering evaluation score (CES), common

feature construction (CFC), deep belief network (DBN),
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FIGURE 1. The position of feature engineering in the process of data
mining.

feature construction (FC), feature extraction (FE), fea-

ture selection (FS), false positive rate (FPR), independent

component analysis (ICA), linear discriminant analysis

(LDA), maximum information coefficient (MIC), mini-

mum number of points (MinPts), maximum-relevance-

minimum-redundancy (mRMR), mutual information (MI),

non-technical loss (NTL), principal component analysis

(PCA), positive predictive value (PPV), restricted boltzmann

machine (RBM), true positive rate (TPR).

II. RELATED WORK

This section discusses the related concepts about feature

engineering and provides a brief review of the existing studies

of feature engineering in abnormal electricity consumption

detection.

A. FEATURE ENGINEERING

Feature engineering is the process of using data science

knowledge to create feature sets that enable machine learn-

ing algorithms to achieve the best performance. Gener-

ally, the essence of feature engineering is to transform the

preprocessed data, which includes three subproblems: fea-

ture construction (FC), feature extraction (FE), and feature

selection (FS). The place of feature engineering in the process

of data mining is shown in Fig. 1.

FC is based on the original dataset and relies on profes-

sional experience to build new features, which are gener-

ally interpretable. Usually, the process of FC requires much

time to study data samples as well as particular abilities of

insight and analysis. For power data, FC needs background

information on the power industry, which relies on experi-

ence and subjective judgment. The task of FS is to select a

feature subset from the original feature set based on specific

evaluation criteria [29], [30]. The number of elements in the

feature subset should be less than that in the original feature

set. In essence, FS is a dimensionality reduction process, and

the features themselves do not change. A good FS algorithm

can effectively reduce the original feature set dimension, has

low computational complexity, and can improve the effective-

ness of subsequent classification and clustering [31]. Similar

to FS, FE also reduces the dimension of the original feature

set. Through dimension reduction, mapping, and other meth-

ods, FE keeps the original data information to as great an

extent as possible and obtains more abstract and concise fea-

ture representation. Common FEmethods include PCA, inde-

pendent component analysis (ICA) and linear discriminant

analysis (LDA). Unlike FS, the data themselves will change

in the process of FE. LetF ∈ R
d×n be a feature set with n fea-

tures as
{

f 1, . . . , f i, . . . , f n
}

, where f i ∈ R
d×1. The process

of FS is as follows:

{

f 1, . . . , f i, . . . , f n
} FS

−→
{

f i1 , . . . , f ij , . . . , f im

}

(1)

where ij ∈ {1, . . . , n} , j ∈ {1, . . . ,m}, a = b can be deduced

when ia = ib and a, b ∈ {1, . . . ,m}. The process of FE is as

follows:

{

f 1, . . ., f i, . . . ,f n
} FE

−→ {g1 (F) , . . . ,gi (F) , . . . ,gm (F)}

(2)

where gi (F) represents the transformation of feature set F by

a series of FE methods, such as PCA, ICA, and LDA. In most

cases, not all three subproblems of feature engineering are

carried out, but one or two of them are selected according to

the needs of model building and analysis.

B. FEATURE CONSTRUCTION AND EXTRACTION

Feature construction and feature extraction are used to build

feature vectors of consumers in [32]. An unsupervised algo-

rithm for detecting abnormal electricity consumption patterns

is proposed. They use monthly average load data as the

dataset and obtain trend index, variability index, and volatil-

ity index as feature sets. Then, PCA is used in FE of the

feature sets to two dimensions, and the local outlier factor

is calculated to find anomalous power consumption patterns.

Sun et al. [33] proposed an improved outlier detectionmethod

based on the Gauss kernel function. After consumers are

classified by clustering, the feature set of the electricity con-

sumption behavior of each type of consumer is constructed,

such as trend indicators, the standard deviation of daily load

series. Then, the feature set is reduced to 2 dimensions

by PCA, and the improved Gaussian kernel function detects

the outliers. This method is similar to [32] in its feature

strategy. An optimum-path forest (OPF) clustering algorithm

is proposed in [34]. They take the problem of NTL recogni-

tion as an anomaly detection task to analyze and use eight

features to represent each electricity customer for clustering

analysis.

As mentioned above, several of features constructed are

subjective and cannot reflect the inherent electricity con-

sumption behavior of customers. Additionally, the features

extracted lack of interpretability.
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C. FEATURES OBTAINED BY DEEP LEARNING

ALGORITHMS

Zhang et al. [9] used a deep belief network based on

real-valued (RDBN) to detect electricity theft. The electricity

consumption data are divided into a training set and a test

set, and dimension reduction is performed by factor analysis.

The RDBN is built and trained to obtain electricity con-

sumption behavior features and to realize anomaly detection.

Yu et al. [10] introduced a feature extraction method based on

deep learning theory to detect electricity theft. The stacking

uncorrelation autoencoder (SUAE) is proposed and used to

extract features from electricity consumption data. It can

extract highly abstract and concise features due to its deep

structure and high nonlinearity. A convolutional neural net-

work (CNN) based deep learning method is proposed in [18]

and used to extract features from massive load profiles

automatically.

The features generated by deep learning algorithms lack

interpretability and rely on data with labels. At the same time,

it makes model building and parameter selection challenging.

D. FEATURE ENGINEERING TO OBTAIN THE OPTIMAL

FEATURE SET

R. Razavi et al. introduced the concept of feature engineering

into anomaly detection applications for the first time [35].

The feature engineering framework proposed was used to

create a set of features that could best express the dynamics

of a load over time. It was easier to detect abnormalities

and fraud behaviors of anomalous households in comparison

with similar households. In [36], Lu Jun et al. proposed a

strategy based on feature information quantity to select the

optimized feature set of customers’ electricity consumption

behavior. According to the mutual information (MI) and the

correlation coefficient between features, the optimal feature

subset was selected based on the common feature set. Aydin

and Gungor [21] and Toma and Li [22] presented two feature

construction techniques for NTL characterization. Compared

with algorithm improvement, they were more concerned

about finding the set of features that best discriminate legal

and illegal profiles.

In summary, the problem of how to acquire the optimal

feature set, which can reflect users’ electricity consumption

behavior, is becoming a research hotspot. A series of methods

(i.e., feature strategies) of feature engineering in machine

learning have gradually become more prevalent in abnormal

electricity consumption behavior detection.

III. METHODOLOGY

The abnormal detection method of electrical consumption

behavior is proposed firstly in this section, and the conducted

of the research is also discussed. After that, the details of the

method are discussed in the rest of this section.

A. PROCESS OF THE METHOD

Based on the related concepts of unsupervised learning, fea-

ture engineering and the general process of data mining,

the abnormal detection method of electricity consumption

FIGURE 2. The unsupervised method of anomaly detection for electricity
consumption based on feature engineering.

behavior is proposed, and it is shown in Fig. 2. The method

includes three parts: data preparation, feature engineering,

and anomaly detection.

In the process of dataset preparation, different methods are

selected to address specific problems in the dataset. Feature

engineering includes the original feature set construction of

electricity consumption behavior, FS based on variance, and

FS based on improved maximum relevance minimum redun-

dancy (mRMR). The problem of missing crucial features

missing, caused by subjective selection, can be avoided by

using the brainstorming method in building the original fea-

ture set of electricity consumption behavior. The maximum

information coefficient (MIC) is used to replace the MI to

measure the correlation and redundancy between features

based on the supervised FS algorithm of mRMR. Compared

with MI, MIC has the advantages of generality and equitabil-

ity. In addition, the concept of relevance in mRMR is rede-

fined to apply in unsupervised cases. In the anomaly detection

step, a density-based clustering algorithm is adopted, and the

best clustering parameters are obtained by iteration based on

a certain clustering evaluation standard. Finally, customers’

abnormal electricity consumption behavior is detected; the

load data of an industrial park are selected for experimental

analysis.

B. FC BASED ON TSFRESH

To overcome the problems in the FC process mentioned

earlier, a Python package named tsfresh (time series feature

extraction based on scalable hypothesis tests) was used to

construct the original feature set from the load data set. tsfresh

is a Python-based development package that can quickly cal-

culate a large number of time series characteristics, namely,
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features [24], [25]. The features calculated by tsfresh can be

used in subsequent research, e.g., classification, regression,

and clustering. At present, tsfresh provides 63 time-series fea-

ture methods, and 794 time-series features can be calculated

by changing the methods’ parameters [40].

Customers’ load data are essentially a time series [3], [26].

Many aspects of the information on electricity consumption

behavior can be obtained by constructing the original feature

set based on tsfresh. Problems such as missing vital features

due to insufficient consideration can be avoided. At present,

tsfresh can extract 794 features from the customers’ daily load

data, including the commonly used electricity consumption

features in the existing research. However, when constructing

the feature set through tsfresh, the correlation between the

features and the labels cannot be considered because of the

lack of label information. Unavoidably, there are a large num-

ber of redundant features in the original electricity consump-

tion behavior feature set (referred to as the original feature

set). The dimension of the original feature set is higher due to

the existence of a large number of redundant features, which

reduces the efficiency of the algorithm and leads to the ‘‘curse

of dimensionality’’ [11], [18], [42]. Therefore, to ensure the

interpretability of features, it is necessary to carry out the

FS process for the original electricity consumption feature

set.

C. FS BASED ON VARIANCE

FS based on variance, which belongs to the filtering method

in FS, looks only at the features, not the desired outputs,

and can thus be used for unsupervised learning. After the

variance of features is calculated, the variance of a feature

being minimal means that the feature has a low difference

in the sample set and a weak ability to distinguish samples.

In contrast, if the variance of a feature is maximal, the feature

has a higher impact on the overall sample set, including more

information that can reflect the differences between samples.

For the feature matrix F with d samples and n features

F =







f11 · · · f1n
... fij

...

fd1 · · · fdn







d×n

(3)

The equation of the ith feature variance is

Vj =

∑d
i=1

(

fij − µj

)2

d
(4)

where µj is the average value of the j-th feature, and the

equation is as follows:

µj =

∑d
i=1 fij

d
(5)

To improve the efficiency of the method and reduce infor-

mation loss, it is necessary to reduce the number of features

in the original feature set to a reasonable number. Therefore,

the variance of each feature in the original feature set is

calculated first. After that, only features with variance equal

to zero are removed, and the features with nonzero variance

are retained.

D. MAXIMUM INFORMATION COEFFICIENT

The relationship coefficient is usually used to measure the

similarity between features. In statistics, the Pearson corre-

lation coefficient and Spearman correlation coefficient are

the most well-known measures to calculate the correlation

between feature vectors. However, the scope of its application

is limited because only linear and simple nonlinear associa-

tions can be identified. The correlation between most features

is complex and nonlinear, and the traditional correlation mea-

surement method cannot reflect sophisticated associations.

The MIC proposed by Reshef et al. [43] based on MI can

not only find linear or nonlinear correlations but can also

widely mine the nonfunctional dependence between vectors.

It has been proven that in many cases, the MIC has a better

performance thanMI. TheMIC has been applied in the power

industry. For example, in [44], K. Zheng et al. used the MIC

to find the correlations between the NTL and tampered load

profiles of consumers to find abnormal users. The scale of the

MIC is [0,1], and a larger value indicates a stronger correla-

tion between two feature vectors. The MIC has the character-

istics of generation, equitability, and symmetry. Generation

means that when the sample size is sufficient, the MIC can

capture a wide range of interesting associations that are not

limited to specific function types. Equitability means that the

MIC can give similar scores to different types of correlation

with equal noise levels. The definition of symmetry is as

follows:

MIC (a;b) = MIC (b;a) (6)

where a and b are two vectors. Given a finite set D,

the elements of which are data points with two dimensions

of x-values and y-values. An x−by− y grid G can be created

in finite two-dimensional space based on the supposition that

the x-values of D can be partitioned into x bins, and the

y-values ofD can be partitioned into y bins. Let all elements in

D be arranged in the gridG. LetD|G represent the distribution

of D divided by one of x − by − y grids as G. Calculate the

MI under each grid division as follows:

I∗ (D, x, y) = max
G

I
(

D|G
)

(7)

where I
(

D|G
)

denotes theMI ofD|G,D ∈ R
2, and x, y ∈ N

∗.

Because the division of grid G is infinite, the number I
(

D|G
)

is also infinite, and the largest representation is I∗ (D, x, y).

The characteristic matrix M is composed of the maximum

normalized MI obtained under different grid divisions, which

is defined as follows:

M (D)x,y =
I∗ (D, x, y)

logmin {x, y}
(8)

where the logmin {x, y} is the maximal possible MI of a

distribution on an x − by − y grid [45]. Normalizing by the

logmin {x, y} creates a score that can be compared across
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grids with different dimensions and therefore across different

distributions. It also ensures that almost all noiseless func-

tions receive perfect scores and the entries of the character-

istic matrix M range from zero to one [43]. Furthermore,

the MIC of a finite set D of two-variable data with sample

size n is given by

MIC (D) = max
xy<B(n)

{

M (D)x,y
}

(9)

where B (n) is the upper bound of the grid size. This paper

uses B (n) = n0.6 because it has better performance in

practice [43], [44], [46], [47].

E. FS BASED ON IMPROVED mRMR

This section proposes an improved algorithm based on the

supervised FS algorithm mRMR [48], which can be used

in the unsupervised case. The algorithm selects the MIC to

replace the MI as the feature coefficient evaluation metric

and defines relevance in FS without label information. The

mRMR maximizes the relevance between features and cat-

egory variables, i.e., class labels, and minimizes the redun-

dancy between features in the constructed feature subset. The

m-th feature vector is selected based on mRMR from the

original feature set F and represented by f gm as follows:

f gm = max
f iǫF−Sm−1







I
(

f i; c
)

−
1

m− 1

∑

f t∈Sm−1

I
(

f i; f t
)







(10)

where S represents the selected feature subset, I (·) denotes

the MI between a pair of vectors, and c is the class label

variable. Due to the difficulty in obtaining the class label c,

the unsupervised FS is based on the mRMR algorithm pro-

posed, which should meet the following requirements:

1. The m-th feature selected should contain the largest

amount of information, i.e., this feature can minimize the

uncertainty of other features;

2. In the optimal feature subset S, the relevance between

features should be as small as possible, which will minimize

the redundancy between the selected features.

The unsupervised FS algorithm starts from an empty set

and uses a step-by-step method to select a feature from the

original feature set F and add it to the feature subset S. The

first feature selected f g1 , which has the maximum average

MIC value, found by calculating the MIC between features

in the original feature set F, is defined as follows:

f g1 = max
f iǫF

{

1

n

n
∑

t=1

MIC
(

f i;f t
)

}

(11)

where n = |F| represents the number of features in F.

The first feature has the highest relevance to the remaining

features, which can reduce the uncertainty of other features

to the greatest extent and provide the most information com-

pared with the others. Therefore, the relevance of a feature is

defined as the average value of the MIC between the feature

and the other features in the set.

The m-th feature selected mainly considers the following

two aspects: containing the largest amount of information

with other features in the setF and having the smallest degree

of redundancywith other features in the subset S. By using the

incremental search, the search for the m-th feature is written

as an optimization problem as follows:

f gm = max
f iǫF−Sm−1

{

1

n

n
∑

t=1

MIC(f i; f t )

−
1

m− 1

m−1
∑

j=1

MIC
(

f i; f j
)







(12)

where m − 1 represents the number of features in feature

subset S before feature selection. To make the algorithm

take both efficiency and effect into account, the termination

condition of FS is defined as follows:

(m− 1)
∑n

t=1MIC
(

f gm;f t
)

n
∑m−1

j=1 MIC
(

f gm; f j
)

≤T (13)

For the selected m-th feature, when the amount of infor-

mation it contains has less redundancy than a certain thresh-

old, the selection is stopped. The flow of the unsupervised

FS algorithm based on improved mRMR is shown

in Algorithm 1.

FS is usually in an independent part of the data mining

process, which cannot benefit from the previous data explo-

ration process. Information loss is inevitable with the feature

dimension reduction in the FS process, but it can reduce the

computational complexity of the process.

F. CLUSTERING ALGORITHM

Density-based spatial clustering of applications with noise

(DBSCAN) is a classical clustering algorithm based on den-

sity that is widely used in anomaly detection [49]. Com-

pared with k-mean and partition-based clustering algorithms,

DBSCAN can find any shape of clustering without setting the

number of clusters in advance, and it is not sensitive to the

order of data points. At the same time, it can detect outliers

in the process of clustering.

Given a set of points in a certain space, DBSCAN can

divide the points in the high-density area into a group

and mark the outliers in the low-density area, i.e., out-

liers. DBSCAN needs to set the following two neighborhood

parameters: the ε-neighborhood and the minimum number of

points (represented byMinPts) needed to form a high-density

area. The ε-neighborhood describes the neighborhood dis-

tance threshold of a sample, and MinPts describes the

threshold of the number of samples in the ε-neighborhood.

In short, the basic idea of the algorithm is to explore the

ε-neighborhood of any point that is not visited. If the num-

ber of points in the ε-neighborhood reaches MinPts, a new

cluster is established. Otherwise, the point is labeled as an

outlier.
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Algorithm 1 Unsupervised FS based on improved mRMR

Input:Feature set F =
{

f 1, . . . , f i, . . . , f n
}

of customers’

electricity consumption behaviors, where n represents the

total number of features, which is determined by FC based

on tsfresh and FS based on variance.

Output:The optimal feature subset S, which reflects the

customers’ electricity consumption behavior.

Begin:

Initialization:

S = ∅

F =
{

f 1, . . . , f i, . . . , f n
}

MIC_martix = On×n
/∗ Calculate MIC between features in set F∗/

for all f i, f j ∈ F do

MIC_martix[i][j] = MIC
(

f i; f j
)

MIC_martix[j][i] = MIC_martix[i][j]

end for

Find the first feature f g1 according to (11)

S =
{

f g1

}

F = F \ f g1
while True:

Find the feature f gm in F according to (12)

if f gm satisfies the condition of (13) do

break

else:

S = S ∪
{

f gm

}

F = F \ f gm
end while

Return S

End

G. EVALUATION INDEX

The unsupervised evaluation indexes are selected to evaluate

clustering performance, e.g., the silhouette coefficient (SC),

the Calinski Harabasz index (CHI), and the Davies-Bouldin

index (DBI). The higher the scores of SC and CHI, the lower

the scores of DBI, indicating that the clustering algorithm

has better-defined clusters and better separation between the

clusters. The scores of indexes under different clustering

parameters are obtained by iteration. The ranking sum of the

three index scores under different clustering parameters is

used to evaluate clustering to avoid the problem of different

indexmagnitudes. The clustering evaluation scores (CES) are

defined as follows:

CES = rankSC + rankSHI − rankDBI (14)

The clustering parameters with the highest CES will be used

for clustering and obtain the final anomaly detection results.

In order to realize methods evaluation and compari-

son, the confusion matrix and several derived indexes are

used. The confusion matrix is shown in Table 1. FN refers

to the actual abnormal electricity consumption behavior that

is detected as normal electricity consumption behavior, and

FP refers to the actual normal electricity consumption

TABLE 1. Confusion matrix for abnormal electricity consumption
behavior detection.

behavior that is detected as abnormal. TP and TN indi-

cate correct detection, i.e., the actual abnormal behavior

is detected as abnormal, and the actual normal behavior

is detected as normal. Several evaluation criteria can be

derived from the confusion matrix and used to evaluate

the results of different feature strategies methods. The true

positive rate (TPR), also known as the sensitivity or recall,

is defined as the proportion of detecting as abnormal in

actual abnormal electricity consumption behavior. The false

positive rate (FPR) is defined as the proportion of detect-

ing as abnormal in actual normal electricity consumption

behavior. The positive predictive values (PPV) also known as

the precision is defined as the proportion of actual abnormal

electricity consumption behavior in detected as abnormal

electricity consumption. TPR, FPR, and PPV are defined as

follows:

TPR =
TP

TP + FN
×100% (15)

FPR =
FP

FP + TN
× 100% (16)

PPV =
TP

TP + FP
× 100% (17)

In many cases, there is an imbalance between positive and

negative samples in the data set, and TPR (i.e. recall) and

PPV (i.e. precision) are contradictory in most cases. If the

method wants to detect more abnormal electricity consump-

tion behavior, it will be possible to detect more normal.

Therefore, there will be higher TPR and lower PVV. On the

contrary, if the method is relatively conservative, only certain

samples are detected. Themethodwill have a higher PVV and

a lower TPR. Therefore, the F1 Score (also called balanced

F score) and FPR are selected as the evaluation criteria of the

method in this paper. The F1 Score is defined as the harmonic

mean of TPR and PPV, which can be used to evaluate the

performance of unbalanced label data set. The F1 Score is

defined as follows:

F1 =
2 × PPV × TPR

PPV + TPR
(18)

F1 Score helps to compute TPR and PPV in one equation so

that the problem to distinguish the models with low TPR and

high PVV or vice versa could be solved.

IV. EXPERIMENT

The load dataset of an industrial park is used for analysis in

this paper. First, inherent electricity consumption habits and

abnormal electricity consumption behavior of different users

are detected through the method proposed. Then, to evalu-

ate the method, six methods given in Appendix A are used
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FIGURE 3. The flow chart of the experimental stage.

TABLE 2. Basic information on the data set.

to inject abnormal electricity consumption data. After that,

the label information database is established by combin-

ing the original abnormal electricity consumption behavior

and the abnormal data injection information. Finally, with the

label information database, the feature engineering method

proposed and several common feature strategies are used for

comparison and evaluation. The experiment shows that the

method based on the feature engineering proposed is better

than the others by comparing the clustering evaluation results.

The flow chart of the experimental stage is shown in Fig. 3.

A. EXPERIMENTAL SETUP

All experiments are implemented on a single computer with

a CPU of 2.6 GHz and a memory of 16 GB. Experiments and

results are completed with the jupyter notebook compiling

environment with Python version 3.6 and the relevant Python

library.

B. DATA PREPARATION

The basic information about the data set is shown in Table 2;

it includes 15 industrial and commercial electricity users, and

the data were collected over a period of 547 days with a

sampling interval of 1 hour. The anomaly detection work in

this paper is accurate to the unit of days. Four typical users

are selected from the data set for analysis, numbered User1 to

User4.

TABLE 3. Main problems in the data cleaning process.

Data cleaning plays a vital role because the data set is of

raw data that has not been processed. The main problems

found in the process of data cleaning are shown in Table 3.

C. FEATURE ENGINEERING FOR USERS’ ELECTRICITY

CONSUMPTION BEHAVIOR

The tsfresh package is used to construct the original feature

set in days. Seven hundred ninety-four electricity consump-

tion behavior features are extracted for each customer, and

the feature matrix of size 547∗794 is generated. The original

feature set of electricity consumption behavior on the ith day

is expressed as follows:
[

f i1, · · ·f
i
j , · · · f

i
794

]

(19)

The Gauss kernel function is used to estimate the variance

distribution of the 794 column features, as shown in Fig. 4.

According to Fig. 4, the logarithms of the feature variance in

different customers’ original feature sets have a similar distri-

bution, which is mostly concentrated between [−20,20], and

most values are equal to 0. Although the FS based on variance

has dramatically reduced the dimension of the original feature

set, there is still much redundant information between the

features. Therefore, FS based on improved mRMR is needed.

The MIC between feature sets is calculated after FS based

on variance is performed, and the time complexity is O
(

n2
)

.

Therefore, only the upper triangle (or lower triangle) matrix

of the MIC matrix is calculated to reduce calculation time

based on the symmetry of MIC in (6). The MIC matrix is

obtained, as shown in Fig. 5, where the parameters for the

MIC are selected according to [43].

Different colors in Fig. 5 correspond to different values

of the MIC. When there is no correlation between the two

features, the MIC is 0, which is shown in red. When there is

a certain correlation relationship between features, the MIC

is 1, which is shown in blue. From the color density and the

sum of all elements in the customers’ MIC matrix, it can be

seen that there are apparent differences in the feature sets

between customers. The MIC of the User2 feature set is

the smallest, and the proportion of red is the highest, which

means that the correlation between features is the lowest.

In contrast, the MIC of the User4 feature set is the largest,

and the proportion of blue is the highest, which means that

the correlation between features is the highest.

The FS based on mRMR is conducted based on the

MIC matrix. A smaller number of features will result in

missing crucial information; on the contrary, a large num-

ber of features will increase the running time and cause
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FIGURE 4. Estimation of the logarithm of the feature variance in the original feature set based on the Gaussian kernel function.

FIGURE 5. Heatmap of the MIC between features in the feature set after FS based on variance.

dimension disaster. Therefore, setting a reasonable value

of the termination parameter T in (13) is very important.

After many experiments and analyses, when T = 1,

the proposed method can meet the requirements of accu-

racy and generalizability. That is, when the correlation of

the m-th feature is less than its redundancy, the FS is

stopped.

From Table 4 and Fig. 5, User2, with the lowest sum

of the MIC matrix, has the highest number of features

after FS. In contrast, User4, with the highest sum of the

MIC matrix, has the lowest number of features ultimately

obtained. Therefore, the conclusion is that more features

are needed to reflect customers’ electricity behavior when

the correlation between features in the electricity behavior

feature set is lower. A smaller number of features are needed

when the correlation between features is higher. The vio-

lin plots of the features in the optimal feature set of cus-

tomer electricity consumption behaviors are shown. Those of

User1 and User4 are shown in Fig. 6, and those of User2 and

User3 are shown in Appendix B.
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FIGURE 6. The violin plot of the features in the optimal feature sets of user1 and user4.

TABLE 4. Change in users’ feature numbers in the process of feature
engineering.

A violin plot plays a similar role as a box-and-whisker plot,

which is used to visualize the distribution of the data and

its probability density. A violin plot shows the distribution

of quantitative data across several levels of more categorical

variables so that those distributions can be compared [50].

The violin plot shows a kernel density estimation of the

underlying distribution rather than actual data points. The

violin plot in Fig. 6 indicates that the distributions of features

in the optimal sets of electricity consumption features of

different users are quite different. Each ‘‘violin’’ in Fig.6 and

Appendix B. represents a feature in the optimal feature set of a

user. The shape represents the density estimate of the feature,

i.e. the more data points in a specific range, the larger the

violin is for that range. Different colors are used to distinguish

different features in a user’s optimal feature set.

The violin plot in Fig. 6 and Appendix B is a combination

of a box plot and a density plot that is rotated and placed

on each side, to show the distribution shape of each feature.

The white dot in the middle is the median value and the thick

black bar in the center represents the interquartile range. The

whiskers show a 95% confidence interval and the shape of the

violin display frequencies of values. The features of Users 1

to 3 have a scattered density distribution, which indicates

an excellent ability to distinguish the different electricity

consumption behaviors. It means that the user’s electricity

consumption behavior can be well described by the features

in the optimal feature set obtained by the feature engineering

in this paper. That is, if the features extracted by a user have

a similar distribution, i.e., they have a similar median and

frequency, the different electricity consumption behaviors of

the user cannot be reflected from the features. It shows that

this feature set cannot effectively distinguish the abnormal

electricity consumption behaviors from the normal. On the

contrary, if the distribution of multiple features of the user is

quite different, the extracted features can effectively describe

the user’s electricity consumption behavior, then it can deeply

mine the user’s electricity consumption law and realize abnor-

mal detection. However, the violin plot of User4 is different

from that of other users because of the characteristics of

the load curve itself, and the details will be explained later.

The results show the effectiveness of the feature engineering

strategy proposed.

The optimal feature subset, which reflects the electric-

ity consumption behavior of different users, is obtained

through the feature engineering strategy proposed. Moreover,

the features in the optimal feature subsets of users are dif-

ferent because users have different electricity consumption

behaviors.

D. DETECTION OF ANOMALOUS ELECTRICITY

CONSUMPTION BEHAVIOR

The feature vector based on days is standardized before clus-

tering to eliminate the weight difference between different
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FIGURE 7. Calendar chart showing the electricity consumption behaviors of different users.

TABLE 5. Optimal DBSCAN clustering parameters for each user.

features. The standardization method is as follows:

f ij =
f ij − µi

σ i
(20)

where f ij is the j-th feature on the i-th day, σ i and µi are the

standard deviation and mean value of the feature vector of the

i-th day.

Through the iterative clustering algorithm parameters,

multiple clustering results are obtained based on the CES, and

the optimal clustering parameters are selected for different

customers as shown in Table 5.

Fig. 7 shows the final clustering results reflected in the

calendar chart. Colors represent different clustering results,

i.e., different electricity consumption behaviors. The dates

of detected abnormal electricity consumption behaviors are

unified and marked in black with the category mark −1.

The peach color is used to represent the most common

kind of electricity consumption behavior of users, which has

the category mark 0. The sky blue shown for User1 has

category mark 0, and the orange and red for User4 have

category marks of 1 and 2, respectively, representing other

electricity consumption behaviors of the users. In addition,

data loss is represented with a blank mark. As shown in

Fig. 7, users have habitual electricity consumption behav-

iors. User1’s electricity consumption behavior on Sundays

is grouped into one group. Most of the abnormal electricity

consumption behavior of User2 occurs at the beginning and

the end of the month. User4’s electricity use behaviors are

grouped into three groups. During the holidays, User1, User2,

and User3 all have abnormal electricity consumption behav-

ior. For visual display, the clustering results are reflected in

the original load curve, as shown in Appendix C.

Using the best clustering parameters, shown in Table 5, the

normalized sum of the three indexes in CES are adopted to

evaluate whether the termination parameter T is reasonable.

The variable T directly affects the number of features in the

optimal feature subset for clustering. With a change in the

feature number for clustering, i.e., the variable T , the clus-

tering result changes accordingly, and the results are shown

in Fig. 8. In order to compare different users horizontally,

the sum of three indexes in CES under different feature num-

bers are normalized and represented as the cluster evaluation,

which is defined as follow:

CES∗ =
CESi − min (CES)

max (CES) − min (CES)
(21)

where CES∗ represents the cluster evaluation in Fig. 8, CESi
represents the CES under the number of features i. The nor-

malized cluster evaluation changes as the number of features

used for clustering increases from 1 to 100 in Fig. 8. When

T = 1, the number of features used for clustering by different
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FIGURE 8. Changes in the cluster evaluation with the number of features.

users is shown in Table 4. Under the number of optimal

feature subsets, the cluster evaluations of different users are

all at a high level, which ensures that the algorithm has

generalizability.

As shown in Fig. 8, when the number of features is in a

small range (this means that the variable T is in a high range.),

the clustering evaluations of Users 1 to 4 are all at a high

level, such as User 1, User 3, and User 4 when the number of

features ranging from 1 to 5, and User 2 when the number

of features ranging from 5 to 10. Although it has a good

cluster evaluation when there are few features, it is difficult

to obtain an accurate value of T due to the higher cluster

evaluations only exist in a small range of changes in the

number of features. According to Fig. 8, when the number of

features used for clustering analysis reaches a specific critical

value, the cluster evaluations drop sharply due to dimension

disaster, such as User1 when the number of features is 20 to

25, User2 when the number of features ranging from 70 to 80,

User3when the number of features ranging from 35 to 40, and

User4 when the number of features ranging from 85 to 90.

Considering the generalizability and robustness of the

method, the stage of feature number range where the cluster

evaluation changes relatively smoothly and having a higher

level is chosen. Therefore, it is reasonable to choose the

termination parameter T in (13) as 1.

E. COMPARISON AND EVALUATION

For each user, 10% of the load data in units of days are

randomly selected and changed by the six abnormal data

injection (ADI) methods in Appendix A, which are repre-

sented as ADI1 to ADI6. Meanwhile, the dates of ADI are

recorded, and the label information database is established

by factoring in the original abnormal electricity consumption

behavior dates. It is worth noting that the label of abnormal

electricity consumption behaviors is only used for evaluation,

and the label information is not included in the detection

process.

Two feature strategies, FE and FC, which are relied on

experience and selected as contrasts to the feature engineering

method given in this paper. In FE, three feature extraction

methods, PCA, restricted boltzmann machine (RBM) and

deep belief network (DBN), are used for comparison. The

PCA selects the parameters as 2 and 3, i.e., the original load

data in days will be reduced to 2 and 3 dimensions after

normalization, and the results are represented by PCA_2d and

PCA_3d. The RBM is a generative stochastic artificial neu-

ral network that can learn a probability distribution through

input data sets. The standard RBM consists of binary hidden

layer and visible layer without connections between the units

within the same layer. RBM can extract discriminative fea-

tures from complex data set by the unsupervised way due to

the introduction of hidden units [51]. The DBN is a kind of

probability generating model including multiple hidden lay-

ers, which can be regarded as a composite model composed

of multiple simple unsupervised learning models [52], [53].

The high flexibility of DBN makes it possible to learn dis-

criminant features from the high-dimensional complex data

set. RBM and DBN are all belonged to deep learning and

can be used in unsupervised learning. They can reduce the

dimension of the original data and achieve feature extrac-

tion. The RBN and DBN structures in this paper are shown

in Appendix D.

In FC, the common features are constructed by experience

and are represented by CFC (common feature construction).

The features in CFC are commonly used in current research to

reflect electricity consumption behaviors. A total of ten fea-

tures are included in CFC, including maximum andminimum

values of the daily load, the daily peak-valley difference of

the load, the difference of load variation, the daily average

power consumption, the linear degree of the load curve, and

the degree of load deviation. All of these can be obtained

from the original feature set generated by tsfresh. The MI is

also used in the process of FS based on improved mRMR

to prove that the MIC has better performance than the MI.

The F1 Score and FPR are selected as indicators to verify

the detection ability of several feature strategies for six kinds

of ADI.

Fig. 9 consists of six columns, each of which repre-

sents an ADI method and includes two subplots, one for

F1 Score and the other for FPR, under different feature

strategies. F1 Score and FPR of different users under dif-

ferent ADI are displayed in the form of histogram. Different

colors are used to distinguish the results of different feature

strategies.

Furthermore, the experimental results were analyzed as

follows. For the feature strategy of PCA, the difference of

the parameters (referring to the final feature dimension) has a

significant influence on the result evaluation indexes F1 Score

and FPR. The experimental results show the process of FE

by PCA. When the parameter of PCA is selected as 3,

the evaluation results are better than they are when the param-

eter is selected as 2, in most cases. Reducing to 2 dimensions

means losing more information on the original load data than

reducing to 3 dimensions, which leads to the loss of more

crucial information that can distinguish abnormal electricity

consumption behavior. Therefore, the follow-up clustering is

affected, leading to the above results. Note that although the
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FIGURE 9. Values of F1 score and FPR for each user under ADI1 to ADI6.

FIGURE 10. The original load curve of user4.

FPR of the PCAmethod is at a low level in all cases, the level

of the F1 Score is also low, and so it cannot detect anomalies

effectively.

In most cases, it is found that in the results of CFC, all

samples are easily clustered into one group because of the

lack of differences in features. This means that CFC has a

lower F1 Score and a low-level FPR in the same case. CFC

performs well only in a few cases, such as User 3 under ADI1,

User 4 under ADI3, etc. The reason is that the consumption

behaviors of the users and the results of performing ADI

on the load curve do not perfectly correlate. Because CFC

uses only experience and professional knowledge to build the

feature set, it is unable to fully reflect the different electric-

ity consumption behaviors of users. Therefore, CFC is only

applicable to specific users or under specific ADImethod and

has limited generalizability.

The experimental results in Fig. 9 show that DBN has

a higher F1 score and better performance than RBM in

all cases. The reason is that compared with the RBM

two-layer network, DBN deep-layer neural network structure

can extract more abstract and concise electricity consumption

behavior features of users. Even in some cases, for example,

User2 under ADI4 and User1 under ADI6 are better than the

feature engineering method proposed in this paper. However,

the structure and parameter selection of RBM, DBN and

other networks depend on experience and data itself to a

great extent and need to adjust parameters many times for

experiments. Different data sets often correspond to different

neural network structures. Moreover, in the process of RBM

and DBN network training, the acquired features are usually

not interpretable.

Experimental results show that compared with MI, using

theMIC to evaluate the degree of correlation between features

can better mine the correlations between features. In most

cases, the experimental results show that the F1 Score with

MIC is higher than with MI and in a few cases, they have

similar performance, such as those of User1 under ADI2,

ADI3, AID4 and ADI6, User2 under ADI3 and ADI4, and

User4 under ADI4 and ADI5. Although MI and MIC have

similar F1 Score results sometimes, MI has the worst FPR

result in most cases.

In some ADI modes, such as ADI1-ADI5, the F1 Score

of User4 is lower than that of other users. As shown in

Fig. 10, through the analysis of the original load curve, it is

found that User4 has a large number of cases with a daily

load of 0. The unusual characteristics of User4 also lead to

the difference in the violin plot mentioned above. The ADI

process has little impact on the original load data of User4,

VOLUME 8, 2020 55495



W. Zhang et al.: Unsupervised Detection of Abnormal Electricity Consumption Behavior Based on Feature Engineering

so not all kinds of feature engineering strategies can detect

the abnormal behavior well.

The results show that the detection of abnormal behav-

iors based on the feature engineering proposed can identify

abnormal electricity consumption behavior well compared

with detection based on other feature strategies. The proposed

method has a high F1 score under different ADI methods

and good generalizability for users with different electricity

consumption behaviors. In a few cases, such as User2 under

ADI4, User3 under ADI5, User1 under ADI6, the method

proposed does not perform well compared with other feature

strategies. The reason is that there are similarities between

different users’ inherent electricity consumption behavior

load curve and the load curve injected by abnormal data,

which makes the optimal feature set obtained by the pro-

posed method unable to distinguish the abnormal electricity

consumption behavior and normal effectively. The original

feature set obtained by the proposed method is based on

tsfresh, which is directly obtained from the user’s electricity

load curve. Other feature strategies, such as PCA and DBN,

do not rely on the load data curve directly but acquire features

through dimension reduction and training the neural network.

Therefore, those feature strategies will not be affected by

the above reason and have good performance compared with

the proposed method in a few cases. However, the above

phenomenon belongs to the existence of a specific situation.

In practice, the abnormal electricity consumption behavior of

users is generally different from their inherent electricity use

habits. In addition, the better performance of other feature

strategies also depends on the parameters detected through

repeated experiments, but the selection of parameters largely

depends on the data itself and experience. Although in a

few cases the proposed method is inferior to other feature

strategies, on the whole, it can effectively detect the abnor-

mal electricity consumption behavior of most users under

different ADI methods and can meet the requirements of

unsupervised detection.

In order to ensure that the method proposed can detect

all abnormal electricity consumption behaviors of users to

the maximum extent, it is inevitable that a small number

of normal electricity consumption behavior data are judged

as abnormal data by the method in the clustering process.

As a result, the proposed method has a higher FPR com-

pared with other feature strategies in these cases, which

are those of User1 under ADI3, User3 under ADI4, and

User2 under ADI5 and ADI6. In some cases, the higher FPR

is also affected by the user’s own electricity consumption

behavior. That is, if the user’s minority normal electricity

behavior and the abnormal electricity usage behavior are

similar in some aspects, there is a possibility of misjudgment

as abnormal electricity consumption. Because the proposed

method detects abnormal electricity consumption behavior

of users as much as possible, there are inevitably a few

cases with high FPR. However, considering the generaliza-

tion of the method and avoiding experience influence, in most

cases, the proposed method can ensure that it has a higher

TABLE 6. Six kinds of abnormal data injection methods.

FIGURE 11. An instance of abnormal data injection for Table 6.

F1 Score and lower FPR, which can meet the requirements of

unsupervised anomaly detection.

At the same time, some cluster algorithms, such as k-means

and fuzzy c-means are used to compare with the DBSACN

clustering algorithm. The above clustering algorithms need

to set the number of clusters and other parameters, but in

practice, it is difficult to know the user’s inherent electricity

consumption behaviors in advance. Although the user’s elec-

tricity consumption data can be divided into several clusters,

it is not advisable to only rely on subjective experience to

regard a certain cluster as abnormal electricity consumption

behavior. Therefore, the above clustering algorithm is not

suitable for unsupervised anomaly detection. However, in the

case of supervision, the user’s inherent electricity consump-

tion behavior can be divided into several categories based

on the user’s various information, so the above clustering

algorithm will have a good performance. DBSCAN clus-

tering algorithm, as mentioned above, can detect outliers in

the process of clustering without determining the number of

clusters in advance, and it is not sensitive to the order of

data points, so it is more suitable for unsupervised anomaly

detection.

V. CONCLUSION

Aiming to solve the problems of the features obtained

in the detection of abnormal electricity consumption
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FIGURE 12. (a) The violin plot of the features in the optimal feature set of
User2. (b) The violin plot of the features in the optimal feature set of
User3.

FIGURE 13. (a) The original load curve of User1 after clustering. (b) The
original load curve of User2 after clustering. (c) The original load curve of
User3 after clustering.
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FIGURE 13. (Continued.) (d) The original load curve of User4 after
clustering.

FIGURE 14. (a) Architecture of the restricted boltzmann machine.
(b) Architecture of the deep belief network.

behavior, an unsupervised abnormal detection method based

on feature engineering is proposed. The proposed method

is based on unsupervised learning with feature engineering

as the core, combined with a density clustering algorithm

to detect abnormal electricity consumption behavior. In the

proposed method, the feature engineering part does not rely

on experience, and can comprehensively and objectively

obtain the optimal feature subset reflecting the user’s elec-

tricity consumption behavior, and the obtained features are

interpretable. The abnormal detection part can avoid subjec-

tivity through parameter iteration and clustering evaluation.

In addition, the proposed method does not depend on the

data and labels information, which has better generalization

and practicability. At the same time, the proposed method

involves customer portrait analysis, which can fully mine the

intrinsic value of electricity consumption data.

Although the result of the anomaly detection method based

on feature engineering is satisfactory, there is still room for

improvement in terms of clustering algorithms based on den-

sity. In addition, because this paper studies small-scale data

sets, in future works, when faced with the massive amount of

data of the power grid, the problem of how to detect massive

users in parallel still needs further research. At the same

time, expansion of the application scenarios of the proposed

method to cases such as demand-side response and power

fault detection remains to be considered.

APPENDIX A

See Table 6 and Figure 11.

APPENDIX B

See Figure 12.

APPENDIX C

See Figure 13.

APPENDIX D

See Figure 14.
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