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Highly excited eigenstates of quantum many-body systems are typically featureless thermal states.
Some systems, however, possess a small number of special, low-entanglement eigenstates known as
quantum scars. We introduce a quantum-inspired machine learning platform based on a Quantum
Variational Autoencoder (QVAE) that detects families of scar states in spectra of many-body sys-
tems. Unlike a classical autoencoder, QVAE performs a parametrized unitary operation, allowing
us to compress a single eigenstate into a smaller number of qubits. We demonstrate that the au-
toencoder trained on a scar state is able to detect the whole family of scar states sharing common
features with the input state. We identify families of quantum many-body scars in the PXP model
beyond the Z2 and Z3 families and find dynamically decoupled subspaces in the Hilbert space of
disordered, interacting spin ladder model. The possibility of an automatic detection of subspaces
of scar states opens new pathways in studies of models with a weak breakdown of ergodicity and
fragmented Hilbert spaces.

Introduction. Recent progress in noisy, intermediate-
scale quantum (NISQ) computers [1–3] lead to a fast de-
velopment of algorithms suited for use on these machines
[4] with the purpose of achieving a quantum advantage
in various areas: physics, machine learning, quantum
chemistry, and combinatorial optimization. Of partic-
ular importance are variational quantum algorithms [5],
in which quantum circuits are applied to quantum states,
whose parameters are optimized with classical feedback
loops. Physical applications include variational quantum
eigensolvers [6–8], algorithms for ground state prepara-
tion [9], time evolution simulations [10–12] or quantum
variational autoencoders (QVAE) [13–15]. The autoen-
coders encode the input data into a reduced represen-
tation and then use it to reconstruct the data with the
optimal fidelity. As such, autoencoders are basic tools
for data compression in machine learning. In turn, the
task of QVAE is to realize the unitary transformation
that transfers the input entangled n-qubits state into a
product state of k, relevant, entangled qubits and n− k
“trash” separable qubits (see Eq. 1 below). QVAE have
been realized experimentally in a photonic device [16]
and recently employed in investigation of quantum phase
transitions [17]. In this work we demonstrate the appli-
cability of QVAE in an analysis of properties of highly
excited eigenstates in quantum many-body systems.

According to Eigenstate Thermalization Hypothesis
(ETH) [18–20], a small subsystem of an isolated, in-
teracting quantum many-body system is described by a
thermal density matrix after a long time evolution, irre-
spectively of the initial non-equilibrium state. However,
some systems violate this paradigm of quantum ergod-
icity and exhibit a long-time behavior dependent on the
initial state. Examples of such non-ergodic systems in-
clude integrable systems [21] and many-body localized

phases in the presence of quenched disorder [22–26]. An-
other mechanism of ergodicity breaking in a form of per-
sistent oscillations for particularly chosen initial states
has been discovered in the experiment with ultracold Ry-
dberg atoms [27]. This behavior arises due to the pres-
ence of few atypical, almost equally spaced eigenstates
with low entanglement entropy, the so-called quantum
many-body scars (QMBS) [28, 29] that are embedded
in the otherwise thermal spectrum of a quantum many-
body system. For initial states with high overlap with
a few QMBS, one observes long-lived oscillations of ob-
servables, whereas for generic initial conditions the sys-
tem quickly approaches the thermal equilibrium state.
Several theories explaining the emergence of QMBS were
proposed starting long time ago with the notion of “scars
of symmetries” [30] (see also [31]): a spectrum generat-
ing algebra [32, 33], Krylov restricted thermalization [34],
projector embedding [35] and the presence of symmet-
ric, coupled subspaces [36]. The QMBS occur in PXP
model [37], describing Rydberg atoms chain, but also in
AKLT model [38, 39], quantum local random networks
[40], frustrated magnetic lattices [41], lattice gauge theo-
ries [42–44], optical lattices [45] or spin systems [46, 47].

The aim of this work is to provide a scheme to detect
families of QMBS based on QVAE. A family of QMBS is
formed by eigenstates which: a) have an increased over-
lap with some ’parent’ state, b) are characterized by a
sub-volume-law entanglement entropy. The property a)
enables our algorithm to implicitly extract the features of
the parent state from a single eigenstate in the training
and encode them in QVAE. The probability that train-
ing succeeds is enhanced by the property b). The per-
formance of the trained autoencoder on other eigenstates
serves as a measure of similarity between the eigenstates.
The other representatives of the family of QMBS are
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found as eigenstates for which the performance of QVAE
is significantly better than the typical behavior. In the
following, we first describe details of the scheme. Then
we apply it to detect the Z2 family and to discover new
families of QMBS in the PXP model [28, 37] and to iden-
tify subspaces of decoupled eigenstates in the spin ladder
of [46].

Quantum variational autoencoder. The QVAE aims
to compress the n-qubit input state |ψ〉 into a k-qubit
state |φ〉 (where k < n), i.e., to perform a unitary trans-
formation U(θ) parametrized by the circuit parameters
θ,

|ψ〉 → U(θ) |ψ〉 = |φ〉 ⊗ |0〉⊗(n−k) , (1)

where the last n − k ≡ Ntrash qubits are called ”trash”
qubits. The QVAE circuit starts with randomly initial-
ized parameters θ which are variationally adjusted (here
- using Simultaneous Perturbation Stochastic Approxi-
mation optimizer [48–51]) to ”optimal” value θ = θ∗

satisfying Eq. (1) for a given set of input states {|ψi〉}.
At each optimization step, the unitary U(θ) is applied
on {|ψi〉} and the trash qubits are measured giving ei-
ther ’0’ or ’1’. The total number of ’1’ defines the cost
function that the optimizer tries to minimize in the next
parameter update. (Cost function is the Hamming dis-
tance between the measured bitstring of ’1’ and ’0’ on all

trash qubits and the desired |0〉⊗(n−k) trash qubit con-
figuration.) Unlike for classical autoencoders, training
a unitary encoder U(θ) automatically provides the de-
coder U†(θ) that can be applied to the compressed state

|φ〉 ⊗ |0〉⊗(n−k) to reconstruct the input state |ψ〉. The
cost function fulfills the requirement of locality on the
trash qubits which is critical for circumventing the ”bar-
ren plateaus” of the cost landscape and trainability of
the model, see [52, 53] for further details.

The architecture of the quantum circuit has to be ex-
pressible (i.e. able to encode a large class of quantum
states with a few trainable parameters θ) and to pos-
sess a large entangling capability to transfer the entan-
glement of the whole system out of the trash qubits [54].
Building on the previous results [52, 54] we choose Alter-
nating Layered Ansatz consisting of layers with single-
qubit rotations around the y axis by an angle θ∈ [0, 2π],
Ry(θ) = exp(−iσyθ/2), and two-qubit controlled-Z (CZ)
gates that apply a σz operator on one of the qubits if the
other one is in the state |1〉 and act as an identity if the
other qubit is in the state |0〉. Each of L layers of QVAE
consists of Ry(θ) rotations of all qubits and CZ entan-
gling operations between the neighboring qubits, with the
pairs of entangled qubits alternating from layer to layer
following a checkerboard pattern (see [55]).

In our scheme, as an input state |ψ〉 to train QVAE
we take a single scar state that belongs to a given family
of QMBS in a considered many-body system. To iden-
tify the other scars from the same family, we evaluate

the performance of QVAE on eigenstates from the spec-
trum of the model. The numerical complexity of the pro-
cedure is thus O(D) times the number of iterations for
QVAE training and O(D2) for the comparison of eigen-
states where D is the dimension of the Hilbert space.
This is lower than the exact diagonalization cost O(D3)
required for generation of the input data.
Scars in the PXP model. The PXP Hamiltonian

reads

Ĥ =
∑
i

P̂i−1σ
x
i P̂i+1 (2)

with periodic boundary conditions, where the projec-
tors P̂i = (1 − σzi )/2 ensure that neighboring spin up
states are separated at least by one lattice site, hence
implementing the Rydberg blockade phenomenon [56] as
a constraint on the Hilbert space. Certain specific ini-
tial states like Z2 = |0101 . . .〉, Z3 = |001001 . . .〉 and
product states that contain domain walls between Z2 and
Z3 configurations give rise to persistent long-time oscil-
lations of the local observables and the revivals of the
wave function, while other states like |Z0〉 = |0000 . . .〉
and |Z4〉 = |00010001 . . .〉 show fast relaxation without
revivals. The presence of families of Z2 and Z3 quan-
tum scars gives rise to this behavior [57–65]. Some of
the scarred states in the PXP model were constructed
exactly as MPS with a finite bond dimension [66], from
which the family of Z2 scars was generated as quasipar-
ticle excitations.

Input data to QVAE corresponds to the eigenstates of
the PXP model obtained through exact diagonalization
for the system size N = 24 in the inversion-symmetric
and zero-momentum sector with the Hilbert space di-
mension D = 2359 (D � 2L due to constraints and peri-
odic boundary conditions). Local constraints of the PXP
model allow to reduce the computational cost of the pro-
cedure by considering only the projection of QVAE onto
the constrained subspace of Hilbert space. To that end,
it suffices to substitute Ry(θ)→ R̃y(θ), CZi → Ei in the

circuit, with R̃y(θ) rotating qubit i only if qubits i − 1,
i+ 1 are in the |0〉 state (identity otherwise), and Ei act-
ing on four qubits i− 1, . . . , i+ 2, performing the entan-
gling operation of qubits i and i+ 1 if qubits i− 1, i+ 2
are in the state |0〉 (identity otherwise). Exact matrix
forms of these operators are given in [55]. This version of
the QVAE will be referred to as the CQVAE. We should
note that the translational and inversion symmetry of
the original Hamiltonian are not exploited in the CQ-
VAE because these symmetries are manifestly broken by
the considered few-qubit gates. Thus, for N = 24, the
CQVAE still acts on 2359 eigenstates but each of them
is expressed in a 103682-dimensional Hilbert space.

We select a Z2 scar at energy E ≈ −2.67 as the train-
ing input state |χ0〉. This state has a significant over-
lap with the Z2 configuration, i.e., | 〈χ0|Z2〉 |2 = 0.15,
cf. with a value expected in the high-temperature ther-
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FIG. 1. a) Performance of the CQVAE with Ntrash = 8 and
L = 7 trained on the strongest Z2 scar of the PXP model with
N = 24 close to the middle of the spectrum, applied to all
eigenstates. Best performance is observed in the eigenstates
from the Z2 scars family that have an increased overlap with
the |Z2〉 state, as presented in b). Lines serve as a guide to
the eye. Error bars come from averaging over 32 independent
trainings.

mal ensemble 1/D ≈ 0.0004. Fig. 1a shows performance
of a trained autoencoder on eigenstates from the PXP
Hamiltonian spectrum. Indeed, we see that the Z2 scars
are characterized by a significant drop in the CQVAE
cost. Plots of CQVAE reconstruction fidelity (not shown)
also reveal high-fidelity peaks on Z2 scars. In this way,
the family of Z2 scars can be identified in an automatic
way. Interestingly, the Z3 family has the largest cost
even though it has low entanglement entropy showing
that CQVAE learned to distinguish the real space pat-
terns Z3 scar states from the dominant configurations of
Z2 family, see FIG. 1b). Interestingly, at smaller system
sizes, e.g., N = 12, we can recover the ”parent” state
|χ〉 ≈ |Z2〉 for the family by optimizing the input of the
trained CQVAE to minimize cost, see [55] for details.

The next step is to find other scarred families. We
select eigenstates with a low entanglement entropy S =
−Tr ρA log ρA< 2.7, where ρA is the reduced density ma-
trix of the half of the spin chain, train the CQVAE on
each of them, and calculate the cost on other eigenstates.
Pairs of eigenstates that have a low cost when training
on both of them are regarded as belonging to the same
scar family. This property is transitive, i.e. if eigenstates
|E1〉, |E2〉 have a small cost and |E2〉, |E3〉 as well, then
a set |E1〉, |E2〉, |E3〉 is regarded as one family. Fig. 2
shows 5 new families discovered by the CQVAE in the
PXP model for N = 24, with an example of the train-
ing results on one representative of the family #1 (panel

FIG. 2. a) CQVAE cost of eigenstates of the PXP model,
N = 24, reveals a new scar ”family #1” upon training on one
of its representatives. Similar plots for other scarred fami-
lies found by the algorithm are given in [55]. b) Overlaps of
the eigenstates with state |i1〉. c) Entanglement entropy vs
energy.

a)). The eigenstates from the family #1 are character-
ized by increased overlaps with several Fock states, the
example of |i1〉 = |101010010010100100100100〉 state is
shown in FIG. 2b. Other Fock states with high over-
laps with the family #1 contain a mixture of the same
number of rearranged three Z2 and six Z3 patterns. The
same holds true for families #2-#5 of scar states found
for N = 24. Patterns with a larger period can be found,
e.g., family #2 has increased overlaps with four Z3 and
three Z4 configurations. In that way, our QVAE-based
scheme allows to explain the presence and identify rela-
tions between eigenstates with low entanglement entropy
of the PXP model, see Fig. 2c. Since the new families
of scar states do not have a single simple representative
Fock state, their classification, especially in system-size
independent manner is more involved – in [55] we show
the details of the new families for N = 24.

Disordered spin ladder. Consider a spin ladder with
Hamiltonian

H = H || +H⊥ =
1

4

L−1∑
k=1

h
||
k,k+1 +

1

4

L∑
k=1

h⊥k , (3a)
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where

h
||
k,k+1 = σx

kσ
x
k+1 + σy

kσ
y
k+1 + τxk τ

x
k+1 + τyk τ

y
k+1, (3b)

h⊥k = J(σx
kτ

x
k + σy

kτ
y
k ) + ∆k σ

z
kτ

z
k + hk(σz

k + τ zk).

k = 1, . . . , N labels the rungs of the ladder, and spins
on the left and right legs of the ladder are represented
by Pauli matrices σαk and ταk (α = x, y, z), respectively.
Values of hk are drawn from a uniform distribution in the
interval [−h, h], and we set J = 1, h = 0.1, ∆k = 1. The
model has a U(1) symmetry associated with the total

magnetization Z =
∑N
k=1(σzk + τzk ) and a Z2 symmetry

associated with the exchange of the ladder legs σαk ↔ ταk .
Even though this model has signatures of quantum ergod-
icity (e.g. energy levels spacings follow the Wigner-Dyson
distribution), one can analytically construct exact invari-
ant subspaces of the Hamiltonian (3) that are not related
to any local conserved quantity as shown in [46]. It is first
noticed that the eigenstates of h⊥k on a single rung are
|S〉 = (

∣∣0
1

〉
−
∣∣1
0

〉
)/
√

2 (”singlet”), |T 〉 = (
∣∣0
1

〉
+
∣∣1
0

〉
)/
√

2

(”triplet”), |D〉 =
∣∣0
0

〉
(”doublon”), |H〉 =

∣∣1
1

〉
(”holon”),

where the first (second) row of the vector corresponds to
the left (right) leg of the ladder. Product of such states
is an eigenstate of the total leg Hamiltonian H⊥. By
examining the action of the remaining H || on the two-
rung states |{ST, SH, TH,HH . . . }〉 one shows that H ||

annihilates configurations ST, TS,HH,DD, and moves
H (or D) around if S or T are its neighbours. It follows
that configurations |STSTST . . .〉 and |TSTSTS . . .〉 are
annihilated by H || (they are a ”vacuum background”).
Upon inserting a given number of only holons (or dou-
blons) between them, e.g., |STSHjTSHkTS . . .〉, one
constructs an invariant subspace with a given number
of the four letters that are conserved under the action of
the total Hamiltonian H. Dimension of such a subspace
after r insertions of doublons (or holons) is

(
N
r

)
.

Construction of invariant subspaces in this model re-
quired an involved theoretical insight [46]. Here, by em-
ploying the QVAE we can detect their presence in an
automatic way. Let us restrict only to the Z = 1 sym-
metry sector of the Hamiltonian (3) with N = 8 rungs
and a single disorder realization. We encode the lad-
der state onto the spatially one-dimensional quantum cir-
cuit, by mapping the left (right) leg of the ladder to odd
(even) sites of the circuit. In this manner, the neighbor-
ing spins of the ladder are mapped to sites of the circuit
that are close to each other. Training of the QVAE on
a generic eigenstate and application to all others gives a
featureless QVAE cost. However, if we train on an eigen-
state from the invariant subspace represented by state
|STSTHSTS〉 with 1 holon H, 4 singlets S and 3 triplets
T , we get a significantly lower error on all 8 eigenstates
that span this subspace, see Fig. 3. The QVAE cost on
the other invariant subspace |TSTSHTST 〉 with a dif-
ferent number of singlets and triplets (but an identical
entanglement entropy - notice the color scale in Fig. 3)

FIG. 3. Cost function of QVAE trained on an eigenstate from
the 1-holon subspace of the spin ladder model with N = 8 (16
spins in total), evaluated on the eigenstates from Z = 1 sym-
metry sector. Colorbar denotes the bipartite entanglement
entropy for 4 rungs. Results averaged over 56 independent
trainings of the QVAE with Ntrash = 5 and L = 10.

is comparable to the QVAE cost on generic, highly en-
tangled, eigenstates. Similarly, a QVAE trained on an
eigenstate from the subspace |TSTSHTST 〉 yields small
costs on eigenstates from this subspace whereas the cost
on eigenstates from |STSTHSTS〉 is substantial (plot
not shown). This is in a full analogy with results for
PXP model and demonstrates how QVAE identifies and
distinguishes families of scar states.

Conclusion. We proposed a scheme based on QVAE
that allows to identify families of non-ergodic eigen-
states of quantum many-body systems. We validated
our scheme on the Z2 family of scar states of the PXP
model. Then, our scheme was employed to demonstrate
presence of families of scar states in spectrum of PXP
model beyond the Z2 and Z3 families. To confirm the
generality of our approach, we used it to identify the
family of scar states in the disordered spin ladder (3) as
well as in a PXP-like model with a three-body block-
ade [55]. The use of QVAE is crucial in our scheme.
QVAE learns from a single, high-dimensional measure-
ment point (a single eigenstate), in contrast to classical
autonencoders that require a larger set of training data.
The flow of the entanglement entropy through the layers
of the autoencoder has a physical meaning and results
in a compression of the quantum state. By respecting
the laws of quantum mechanics, QVAE becomes a ver-
satile tool in studying eigenstates of many-body systems
allowing, for instance, for a direct implementation of the
local constraints of PXP model on the QVAE. Finally
wee also point out that having the eigenstates one can
try to identify scarred states by calculating the inverse
participation ratio (IPR) with a negligible numerical cost
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instead of costly entanglement entropy. Moreover, in-
stead of exact diagonalization used here, one may use an
approximate algorithm, e.g. DMRG-X [67], to obtain a
subset of eigenstates serving as an input to QVAE.

While all calculations performed here used classical
machine, hardware implementation of QVAE on a phys-
ical quantum computer seems straightforward [17]. Al-
though preparation of ground states of selected Hamilto-
nians is possible by the variational quantum eigensolvers,
algorithms that provide exited states are more involved
[4]. Hence, the preparation of the input states is the
most challenging step of our scheme that is feasible only
for limited system sizes. However, to navigate through
the exponentially large Hilbert space one can use a prior
knowledge about the scar states (e.g. their energy) which
may extend the interval of system sizes accessible on cur-
rent quantum hardware.
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SUPPLEMENTAL MATERIAL

QVAE ARCHITECTURE

The architecture of QVAE is an Alternating Layered
Ansatz [52, 68] shown in Fig. S1. Optimal angles θ that
minimize cost defined in the main text are found by the
SPSA optimizer [48–51] with a random initial guess and
automatic determination of the learning and perturba-
tion rate implemented in Qiskit [51]. In order to uti-
lize the constraints imposed on the Hilbert space in the
PXP model, we implement the unitary circuit U(θ) from
scratch using the QuSpin Python library [69, 70]. The
code is available upon request.

Hyperparameters of the circuits: number of trash
qubits Ntrash, layers L, measurement shots in the de-
termination of cost Nshots and training iterations Niter

were found heuristically by performing a grid search for
smaller PXP system with N = 18 and choosing hyper-
parameters maximizing drops of cost on the Z2 scars if
trained on another Z2 scar. Optimal parameters read
Ntrash = 6, L = 5, Nshots = 300, Niter = 20000, yet
other sets with those quantities changed by factors of
up to 25% still yielded statistically significant drops of
Z2 scars costs. These results were the starting point for
more computationally expensive N = 24 case - they were
scaled linearly with the system size and adjusted heuris-
tically to optimal values Ntrash = 8, L = 7, Nshots = 600,
Niter = 50000 used to produce Figs. 1, 2 in the main text.

Inspection of the training outcomes can give intuition
about the interplay of hyperparameters. It was observed
that overfitting, i.e., a trivial learning of a perfect rep-
resentation of the training eigenstate, which is easily de-
tectable by a large drop in cost of the training point com-
pared to all other eigenstates and no detection of other
Z2 scars in the benchmarking process, is caused by too
many parameters (too large L) or too weak compression
ratio (too small Ntrash). The number of shots Nshots con-
trols the variance of cost between iterations which should
remain at around 1-10% to overcome local minima but
not jump too far in the cost landscape, in full analogy
to the sizes of batches in the stochastic gradient descent
algorithm [71]. We also observed that optimal QVAE cir-
cuits had, unsurprisingly, more layers than CQVAE cir-
cuits for the same number of qubits, because of the need
to represent an exponentially larger part of the Hilbert
space with more parameters. We found that CQVAE was
untrainable for the same number of layers as the QVAE.
We expect this is due to the presence of four-qubit oper-
ations in CQVAE which makes the optimization problem
more difficult. We also noticed that the number of lay-
ers L should be large enough so that trash qubits are
contained within ”light-cone” of the first qubit.

|ψ⟩

Ry(θ1) Ry(θ7) Ry(θ13)

|ϕ⟩
Ry(θ2) Ry(θ8) Ry(θ14)

Ry(θ3) Ry(θ9) Ry(θ15)

Ry(θ4) Ry(θ10) Ry(θ16)

Ry(θ5) Ry(θ11) Ry(θ17)

Ry(θ6) Ry(θ12) Ry(θ18)

FIG. S1. Quantum Variational Autoencoder (QVAE) com-
posed of the single-qubit rotations around the y axis
parametrized by angles θ = (θ1, . . . , θ18) and two-qubit
controlled-Z gates that entangle the neighboring qubits. Sep-
arate layers are denoted by dashed vertical lines.

CQVAE OPERATORS

Below we list exact matrix forms operators used in the
QVAE variant restricted to constrained Hilbert space of
the PXP model. Rotation of one qubit around the y axis
is performed only if its neighbours are in the state |0〉
according to

R̃y(θ) =

|000〉 |010〉 |001〉 |100〉 |101〉


cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

1
1

1

(S1)

where states denoted above the matrix enumerate the
3-qubit computational basis with constraints. Similarly,
two neighboring qubits are entangled only if their neigh-
bors are in state |0〉 by the following operator:

Ei =

|0000〉 |0010〉 |0100〉 |0001〉 |0101〉 |1000〉 |1010〉



1

1/
√

2 1/
√

2

1/
√

2 −1/
√

2
1

1
1

1

(S2)
In this case, the entangling operator is different than in
the CZ gate (which acts not trivially only on 2-qubit con-
figuration |11〉 excluded by the PXP model constraints).
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DETECTION OF FAMILIES IN THE PXP
MODEL

We provide technical details concerning the scars iden-
tification in the PXP model. In Fig. S2 we show output
of CQVAE used to determine members of family #1. We
see that there is an overall growth of cost with distance
in energy. Nevertheless, family members can be detected
one by one using transitivity (see main text). Similar
plots have been used to detect other families. Clusters
of mutually related eigenstates (incl. transitivity) were
identified by graph toolbox. Namely, we regard all eigen-
states as graph nodes. For each training eigenstate, its
corresponding node gets a directed link to nodes on which
there are drops in QVAE cost. Then a community detec-
tion tool CommunityGraphPlot in Wolfram Mathematica
is used to list all isolated families with more than one
node and bidirectional links.

CHARACTERIZATION OF FAMILIES IN THE
PXP MODEL

In this paragraph we further characterize QMBS be-
yond the Z2 and Z3 families detected by the QVAE in the
PXP model. For families #1−#5 we notice an increased
overlap with a set of Fock states listed in Table I. For
readability, Fock states are represented by Z2,Z3,Z4,Z5

patterns that appear in them. For example, state de-
noted as 2 − 2 − 3 − 2 − 3 − 3 − 3 − 3 − 3 corresponds
to Fock state |101010010100100100100100〉. To illustrate
the increased overlaps with Fock states from Table I, we
calculate probabilities of finding the eigenstates in any of
those Fock states,

P (i) =

ni∑
j=1

|〈E|fij〉|2 , (S3)

where #i labels the family and {|fij〉}j are Fock states
listed next to family #i in Table I, and plot them in
Fig. S4.

We find that for families #1−#4 the numbers of pat-
terns are conserved, and family #5 gives more than one
number of occurrences of each pattern. Family #4 is
composed of a maximal number of Z2 patterns that can
be supplemented by Z3 to fill the whole system with
N = 24. A similar family was observed for other sys-
tem sizes: N = 18 (6,2,0,0) and N = 30 (12,2,0,0) at
shifted energies, see Fig. S5. It is at present not clear
what is the mechanism behind the conservation of the
”domain wall” number within a single family.

name Fock state pattern (#Z2,#Z3,#Z4,#Z5)

family #1

2-2-3-2-3-3-3-3-3 (3,6,0,0)
2-3-2-3-2-3-3-3-3 (3,6,0,0)
2-2-3-3-2-3-3-3-3 (3,6,0,0)
2-3-2-3-3-2-3-3-3 (3,6,0,0)
2-2-3-3-3-2-3-3-3 (3,6,0,0)

family #2
3-3-3-4-3-4-4 (0,4,3,0)
3-3-4-3-3-4-4 (0,4,3,0)
3-3-4-3-4-3-4 (0,4,3,0)

family #3 2-2-2-3-2-3-2-2-3-3 (6,4,0,0)

family #4

2-2-2-2-2-2-2-2-2-3-3 (9,2,0,0)
2-2-2-2-2-2-2-2-3-2-3 (9,2,0,0)
2-2-2-2-2-2-2-3-2-2-3 (9,2,0,0)
2-2-2-2-2-2-3-2-2-2-3 (9,2,0,0)
2-2-2-2-2-3-2-2-2-2-3 (9,2,0,0)

family #5

3-4-4-4-4-5 (0,1,4,1)
3-4-4-4-5-4 (0,1,4,1)
3-4-4-5-4-5 (0,1,3,2)
3-4-4-5-4-4 (0,1,4,1)
3-4-5-3-4-5 (0,2,2,2)
3-4-5-3-5-4 (0,2,2,2)
3-4-5-4-9 (0,1,2,1)
3-4-5-4-3-5 (0,2,2,2)
3-4-5-4-8 (0,1,2,1)
3-4-9-3-5 (0,2,1,1)

TABLE I. List of Fock states with increased overlaps with cor-
responding QMBS families. Last column contains the number
of occurences of corresponding patterns in the Fock states.

INTERPRETING THE QVAE CIRCUIT: INPUT
STATE OPTIMIZATION

In the main text we demonstrate that QVAE allows
one to find multiple scar families among eigenstates of
the PXP model. In the paragraph above we listed physi-
cal features specific to the found families, indirectly indi-
cating ”what order parameter the QVAE learns”. Here,
we employ an alternative method to interpret the trained
QVAE circuits. Variationally optimizing the input, start-
ing from a random state, we simultaneously minimize the
cost on trash qubits for an ensemble of independently
trained QVAEs with constant circuit parameters. This
approach is in stark contrast to standard training where
the input is given and the circuit parameters are varia-
tionally adjusted. We optimize over an ensemble rather
than a single QVAE for robustness of the result. Op-
timization of the input is a popular method of under-
standing layers in classical deep neural networks working
with real-world pictures [74, 75], with a lot of optimiza-
tion results especially entertaining to look at for humans
[76]. Due to the generative nature of the process start-
ing with random noise, input optimization is sometimes
called ”dreaming” and we adopt this naming here.

In FIG. S3a) we show local magnetization 〈σzi 〉 in an
example ”dreamt” state |χdream〉 found for ensemble of
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FIG. S2. CQVAE cost vs energy for family #1 for all eigenstates within this family. Above data were used to identify members
of family #1.

100 CQVAEs trained on a Z2 scar eigenstate in the mid-
dle of the spectrum. A Z2-like magnetization pattern in
|χdream〉 can be noticed. It is also visible in the structure
factor S(q) =

∑
j exp(iqj)〈σzj 〉 in FIG. S3b) which has

a peak at q = π. Therefore, even if we assume no prior
knowledge that the |Z2〉 state represents the Z2 scar fam-
ily, we are able to recover |χdream〉 ≈ |Z2〉, serving as a
single representative of this family. Unfortunately, since
the optimization is done in the input space, due to an
exponential increase of computational time with system
size, this method is not feasible for large systems. In
FIG. S3 we used system size N = 12, 50000 input opti-
mization steps, each with 100 shots for cost estimation.
Respective CQVAEs consisted of L = 2 layers, Ntrash = 4
trash qubits, and were trained with Nshots = 100 shots
for cost estimation and Niter = 1000 parameter optimiza-
tion steps.

PXP-LIKE MODEL WITH A THREE-BODY
BLOCKADE

To demonstrate the universality of our method, we also
apply it to a modified PXP model with another type of
blockade [72, 77]. The Hamiltonian reads

Ĥ =
∑
i

P̂i−1,i,i+1σ
x
i , (S4)

where P̂i−1,i,i+1 = 1 − |1i−11i1i+1〉 〈1i−11i1i+1|. This
is a weaker constraint than in the PXP model. QVAE,
working in the full Hilbert space, Ntrash = 5, L = 10,
applied to this model with N = 16 detects scars of the
Z2 type, see Fig. S6. No other families have been found
by the algorithm.
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FIG. S3. ”Dreaming”: optimizing the input state to mini-
mize the QVAE cost (see text) simultaneously for 100 QVAEs
trained on a single Z2 scarred eigenstate, N = 12. We get a
”representantive” state |χdream〉 ≈ |Z2〉 for the scar family.
a) Local magnetization of the ”dream” state |χdream〉 shows
a Z2-like pattern. b) Structure factor of the calculated mag-
netization (averaged over 15 independent optimizations) has
a peak at q = π, signaling a period-2 ordering in the position
space.

FIG. S4. Probability (S3) of finding eigenstate in any of the
Fock states the scarred family #1 − #5 (a-e, respectively)
have a large overlap with, see Table I.
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FIG. S5. Probability (S3) of finding eigenstate in Fock states
with (6,2), (9,2), (12,2) Z2 and Z3 patterns forN = 18, 24, 30,
respectively. Energies of family #4 found for N = 24 by
CQVAE are denoted by dashed vertical lines.
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FIG. S6. Z2 scars detected by the QVAE in the variant of
the PXP model with a three-body constraint.
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