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Abstract

Unsupervised matrix-factorization-based dimensionality reduction (DR) techniques
are popularly used for feature engineering with the goal of improving the generaliza-
tion performance of predictive models, especially with massive, sparse feature sets.
Often DR is employed for the same purpose as supervised regularization and other
forms of complexity control: exploiting a bias/variance tradeoff to mitigate overfitting.
Contradicting this practice, there is consensus among existing expert guidelines that
supervised regularization is a superior way to improve predictive performance. How-
ever, these guidelines are not always followed for this sort of data, and it is not unusual
to find DR used with no comparison to modeling with the full feature set. Further, the
existing literature does not take into account that DR and supervised regularization
are often used in conjunction. We experimentally compare binary classification per-
formance using DR features versus the original features under numerous conditions:
using a total of 97 binary classification tasks, 6 classifiers, 3 DR techniques, and 4
evaluation metrics. Crucially, we also experiment using varied methodologies to tune
and evaluate various key hyperparameters. We find a very clear, but nuanced result.
Using state-of-the-art hyperparameter-selection methods, applying DR does not add
value beyond supervised regularization, and can often diminish performance. How-
ever, if regularization is not done well (e.g., one just uses the default regularization
parameter), DR does have relatively better performance—but these approaches result
in lower performance overall. These latter results provide an explanation for why prac-
titioners may be continuing to use DR without undertaking the necessary comparison
to using the original features. However, this practice seems generally wrongheaded in
light of the main results, if the goal is to maximize generalization performance.
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1 Introduction

Predictive modeling from sparse, binary data sets often uses unsupervised matrix-
factorization-based (MF-based) dimensionality reduction (DR) as a preprocessing
step. There seems to be confusion in the research, educational, and practitioner commu-
nities as to whether using DR in such a way is beneficial. This paper experimentally
evaluates whether and under what conditions using unsupervised DR improves the
generalization performance of binary classifiers trained using massive, sparse feature
sets.

To the best of our knowledge, this is the first work that comprehensively evaluates
whether or not DR is an advantageous preprocessing step to improve predictive mod-
eling performance in the context of state-of-the-art complexity control techniques.
Past work in this area has not considered the extent to which different model selec-
tion methodologies may affect DR’s performance relative to the original feature set.
Furthermore, past work has also not conducted experiments using massive, sparse
data—where DR is commonly applied. The intended audience for this research is
not necessarily researchers developing new machine learning algorithms (although
our findings are certainly relevant to that community), but more broadly, anyone who
leverages predictive modeling for their research or work.

Our main contribution is an experimental comparison of models trained using
reduced-dimensionality features obtained using unsupervised MF-based DR versus
using the full (unreduced) feature set. The experiments in this study primarily consist
of a deep dive into one predictive test bed, comprising 21 binary classification tasks on
the same high-dimensional, sparse feature set. Focusing on one feature set and related
tasks allows us to control for possible variations in the selection of the target task.
As a generality check, we follow up with a set of experiments on 15 additional data
sets, comprising a total of 76 additional classification tasks. While our results mainly
focus on binary classification, we touch on multiclass classification and numerical
regression and see intriguing preliminary results.

The experiments vary the methodology used to select and evaluate key complexity
parameters. Namely, to compare DR-feature versus full-feature performance for each
set of experiments we use either (a) nested cross-validation to select from a set of pos-
sible parameter values or (b) standard cross-validation with a default parameter value.
Furthermore, the experiments use three unsupervised matrix-factorization-based DR
methods (Singular Value Decomposition, Non-negative Matrix Factorization, and
Latent Dirichlet Allocation), six classification algorithms (L2-regularized logistic
regression, Support Vector Machines, L1-regularized logistic regression, Classifica-
tion Trees, Random Forests, and k-Nearest Neighbors), and are compared using four
different evaluation metrics: AUC, H-Measure, AUCH, and the lift over random selec-
tion at the top 5% of test instances.

Via our literature review, we establish that DR is commonly used in applied data
mining contexts, but seems to be somewhat misunderstood, and therefore can be used
incorrectly. Specifically, modelers often fail to undertake an experimental comparison
of modeling using dimensionality-reduced features versus the original full feature set.
Furthermore, existing guidelines (as encoded in data mining and machine learning
textbooks and courses) treat DR and supervised regularization as competing methods;
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however, these two methods for mitigating overfitting could be (and often are) used
in conjunction.

As evidence of the lack of clarity on this issue, consider the influential paper by
Kosinski et al. in PNAS (Kosinski et al. 2013). The authors demonstrate that it is
possible to predict important and sensitive personal traits of individuals using only the
items that they have Liked on Facebook. Users can indicate support for a wide variety
of content items, including media, brands, Facebook content, people, and statements by
Liking them. A key part of the authors’ methodology employs the process this paper
studies: conduct DR (via Singular Value Decomposition) on the user-Like matrix
before building logistic regression models using the resulting reduced-dimensional
features to predict the desired traits. As a second example, consider a paper published
in the proceedings of the ACM SIGKDD Conference: it uses both website text and
network characteristics to identify sites that sell counterfeit and black-market goods
such as pharmaceuticals (Der et al. 2014). Again, they apply exactly the procedure
we study. The original feature count for describing the websites is about 65,000; after
applying DR the authors find that most of the variance in the features can be accounted
for using only 72 of the reduced dimensions. They then build predictive models on
the resulting reduced-dimension space to classify sites, reporting high precision and
recall.

Both of these data sets initially might appear to be ideal candidates for DR. The
dimensionality is very high, the instances are largely sparse, and the data intuitively
seem like they ought to contain latent information that could be captured via dimen-
sionality reduction; therefore, there would seem to be a large potential benefit to
reducing the sampling variance. However, neither of these papers reports whether
using DR actually improves the predictive performance; indeed, for all we know,
the predictive performance might have been better without the complexity added by
using DR. A natural question is whether the same (or better) performance could have
been achieved with supervised regularization alone, which would thus simplify the
predictive modeling process (cf., Chen et al. 2017).1

Our experiments show that the method that clearly gives the best generalization
performance overall does not use DR, and for this method unsupervised DR tends to
reduce generalization performance. Therefore, using DR without assessing whether it
adds value is a mistake.

Our results also provide a viable explanation for why researchers and practition-
ers may include DR. The primary results are based on conducting state-of-the-art
procedures for selecting the hyperparameters for regularization. If one uses less-
sophisticated regularization, or none at all, then using DR features may be superior—
although the overall performance will usually be worse.

The empirical study yields five specific conclusions about using unsupervised DR
for predictive modeling:

1. On these data, unsupervised MF-based DR is generally unnecessary and potentially
diminishes the performance of binary classifiers when used in conjunction with
state-of-the-art techniques for supervised complexity control.

1 The predictive performances in cited papers are very strong, and thus we are not calling into question the
conclusions of their studies.
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2. Unsupervised DR can be beneficial when (a) supervised regularization is not used
at all or (b) regularization strength is not selected using state-of-the-art techniques.
In general, the harder the binary classification problem, the more using DR will
improve performance; however, DR tends to reduce performance for easier prob-
lems.

3. DR has a greater relative advantage when used in conjunction with classifiers that
leverage some form of internal feature selection; unfortunately, such classifiers
tend to perform worse overall. Furthermore, DR has the greatest relative advantage
when used in conjunction with k-Nearest Neighbors classifiers, but these classifiers
perform quite poorly.

4. Of the three unsupervised DR methods we experiment with, SVD is generally
the best-performing, and so if it is necessary or desirable to utilize DR for other
reasons (for instance, to decrease training time over multiple, related tasks), SVD
is a solid default method to use.

5. Of the 24 feature set/classifier combinations in our experiments, L2-regularized
logistic regression models trained on the original, full feature sets had the best
performance hands down. This combination is thus a strong baseline for use with
large, sparse, binary data.

A broader lesson is that variations in the methodology used for tuning and evaluating
models and modeling parameters can make a big difference in terms of predictive
performance. State-of-the-art methods for tuning and evaluating models such as nested
cross-validation and grid search are a better use of time and computation resources
than adding unnecessary complexity via a DR step. Predictive modelers should keep
in mind the principle of Occam’s Razor and perform lesion studies (Langley 2000) in
order to ensure that predictive modeling systems are no more complex than they need
to be. Introducing extraneous components will at best increase processing time, and
at worst can result in reduced performance.

We mostly limit this experimental comparison to the very large, sparse data now
common in many applications. Similarly to the motivating examples listed above,
such data might seem to be ideally suited for DR’s use. Further, the main focus of
the paper is on binary classification (rather than numerical regression or multi-class
classification). Since the primary contribution of the study is the lesson that one should
carefully consider whether to apply DR (especially in the context of regularization),
depth is more important than breadth. We are not claiming that DR will never help—
but that we can show an important class of problems where it does not seem to and
that researchers and practitioners don’t seem to understand that well.

The rest of this paper proceeds as follows. In Sect. 2, we refine the definition of DR
for the purposes of this research. We also examine the existing guidelines for use of DR
in predictive modeling and review papers from the applied data mining literature that
use DR as part of their methodologies. Section 3 describes our experimental settings
and the rationale behind our experimental design. Section 4 shows the results of our
experiments comparing binary classification performance using full feature versus DR
feature sets. Finally, Sect. 5 discusses the implications of our results, and shows some
intriguing results that suggest next steps for research.
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2 Background and literature review

Dimensionality reduction, in the very broadest sense, can be defined as a class of
methods that reduce the size of the feature set used for modeling. In this paper we
will consider DR to be beneficial if a predictive model built using the reduced space
as features has superior predictive performance to a model built using the original
features. The literature provides a strong theoretical basis for why this might happen.

Famously, DR can be employed to overcome the “Curse of Dimensionality” (Bell-
man 1961), which can manifest itself in numerous ways. In particular, traditional
statistical modeling techniques break down in high-dimensional spaces. DR is thus
employed to avoid overfitting in predictive problems from such data.2 Guidelines for
use of DR in predictive modeling are generally building on this principle.

The second, related theoretical foundation for why DR may help in predictive
modeling draws on the bias/variance tradeoff in predictive error (Friedman 1997).
That is, that by reducing dimensionality, we reduce training variance at the cost of
introducing some bias. The hope is that the overall error will be diminished (Shmueli
and Koppius 2011). DR and other forms of complexity control improve predictive
performance by trying to exploit this tradeoff (Friedman 1997; Scharf 1991; Domingos
2012; Kim et al. 2005).

Besides improving predictive performance, DR can be used to compress large data
sets, whether to save space or time (Thorleuchter et al. 2012). On the other hand, if
the original feature matrices are very sparse, standard DR methods such as Singular
Value Decomposition (SVD) are time consuming to compute and generally result in
dense matrices which are likely to be larger in terms of storage space. DR can also be
used for visualization of latent structure in the data (Westad et al. 2003). Consideration
of these tasks is outside the scope of this paper. However, it is worth considering a
possible trade-off in predictive performance if DR is employed to reduce processing
time, for instance.

There are two ways of accomplishing DR (Guyon and Elisseeff 2003; Liu and
Motoda 1998): feature selection and feature engineering. There have been numer-
ous reviews and comparisons of DR techniques (Guyon and Elisseeff 2003; Liu and
Motoda 1998), including some that focus chiefly on feature engineering techniques
(Van der Maaten et al. 2009) and others that focus on feature selection methods (Blum
and Langley 1997; Saeys et al. 2007; Forman 2003). We focus on evaluating the per-
formance of unsupervised matrix-factorization-based feature engineering techniques
such as Singular Value Decomposition (SVD) in particular for two main reasons.

First, it is a common practice to use both SVD and some form of supervised fea-
ture selection such as L1 regularization in conjunction. To the best of our knowledge,
there is not a systematic comparison of SVD features versus full features in the con-
text of supervised regularization. Second, MF has a long history of use in predictive
modeling by industry and research practitioners across many domains, including text
classification (Yang 1995), facial image recognition (Turk and Pentland 1991), net-
work security (Xu and Wang 2005), neuroscience (López et al. 2011), and social data
analysis (Kosinski et al. 2013). Crucially for applied data mining researchers and

2 See López et al. (2011), West et al. (2001), and Burl et al. (1998) for a few examples.
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industry practitioners, popular software packages such as Python and MatLab contain
off-the-shelf implementations of MF techniques for large, sparse data sets that can be
seamlessly integrated within a predictive modeling pipeline.

2.1 Predictive modeling setting and notation

The training data D comprise n data instances, each composed of the value for a binary
target variable that we would like to predict, as well as the values for d attributes
arranged in a feature vector xi . Each instance makes up one row of the data matrix X,
and each feature corresponds to one column. Each instance i has a nonzero association
with at least one attribute. Assume that this association is binary:

D = {(xi , yi )}

xi = {xi1, xi2, . . . , xid}

xi j , yi ∈ {0, 1}

The goal is to use a binary classifier such as logistic regression to learn functions
f : xi → [0, 1] that score instances with an estimate of class membership probability.3

Our primary results evaluate each f by how well the resulting scores rank a set of held-
out instances Dh , measured using the Area Under the ROC Curve (AUC); however,
we check for robustness by also measuring the H-measure, AUCH, and lift.

Matrix factorization (MF) splits the feature matrix X into two matrices L and R such
that X = LR. MF-based DR results in smaller matrices Lk ⊂ R

n×k and Rk ⊂ R
k×d

such that
X ≈ LkRk (1)

The k columns of Lk can be viewed as “latent factors” underlying the original data.
Each instance will have a representation in the new k-dimensional space captured
by Lk . The corresponding rows of the k × d matrix Rk are sometimes referred to
as the “loadings” of the components, representing the relationship between the new
features and the original features. Once the matrix factorization has been computed,
the resulting latent factors may be used as a new set of features in a predictive model.
Thus, we will also learn functions g : lk,i → [0, 1]. Section 3.3 discusses the specific
MF techniques we use and their implementations. Our experiments will compare full
feature data and DR performance.

2.2 Existing recommendations for use of DR

The importance of DR as a preprocessing technique for predictive modeling is under-
scored by its inclusion in data mining and machine learning textbooks (James et al.
2013; Hand et al. 2001; Cios et al. 2007; Tan et al. 2006; Izenman 2008; Friedman et al.
2001). DR is seen as useful for visualizing and compressing data, and potentially bene-
ficial for predictive performance by reducing overfitting via exploiting a bias/variance

3 Some methods, such as Support Vector Machines (SVMs), provide a score that doesn’t necessarily map
to the interval [0, 1].
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tradeoff. Because supervised regularization is closely related to DR in its purpose
and results, such books compare the two techniques. Most textbooks therefore come
with a strong caveat that because DR components are not generated in a supervised
fashion, unsupervised DR may not be the best regularization technique—supervised
regularization likely would be a better choice.

The recommendations from this body of literature range from generally optimistic
(Tan et al. 2006; James et al. 2013) to much more guarded (Hand et al. 2001; Cios
et al. 2007; Izenman 2008; Friedman et al. 2001). Andrew Ng sums up the caution
towards using SVD for predictive modeling in his hugely popular MOOC on Machine
Learning:

So some people think of PCA4 as a way to prevent over-fitting. But just to
emphasize this is a bad application of PCA and I do not recommend doing
this. And it’s not that this method works badly. If you want to use this method
to reduce the dimensional data, to try to prevent over-fitting, it might actually
work OK. But this just is not a good way to address over-fitting and instead, if
you’re worried about over-fitting, there is a much better way to address it, to use
regularization instead of using PCA to reduce the dimension of the data.5

However, in discussing DR for predictive modeling, there are a few elements miss-
ing from the settings considered by the textbooks. Primarily, they assume that DR and
regularization are competing techniques; however, it is unusual in state-of-the-art pre-
dictive modeling contexts to not use some form of supervised complexity control for
regression or classification. Therefore, researchers and practitioners are left asking, for
instance: what if we were to use regularization on top of DR? Additionally, they usu-
ally discuss PCR (principal components regression) but do not delve into alternative
predictive tasks (such as binary classification), induction algorithms, or DR methods
that use components in a similar way. Furthermore, to the best of our knowledge, past
literature has not explored whether DR might be more beneficial for classification than
regression or vice versa. Finally, the motivating examples chosen to demonstrate PCR
use relatively small data sets.

Given that there is some consensus among educational materials for applied data
miners, it would be surprising if DR ever improved predictive performance. Yet, practi-
tioners use it, as we have observed in the literature (as cited above), through interactions
with industry data scientists, as well as with our own students. To add additional anec-
dotal support that there is confusion about the value of DR for predictive modeling, we
surveyed online forums that are commonly used by data scientists: Stack Exchange,
Quora, and Reddit. Advice given on such sites runs the gamut from highly skeptical
(“The only situation I can think of where accuracy is actually increased with dimension-
ality reduction is when you have extremely noisy variables.”6) to guarded (“there is no

4 Principal Components Analysis (PCA) is closely related to SVD. See Section 3.3. Often in practice the
terms PCA and SVD are used interchangeably.
5 https://www.coursera.org/learn/machine-learning/lecture/RBqQl/advice-for-applying-pca, accessed
August 18, 2018.
6 https://www.reddit.com/r/datascience/comments/55woqt/selecting_features_for_dimensionality_
reduction/, accessed August 18, 2018.
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guarantee that this will work and there are often better regularization approaches”7)
to highly positive (“Performing a singular value decomposition in order to use the
derived scores in a classifier has a positive influence in a classifier’s overall perfor-
mance in most cases”8). The range of responses—which contradict each other as well
as the advice given in textbooks—supports our claim that there is no “go-to” resource
that clarifies the question of whether and when to use DR for predictive modeling.

As a further example, dimensionality reduction is widely accepted as a beneficial
step in preprocessing and exploring the feature space in the business analytics liter-
ature. Shmueli and Koppius (2011) provide a guide to utilizing predictive modeling
in business research. DR is a prescribed part of their process because, “reducing the
dimension can help reduce sampling variance (even at the cost of increasing bias), and
in turn increase predictive accuracy.” The authors subsequently codify dimensionality
reduction as one of their steps for building a predictive model.

2.3 Mixed performance of DR in predictive modeling literature

Moving beyond the statements in textbooks, empirical comparisons of reduced-
dimensionality feature sets versus original features have shown mixed results. There
have been some papers in which a model built on a reduced-dimensionality feature set
has been shown to achieve better generalization performance than a model built using
the original features. Several of these papers have the objective of demonstrating the
usefulness of one or more particular DR methods. Specifically, DR is introduced: to
reduce the noisiness of data (Ahn et al. 2007); to uncover latent meaning in the data
(Whitman 2003; Blei et al. 2003); to overcome poor features (as in images) (Subasi and
Ismail Gursoy 2010); to combat polysemy and synonymy, as in information retrieval
(Karypis and Han 2000); or to speed up the modeling (Fruergaard et al. 2013). Other
papers mention that a comparison has been undertaken but do not explicitly state the
results (West et al. 2001).

On the other hand, there are papers that demonstrate dimensionality reduction for
predictive modeling performing worse than not using DR, such as Raeder et al. (2013),
Xu and Wang (2005), and Pechenizkiy et al. (2004). Others report that DR resulted
in mediocre performance (Guyon et al. 2009). Most tellingly, however, is a survey
by Van der Maaten et al. (2009) of linear and nonlinear dimensionality reduction
techniques. This survey utilized both “natural” and “synthetic” data sets.9 They found
that on the majority of their “natural” data sets, classification error was not improved
by doing any form of dimensionality reduction on the feature space. However, they
hedge their conclusion by explaining this as likely being due to an incorrect choice of
the number of latent factors to include as features (“k”).

7 https://stats.stackexchange.com/questions/141864/how-can-top-principal-components-retain-the-
predictive-power-on-a-dependent-vari, accessed August 18, 2018.
8 https://stats.stackexchange.com/questions/142557/is-dimensionality-reduction-almost-always-useful-
for-classification, accessed August 18, 2018.
9 Their results differ from ours, below, in that (i) they do not use sparse data, (ii) their data sets are limited
in size to fewer than 10,000 instances, and (iii) they do not use state-of-the-art methods to choose the size
k of the reduced space, a key limitation.
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Beyond this mixed evidence, there are numerous papers that apply dimensionality
reduction to their feature sets without explicitly mentioning a comparison to models
built on the original feature sets. It is important to note that there are reasons not to just
do DR automatically, even ignoring the effect on predictive performance. The various
methods to compute DR are very time consuming and computationally expensive.
DR also can obscure interpretability of the original features (latent factors are not
guaranteed to be interpretable!). While some of these papers do give rationale for
using DR, it is not certain that they are building the best models that they can (and
therefore obtaining the strongest results possible) by ignoring this comparison.

While these latter papers do not mention an empirical comparison between DR
and no-DR feature sets, some do provide a rationale. The reasons are generally the
same that we have encountered before: to reduce the noise in the data (Hu et al.
2007); to make the dimensionality of the space more tractable (Thorleuchter et al.
2012; Coussement and Van den Poel 2008); or to reduce the computational expense of
modeling (Tremblay et al. 2009). Sometimes DR is employed in the context of “side
benefits” such as aiding in interpretation of a model (Khan et al. 2007) or speeding up
prediction time (Lifshits and Nowotka 2007). Others do not provide either empirical
or theoretical justification for applying DR to their feature sets (Kosinski et al. 2013;
Cai et al. 2013; Der et al. 2014; Arulogun et al. 2012).

Thus we see that some practitioners favor the use of DR, not only in the online
advice, but in practice in published papers—where DR features frequently are used
without a comparison against the full feature set. The results we present below suggest
that if maximizing generalization performance is a goal, then using DR features with-
out a comparison to the full feature set is a mistake. However, we also show results that
provide one clear explanation as to why practitioners may make this mistake: if you
don’t use state-of-the-art methods for choosing the degree of regularization with the
full feature set, then you often will not see the advantage over using the DR features.

3 Experimental test-bed

Broadly, the experiments in this paper explore the relative performance of DR features
versus original features. We evaluate performance on a suite of binary prediction tasks
using large, sparse feature sets. A key dimension of our experiments is that we vary
the methodology used to tune parameters and report performance. The core results
focus on two parameters: the number of DR components k used as features, and the
supervised regularization parameter C . We vary the method for choosing each of these:
either a single default value, or task-specific grid search using nested cross-validation.

Nested cross-validation adds an inner loop of cross-validation to each of the folds of
standard cross-validation (Provost and Fawcett 2013). In the inner loop we do 3-fold
cross-validation to estimate the performance of each parameter combination in our
grid. In the outer loop, a new model is trained using the parameter combination that
yielded the best performance from the inner loop and then is tested on the test data.
Thus, the parameter selection is part of the training process and the test data are not
compromised. Figure 1 describes the basic experimental procedure.
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Divide labeled
data D into

10 outer folds

Divide 9 total
outer training folds
into 3 inner folds

Inner cross-
validation using

X: choose C with
highest average

AUC across
3 inner folds

Inner cross-
validation using

Lk’s: choose
combination of C

and k with highest
average AUC

across 3 inner folds

Train optimal full
model on X, test
on outer test fold

Train optimal DR
model on Lk, test
on outer test fold

Average full AUC
across 10 outer folds

Average DR AUC
across 10 outer folds

Repeat 10 times

Fig. 1 Experimental procedure for comparing full to DR performance, using nested cross-validation for
unbiased parameter selection and evaluation

Table 1 summarizes the combinations of parameter selection methodologies that we
experimented with. All experiments use 10-fold cross-validation for evaluation (we
note specifically where 3-fold nested cross-validation has been added in). Our pri-
mary results measure binary classification performance using AUC, which we further
validate using three other evaluation metrics: H measure (Hand 2009), AUCH (Hand
2009), and lift. The remainder of this section goes into more detail on the various feature
sets, predictive tasks, DR techniques, and binary classifiers used in the experiments.
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Table 1 Modeling test-bed
settings, varying model-tuning
methodology

k

Chosen using NCV k = 100

C Chosen using NCV �

C = 1 � �

No regularization �

NCV nested cross-validation

3.1 Data sets

Our main experiments utilize data collected by Kosinski et al. (2013). The thrust
of their research is that private traits can be predicted better than at random using
Facebook Likes. Our intention here is not to critique these existing (strong) results,
but to use the domain as a testbed of multiple, real predictive modeling problems using
the sort of sparse data that is increasingly available, and which can provide markedly
better predictive performance than traditional data (Martens et al. 2016). While the
main results are a deep dive into many data sets based on one feature set, Sect. 4.6
shows results for 76 additional tasks drawn from 15 other large, sparse data sets.

The researchers collected data via a Facebook application that allowed users to
take personality tests and also reported the users’ Likes and profile information. Using
this data, it is possible to formulate a user-Like matrix X such that Xi j = 1 if user
i Liked item j . They have generously made the resulting user-Like matrix as well
as the personality test results and anonymized profile information available to other
researchers. The user-Like matrix we use comprises n = 211,018 users and d =

179,605 Likes. The corresponding matrix contains roughly 35 million unique user-
Like pairs, resulting in a matrix with 99.91% sparsity (meaning .09% of the entries in
the matrix are non-zero). The average user Liked 195 items and the average item was
Liked 166 times.10

The second component of the data is a set of 21 binary and numeric prediction
tasks, drawn from the app users’ personality test results, profile information, and survey
items. We replicate the authors’ predictions for all of the binary target variables. These
include “single versus in relationship”, “parents together at 21”, “smokes cigarettes”,
“drinks alcohol”, “uses drugs”, “Caucasian versus African American”, “Christianity
versus Islam”, “Democrat versus Republican”, “gay”, “lesbian”, and “gender”. Counts
of the number of users and items for which each binary target has label values can be
found in Table 5 of Appendix A. We followed the labeling procedure undertaken by
Kosinski et al. for all target variables except “Caucasian versus African American,”
which was labeled by visual inspection of profile pictures not available to us; we
instead used values from a different survey item.

Additionally, we included predictions for the numerical variables that they report.
In order to provide a consistent comparison, we binarized all variables by setting a
threshold, above which the target was set to 1, and 0 otherwise. These numerical
variables are “satisfaction with life”, “intelligence”, “emotional stability”, “agree-

10 We store this resulting matrix X as a SciPy sparse matrix (Jones et al. 2001) in Python.
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ableness”, “extraversion”, “conscientiousness”, “openness”, “density of friendship
network”, “number of Facebook friends”, and “age”. Some of the thresholds for bina-
rization were set based on an intuitive value, such as age ≥ 30; others were set to be
the median or top-quartile value for that variable to ensure variety in base rates. More
information on the various numerical variables and their thresholds can be found in
Table 6 in Appendix A.

An important note is that although the 21 predictive tasks all rely on the same test-
bed of features, there is wide variation in important data set characteristics across the
tasks. Namely, some of the tasks have far more features than instances, and for some
the feature matrix is roughly square. There is also variation in the base rate (percent
of positive instances). Tables 5 and 6 in Appendix A contain more information about
the shapes and base rates of the various feature matrices.

Finally, we follow up this study by studying 15 additional (publicly available) data
sets comprising 76 total predictive tasks, many of which were collected from the UC
Irvine Machine Learning Repository (Dheeru and Karra Taniskidou 2017). Some of
the feature sets did not initially comprise binary features, and some of the default tasks
were not binary classification. Just as before, we binarized features or target variables
where necessary by using a threshold. These data sets also vary in their shapes, sizes,
sparsity levels, and base rates. A listing of the sizes of these data sets, the number of
nonzero elements, and the base rates can be found in Appendix A, Table 7. Descriptions
of the tasks are given here:

1. Book Predicting users’ ages based on books rated (Ziegler et al. 2005).
2. Movies Predicting users’ genders based on movies rated.11

3. Ta-Feng Predicting users’ ages based on products purchased.12

4. URL Predicting whether a URL is malicious based on website features (Ma et al.
2009).

5. Flickr Predicting volume of comments on Flickr pictures based on which users
have “favorited” them (Cha et al. 2009).

6. Movielens Predicting the age and gender of Movielens users, given the movies
they’ve rated, and predicting whether a movie belongs to each of 18 genres, given
the users who have rated it (20 total tasks) (Harper and Konstan 2016).13

7. CiteSeer Predicting whether “J. Lee” is the author of a particular scientific paper
based on the other authors of the paper.14

8. Daily and sports activities Predicting whether a subject is performing each of 19
activities based on physical sensor outputs (19 prediction tasks) (Altun et al. 2010;
Barshan and Yüksek 2014; Altun and Barshan 2010).15

9. DeliciousMIL Predicting whether a web page from del.icio.us is tagged with each
of 20 tags using the page text (20 prediction tasks) (Soleimani and Miller 2016).16

11 http://webscope.sandbox.yahoo.com/, accessed August 18, 2018.
12 http://recsyswiki.com/wiki/Grocery_shopping_datasets, accessed August 18, 2018.
13 https://grouplens.org/datasets/movielens/20m/, accessed August 18, 2018.
14 http://komarix.org/ac/ds/#spardat, accessed August 18, 2018.
15 https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities, accessed August 18, 2018.
16 https://archive.ics.uci.edu/ml/datasets/DeliciousMIL%3A+A+Data+Set+for+Multi-Label+Multi-
Instance+Learning+with+Instance+Labels#, accessed August 18, 2018.
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10 E-commerce Predicting an online shopper’s gender based on the products they’ve
looked at.17

11. Farm Ads Predicting whether a farm-animal-themed website owner approves of a
particular ad, given the ad creative and website text.18

12. Gisette Predicting whether a handwritten digit is a 4 or a 9 given pixel values and
higher-order features (Guyon et al. 2005).19

13. IMDB Predicting whether the voice actor Mel Blanc was involved in a particular
film or television program, based on the other cast and crew members associated
with the project.20

14. p53 mutants Predicting whether a p53 protein molecule is active or inactive (i.e.
cancerous), based on physical features of the molecule (Danziger et al. 2009, 2007,
2006).21

15. Reuters Predicting whether a Reuters document belongs to each of six categories,
given the text of the document (six prediction tasks) (Amini et al. 2009).22

3.2 Predictive methods and complexity control

Our experiments evaluate the performance of binary classifiers trained using the scikit-
learn package in Python (Pedregosa et al. 2011). The core results use L2-regularized
logistic regression (L2-LR). This method has been found to have superior perfor-
mance on large, sparse data such as these in a recent independent benchmarking study
(De Cnudde et al. 2017). Training LR (and other types of models) with no regular-
ization can result in overfitting (Provost and Fawcett 2013), and—importantly for
this study—the degree of regularization can greatly impact predictive performance
(Bishop 2006). In practice, training an L2-LR model involves finding weights w that
minimize:23

C

n
∑

i=1

log
(

1 + exp
(

−yi w
T xi

))

+ ||w||2 (2)

In Eq. (2), C is the regularization parameter, which controls the trade-off between
minimizing the logistic loss and the amount of regularization. Our experimen-
tal conditions consider both scikit-learn’s default (C = 1) and state-of-the-art
procedures for evaluating and selecting the optimal parameter value. Specifically,

17 https://knowledgepit.fedcsis.org/contest/view.php?id=107, accessed August 18, 2018.
18 https://archive.ics.uci.edu/ml/datasets/Farm+Ads, accessed August 18, 2018.
19 https://archive.ics.uci.edu/ml/datasets/Gisette, accessed August 18, 2018.
20 http://komarix.org/ac/ds/#spardat, accessed August 18, 2018.
21 https://archive.ics.uci.edu/ml/datasets/p53+Mutants, accessed August 18, 2018.
22 https://archive.ics.uci.edu/ml/datasets/Reuters+RCV1+RCV2+Multilingual,+Multiview+Text+
Categorization+Test+collection, accessed August 18, 2018.
23 Equation 2 is often written as

n
∑

i=1

log
(

1 + exp
(

−yi wT xi

))

+ λ||w||,

where λ is the regularization parameter; however, here we adopt the convention taken by scikit-learn.
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we performed nested cross-validation paired with a grid search choosing C from
{.001, .003, .009, .027, .081, .243, .729, 2.187, 6.561, 19.683}.

We also include results for additional classifiers: linear classifiers (SVMs and L1-
regularized logistic regression), tree-structured classifiers (decision trees and random
forests), and k-Nearest Neighbors. The experiments using L1-LR and SVMs also use
a grid search choosing C from {.001, .003, .009, .027, .081, .243, .729, 2.187, 6.561,

19.683}. There are alternative ways of controlling complexity in tree induction;
our experiments using trees and random forests models use the heuristic of set-
ting a minimum number of objects allowed to be in a leaf node,24 choosing among
{2, 4, 8, 16, 32, 64, 128, 256, 512}. Finally, we select the number of neighbors con-
sidered in each kNN model among {5, 10, 50, 100, 150, 200, 500, 1000, 2000}.

Finally, Sect. 4.8 shows results for a different predictive task: numerical regression.
These results were generated using L2-regularized linear regression, also known as
Ridge Regression. Similarly to logistic regression, ridge regression allows for selec-
tion of a regularization parameter λ which controls the complexity of the regression.
Here, we select the regularization parameter from {.01, .1, 1, 5, 10, 15, 20, 25, 30}.
Performance is reported in terms of Pearson’s r .

Our main results are computed using the popular AUC (Area Under the ROC
Curve) metric. To ensure that these results generalize, we also compute three additional
performance metrics: the H measure (Hand 2009), the AUCH (area under the convex
hull of an ROC curve) (Hand 2009), and the lift over random selection at the top 5%
of test instances (which we will call lift at 5% going forward). Because we do not have
use cases specified for the learned models, we have mainly chosen metrics that are not
dependent on a particular classification threshold, such as classification accuracy.

3.3 Dimensionality reductionmethods

SVD25 is the historical method of choice for researchers and practitioners who
use matrix-factorization-based DR for predictive modeling across a wide variety of
domains, including text classification (Yang 1995), facial image recognition (Turk
and Pentland 1991), network security (Xu and Wang 2005), neuroscience (López
et al. 2011), and social data analysis (Kosinski et al. 2013).26 Implementations are

24 We choose this alternative over others, such as specifying a maximum depth of the tree, following the
observation of Provost and Fawcett (2013) that “A nice property of controlling complexity in this way is
that tree induction will automatically grow the tree branches that have a lot of data and cut short branches
that have fewer data—thereby automatically adapting the model based on the data distribution” (Chapter
5).
25 Principal Components Analysis (PCA) is closely related to SVD: the features are preprocessed so that
the sample mean of each is 0. Subtracting the sample mean from all features destroys the sparsity of a data
set, which is critical for the large, sparse data that we explore in this paper. For this reason, the sample mean
normally is not subtracted out for sparse data, technically yielding SVD rather than PCA. Often in practice
the terms PCA and SVD are used interchangeably.
26 Van der Maaten et al. (2009) surveyed numerous linear and nonlinear dimensionality reduction tech-
niques across a variety of classification problems and found that using principal components analysis (PCA)
features as input yielded the best classification accuracy of all of the dimensionality reduction techniques.
The authors also found that with non-sparse, medium-sized data (up to 10,000 instance), not reducing the
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widely available in commonly used data mining software packages such as Python,
MatLab, and R.

SVD is popular for a reason: it has highly desirable properties. The SVD compo-
nents (sometimes referred to as latent factors) are usually sorted in decreasing order
of the amount of sample variance that they account for in the original data matrix. In
many practical applications, most of the sample variance is accounted for by the first
few singular vectors; therefore, it is common to choose some k << n, d and com-
pute the truncated SVD which consists of the first k singular vectors. Importantly, the
resulting truncated SVD matrices can be viewed as representing some latent structure
in the data. Additionally, SVD is computed by optimizing a convex objective function;
the solution is unique and equivalent to the eigenvectors of the data matrix. Thus, a
further benefit of using SVD is that the decomposition can be computed once for the
maximum desired k and the resulting components selected in decreasing order of their
value. Because of these advantages as well as SVD’s popularity, the main experiments
in this paper focus on SVD as the DR method.27 We compute the SVD of the user-Like
matrix using SciPy’s sparse SVD package for Python.

However, SVD is far from the only DR method used by researchers or practitioners,
even within the class of unsupervised MF-based DR techniques. These methods do not
necessarily come with the same desirable guarantees as SVD, though. Other methods
generally do not have a unique solution; therefore the resulting components may be
different depending on how the optimization algorithm is initialized. Further, the num-
ber of components must be specified a priori: computing factorizations with different
numbers of components will result in completely different components. Additionally,
these components will not be sorted in any order of relevance; all components may
account for equal variance in the data (or be equally relevant to the target variable).
Finally, and crucially for one important audience of this research, other methods are
not as widely implemented in popular off-the-shelf software packages, especially for
sparse data structures. Therefore, for this simple reason, they are far less useful to
those who simply want to utilize DR to improve predictive performance, rather than
do research on the use of DR.

Of course, every alternative DR method does come with special advantages, and
some have been found to perform well in certain practical contexts (Xing and Girolami
2007; Shahnaz et al. 2006). To ensure that our results are not dependent on the choice
of DR method, we also explore additional methods. Non-negative Matrix Factorization
(NMF) requires that the resulting components must be non-negative. This constraint
usually results in sparse (and therefore, potentially interpretable) components, and was
originally developed for image processing applications (Lee and Seung 1999). Latent
Dirichlet Allocation (LDA) is a generative probabilistic model for matrix factorization
that may capture a more realistic picture of the relationships in the data than SVD does.
It was originally developed for text modeling (Blei et al. 2003). Both have shown
promising predictive performance in certain contexts (Shahnaz et al. 2006; Bíró et al.

dimensionality of the features actually yielded the best performance in the majority of cases—a finding that
this paper explores in greater detail, with sparse data.
27 When the DR method is PCA and it is used in conjunction with linear regression, this process is
sometimes referred to as Principal Components Regression. Many more technical details are given by
James et al. (2013).
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2008). We compute the NMF and LDA decompositions of our feature matrices using
Python’s scikit-learn package with default settings (Pedregosa et al. 2011).

3.3.1 Dimensionality reduction parameter

An important computational aspect of using DR in predictive modeling is choosing
the optimal value for k, the number of components that will be used as features in
the model. There is substantial evidence that utility peaks with a certain number of
dimensions.28 In fact, “selection of number of dimensions” is mentioned as being
important in almost every paper that utilizes dimensionality reduction for predictive
modeling.

There are numerous ways to estimate the optimal value for k. First: use an opera-
tional criterion; that is, pick the k that optimizes predictive performance on held-out
data. Another way is to rank the singular values (elements of S) and pick the top
few based on visual inspection, for instance, by looking for a “knee” in the singular
values (Hoff 2007; Burl et al. 1998).29 It is very important, however, to consider the
troublesome statistical multiple comparisons problem (Jensen and Cohen 2000) that
is inherent to choosing the “best” k after the fact—similarly to how we would avoid
choosing other modeling components by observing their performance on the testing
data. One could choose k by doing some sort of (nested) cross-validation. For instance,
Owen and Perry (2009) show a method for holding out data, computing SVD on the
non-held-out data, and selecting k so as to minimize the reconstruction error between
the held-out data and its SVD approximation. Finally, k can be chosen such that the
resulting latent dimensions account for a predetermined portion of the total variance
in the data. This is done by Der et al. (2014), who select sufficient factors to account
for 99% of the variance.

As with the regularization parameter C , we also experiment with different method-
ologies to select k. Kosinski et al. state that they utilize the top k = 100 components as
features and so that is what we use as the default in our predictive models, for all three
DR methodologies. Given the ubiquity of mentions of careful selection of k in past
DR literature, we also experiment using nested cross-validation to choose k, selecting
from {50, 100, 200, 500, 1000}.

4 Experimental results

This section presents results comparing learning with DR features versus learning
with the full feature set across different domains and data sets, different modeling
algorithms, and different evaluation criteria.

28 For some examples, see Deegalla and Bostrom (2006), Hu et al. (2007), and Coussement and Van den
Poel (2008).
29 Burl et al. (1998) also use visual inspection of the latent factors themselves, given that the data are
images.

123



Unsupervised dimensionality reduction versus supervised… 887

Fig. 2 Mean binary classification performance (AUC) across 21 tasks for SVD features versus full features,
for each of the four parameter selection methodologies in our experiments. Left-to-right: using nested cross-
validation (NCV) to set both C and k; no regularization and default k; default values for both k and C; and
default C but selecting k via NCV. Note that although using the state-of-the-art regularization with the full
feature set is the best method overall, if one did not undertake the NCV grid search, then one might draw a
different conclusion

4.1 Main results

Let us first focus on the suite of Facebook user-Like prediction problems described
in Sect. 3. We compare DR-feature predictive performance versus full-feature predic-
tive performance on the 21 classification tasks. Each set of experiments represents a
different set of modeling design choices. The core results vary the methodology used
to select the number of SVD components k and supervised regularization parameter
C : either default settings, or parameters chosen using nested cross-validation and grid
search.

Figure 2 compares the average SVD and full-feature performance across tasks
for each modeling methodology. These results show several noteworthy things. First,
using the original, full feature set yields the best performance overall—better than any
use of DR—but only when using what we would consider to be “best practices” for
predictive modeling. In particular, you have to choose the regularization parameter
carefully via a state-of-the-art (S.O.T.A.) method such as nested cross-validation. Just
choosing the default regularization parameter is not sufficient. In fact, as we will see,
this best-practice method beats using DR on every single task. Second, if you are not
regularizing using a S.O.T.A. method, using the DR features may indeed outperform
using the full feature set: in two of the other settings, SVD actually is better in aggregate
(the full-feature performance is still slightly better than SVD when modeling using
default parameter settings).

Table 2 presents the average time spent training classifiers and predicting estimates
on test data for four of the prediction methodologies, assuming 10-fold cross valida-
tion with 3-inner-fold nested cross validation for the 21 Facebook tasks. While the
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Table 2 Average number of seconds to run 10 outer folds, for each task, across various parameter selection
methodologies

Task name Full: Default SVD: Default Full: NCV SVD: NCV K

Parents 2.9 0.1 61.4 5.6

Race 4.1 0.1 90.8 8.5

Religion 4.2 0.1 107.0 13.3

Uses drugs 4.7 0.1 83.9 8.8

Drinker 8.3 0.2 135.2 11.2

Smoker 8.4 0.1 130.2 12.6

IQ 13.2 0.3 161.4 25.1

Satisfaction with life 14.5 0.2 220.3 22.6

Politics 36.8 0.6 504.0 61.5

Gay 73.2 2.8 721.0 148.4

Lesbian 96.4 1.5 1424.4 156.0

Network density 182.8 2.4 2548.2 295.6

Gender 1225.5 25.8 19,615.0 3945.8

Age 1465.8 21.1 20,249.6 2441.3

Agreeableness 1823.5 23.8 28,561.6 1943.1

Number of friends 1834.5 20.4 18,993.9 2355.0

Conscientiousness 1864.0 21.7 22,932.0 1752.8

Extraversion 1901.4 18.2 20,684.9 1506.6

Relationship 2115.7 21.3 23,571.6 2748.0

Openness 2124.1 26.2 21,613.2 1867.0

Emotional stability 2377.6 22.6 29,231.8 2244.8

Computing the SVD as a preprocess took 6138 s, which affects the overall run times for the SVD approach

best performance overall is obtained when modeling with the full feature set (using
NCV to conduct parameter selection), the shortened training/prediction time associ-
ated with SVD models means they are a compelling alternative if prediction time is
more of a concern than performance. However, note that computing the SVD of this
feature set took 6138 s. Thus, using SVD only saves time for tasks that are more time
consuming overall, or when it is computed once and then reused for many predictive
tasks.

The remainder of this section delves more deeply into these results, and conducts
further experiments using different classifiers, DR techniques, data sets, and alternative
predictive tasks.

4.2 Problem-specific parameter selection

Let’s look deeper into the comparison of L2-LR’s predictive performance using the full
feature set and using SVD features, with both regularization parameters and k chosen
using nested cross-validation—i.e., the leftmost pair of bars in Fig. 2. The complete
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Fig. 3 SVD versus full feature performance with regularization settings (and k) selected through nested
cross-validation. Each point represents the (Full Feature AUC, SVD AUC) pair for one classification task.
Points falling below the y = x line have better full feature performance, and vice versa. SVD at best gives
no advantage and in many cases significantly diminishes performance

grid search covers every combination of C and k (50 total possible combinations for
the SVD approach). Figure 3 plots the full-feature performance on the x-axis and the
SVD performance on the y-axis. Each point represents one prediction problem’s AUC
pair. Points above the y = x line on the plot are cases where using SVD improves
performance; points below are where using SVD decreases performance.

Figure 3 shows that using S.O.T.A. predictive modeling, there is no clear benefit
to using SVD at all. In fact, SVD decreases predictive performance for every task!
The Wilcoxon signed rank test (Wilcoxon et al. 1963) tests for the null hypothesis
that pairs of data points drawn from different populations have a median difference of
zero. For these pairs of points, the median difference is −0.013, z = −4.015, which is
significant for p < .01. Thus, we reject the null hypothesis—SVD does indeed hurt
predictive performance.

This result is further illustrated in Fig. 4, which shows the extent to which using
nested cross-validation to select C improves predictive performance over the default
parameter setting (for C) when modeling using the full feature set. Carefully selecting
regularization parameters never diminishes performance, which is not the case for
SVD (as we will show in the next subsection). It is both safer and more effective to use
time and computational resources for careful selection of regularization parameters
rather than computation of SVD.
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Fig. 4 Improvement over default settings when using nested cross-validation to select regularization param-
eters, when modeling with the original feature set. Each point represents the (default settings performance,
benefit from using NCV) pair for one classification task. While utilizing SVD results in diminished perfor-
mance for every task (see Fig. 3), carefully choosing regularization parameters only improves performance

4.2.1 Concatenated feature sets

A question that surprisingly, to our knowledge, has not been raised in prior research
is: why not use both feature sets? To further investigate whether SVD adds some
predictive benefit when modeling, we conducted additional experiments using feature
sets constructed by concatenating the full feature sets and SVD feature sets. To the
best of our knowledge, past research has not experimented with such feature sets. We
constructed new matrices Ak from the full feature sets X and SVD features Lk

30 such
that

Ak = [X Lk] (3)

Once again, both k and C were selected using nested cross-validation and grid
search. Figure 5 compares the performance of modeling with the concatenated Ak

matrices (with k chosen using nested-cross validation as above) to the performance
with the original full feature set. Performance using the concatenated feature set is
statistically significantly better than the original feature set: the median difference
is .0001, and the Wilcoxon signed rank test yields z = 2.83, which is significant for
p = .05. However, we do note most tasks have difference close to zero between full
and SVD feature sets.

30 We normalized each SVD component in Lk to have minimum value of zero and maximum value of 1
so that each feature in Ak took on the same range of possible values.
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Fig. 5 Comparing the performance of the two feature sets concatenated (full features + SVD features) to
the full feature performance. Each point represents the (full feature AUC, Full + SVD AUC) pair for one
classification task. Points falling below the y = x line have better full feature performance, and vice versa.
Adding the SVD features to the full features is beneficial, although this is largely due to one task

4.3 Alternative parameter selectionmethodologies

This section provides evidence that there are model selection and evaluation settings
that result in relatively better performance for SVD versus full-features. These results
could explain why SVD remains a popular technique in the applied data mining liter-
ature, despite the guidelines that supervised regularization is superior for complexity
control. However, recall the result summarized in Fig. 2: these settings result in lower
overall average performance.

4.3.1 No regularization

The main rationale for using SVD to improve predictive performance, as we discuss
above (and many others have noted), is that the reduced-dimensional data set will be
less “noisy”, thereby resulting in a lower-variance estimator (at the possible cost of
introducing some bias). This is also the rationale for using regularization in supervised
classification algorithms (James et al. 2013; Hand et al. 2001; Cios et al. 2007; Tan et al.
2006; Izenman 2008; Friedman et al. 2001). Because of the lack of complexity control,
we would expect that classifiers without supervised regularization would overfit, and
therefore perform poorly.

Figure 6 compares SVD performance to full-feature performance when regular-
ization is not employed in the model training process. In this setting, models trained
using the SVD features are significantly better than those trained using the original full
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Fig. 6 SVD versus full feature performance, using no supervised regularization. Each point represents the
(full feature AUC, SVD AUC) pair for one classification task. Points falling below the y = x line have
better full feature performance, and vice versa. In this case, SVD has significantly better performance

feature sets; the median improvement seen from using SVD features is .047 and the
z-score from a Wilcoxon signed rank test is 3.424 (significant for p < .01). Note that
the benefit from SVD seems to be most concentrated for those cases where the AUC
using the full feature set was lower; we discuss this further in the next subsection.

4.3.2 Default regularization and fixed k

As mentioned above, DR and regularization are not necessarily mutually exclusive.
The two methods for avoiding overfitting can be, and frequently are, used in con-
junction. Therefore, data miners who want to avoid the time-consuming process of
conducting a complete grid search to tune both k and C might consider using default
values for both, rather than not using regularization at all. This next set of experiments
compares performance using scikit-learn’s default regularization settings for L2-LR
(i.e. C = 1) and k = 100. Similarly to Figs. 3 and 6, Fig. 7 compares full feature
performance on the x-axis versus SVD performance on the y-axis.

Again, SVD does indeed improve performance for many of the targets. For these
pairs of points, the median difference is 0.008 and the resulting z score from applying
the Wilcoxon signed rank test is −0.122, which means that we fail to reject the null
hypothesis at p = .01, .05., and .1. These results imply that overall, SVD neither
helps nor hurts predictive accuracy. However, also note that there appear to be several
regimes within the distribution. Points toward the far top-right of the plot are pre-
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Fig. 7 Comparing SVD versus full feature set using LR with default k and regularization parameter C . Each
point represents the (full feature AUC, SVD AUC) pair for one classification task. Points falling below the
y = x line have better full feature performance, and vice versa. SVD neither helps nor hurts in general. The
benefit of SVD seems to relate to the difficulty of the predictive modeling problem

dictive problems where SVD hurt more than helped and vice versa for points at the
bottom-left.

Delving more deeply into these results, notice that SVD tends to decrease perfor-
mance for “easier” problems, that is, those for which the AUC using either feature set
is relatively higher. The results in Fig. 8 bear this idea out. Figure 8 plots the difficulty
of the predictive problem versus the degree to which SVD improves predictive accu-
racy (SVD AUC - full-feature AUC). There is a strong linear relationship between the
two sets of points. This implies that for easier problems, caution should be exercised
when applying SVD to the feature set, as it may decrease performance; however, for
more difficult problems, SVD can improve predictive accuracy when using default
regularization settings. This is perhaps because the “more difficult” tasks suffer due
to increased overfitting; SVD in these cases reduces variance sufficiently to improve
generalization performance. It is worth reiterating that here—using the default reg-
ularization parameter—the generalization performance is systematically worse than
using state-of-the-art regularization, as shown earlier.

4.3.3 Problem-specific k, fixed C

As is discussed above, correctly choosing k (the number of SVD components used as
features in predictive modeling) is crucial. Given that almost all prior work mentions
the importance of setting this parameter well, one might justifiably wonder whether
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Fig. 8 Comparing the amount of benefit from using SVD to the difficulty of the original predictive problem
(full feature AUC). Points falling above the y = 0 line are those where SVD had positive benefit, and vice-
versa. Each point represents one classification task, using default settings for k and C . There is a strong
relationship between the difficulty of the original predictive problem and the benefit from using SVD: easier
predictive problems (with high AUC on the full-feature task) have diminished predictive performance from
using SVD; SVD benefits harder predictive problems

the last results were simply due to a non-optimal choice for k. Thus, this section reports
on a set of experiments using nested cross-validation to select k.

Figure 9 again plots the full-feature performance versus the SVD-feature perfor-
mance, using nested cross-validation to select k within every fold for every predictive
task instead of k = 100 for all SVD tests (as above). As would be expected, the results
for SVD are slightly better this time—that is, in most cases, treating k as a hyperparam-
eter and selecting it carefully yields better generalization performance. The median
benefit from using SVD here (over full-feature performance with the default C) is
0.012, and the z-score is 1.686 (significant at p = .10).

Also note that there still appear to be two regimes within the tasks shown in Fig. 10.
Once again, more difficult predictive problems appear to be more likely to be improved
with use of SVD, while the opposite is true of easier predictive problems (those
for which the full-feature AUC is high). Even when choosing k using state-of-the-
art predictive modeling techniques, SVD does not necessarily help with predictive
performance, especially on easier tasks. The lesson here should thus be that utilizing
SVD necessitates also selecting k through nested cross-validation (although such a
selection does add to the total computation time).

While the literature definitely leans to the recommendation that DR is a worse option
than supervised regularization when it comes to complexity control, these results show
that it depends on how one performs the regularization. When using less-sophisticated
methods for selecting regularization hyperparameters, DR does indeed provide benefit.
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Fig. 9 Comparing SVD versus full feature set using default regularization settings and k selected using
nested cross-validation. Each point represents the (full feature AUC, SVD AUC) pair for one classification
task. Points falling below the y = x line have better full feature performance, and vice versa. When using
default regularization, SVD performs slightly better relative to full-feature performance than in Fig. 7.

Fig. 10 Relating the amount of benefit from using SVD to the difficulty of the original predictive problem
(full feature AUC). Points falling above the y = 0 line are those where SVD had positive benefit, and vice-
versa. Each point represents one classification task, using default regularization parameter and k selected
using nested cross-validation. Again, harder predictive problems here have positive benefit from using SVD;
this is not necessarily the case for easier problems
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The upshot is that SVD may well appear better to someone who is not using nested
cross-validation to perform a full grid search to tune crucial modeling parameters! The
remainder of this section replicates the experiments using nested cross-validation to
select C and k, but with different classifiers, DR techniques, and data sets.

4.4 SVDwith other classifiers

We find that the choice of classifier has a significant effect on the relative benefit of
SVD versus full features for predictive modeling. This section replicates the experi-
ments of Sect. 4.2 using four additional classifiers: Support Vector Machines, L1-LR,
classification trees, and random forests. We further present additional results using
kNN classifiers in Sect. 4.6.

SVM classifiers (with linear kernel) result in similar performance as in Sect. 4.2,
as shown in Fig. 11a: the median benefit from using SVD is −0.01, and the z-score
from a Wilcoxon signed rank test is -1.99 (significant at p = .05). SVMs are similar
to L2-LR in that both are linear models with L2 regularization (SVMs are trained
using hinge loss instead of logistic loss). This potentially explains why the relative
performance of DR and full features follow the same pattern for these two classifiers.

The effective difference between L2-LR and L1-LR is that L1-LR implicitly selects
a subset of the total features by driving some or even most features’ coefficients to
zero, resulting in sparse coefficient vectors. Figure 11b plots a comparison of full-
feature performance versus SVD performance using L1-LR for both, using nested
cross-validation to search over both k and C . Here, SVD performs significantly better
than the full-feature models! The median benefit from using SVD is 0.007, and the
z-score from a Wilcoxon signed rank test is 1.895 (significant at p = .1).

Similarly, Fig. 12a, b compare full-feature performance versus SVD performance
using classification tree and random forest models, respectively. For trees, the median
benefit from using SVD is .012, z = 1.616. For random forests, the median benefit
from using SVD is −0.002, z = −0.261. Neither of these differences are significant
at p = .1.

On the whole, L2-LR and SVM are the two classifiers for which modeling using
the full feature set is significantly better than using SVD features. L2-LR is also the
best classifier overall, with a mean AUC across the 21 tasks of .749. SVM has the
second best overall mean AUC at 0.739.

On the other hand, using SVD features performs relatively better than full features
for classifiers that implicitly or explicitly incorporate some form of feature selection:
L1-LR, classification trees, and random forests. The relatively better performance
of SVD in the context of feature-selecting models makes some sense. Due to the
sparse nature of the original features, a limited subset of them is not likely to include
all information available to train the best model. Because the SVD features each
include information from potentially all of the original features, perhaps the necessary
information is included even though the modeling algorithm selects a subset of the
SVD components. However, note both that the overall performance of such classifiers
is lower overall, and that the difference between the two feature sets is not necessarily
statistically significant.

123



Unsupervised dimensionality reduction versus supervised… 897

(a) SVM (b) L1-LR

Fig. 11 SVD versus full feature performance using SVMs and L1-LR, with k and C chosen using nested
cross-validation. Each point represents the (full feature AUC, SVD AUC) pair for one classification task.
Points falling below the y = x line have better full feature performance, and vice versa. SVD is significantly
worse for SVMs. On the other hand, SVD does provide substantial benefit for L1-LR models: the median
benefit from using SVD is 0.007, z = 1.895

(a) Classification Trees (b) Random Forests

Fig. 12 SVD versus full feature performance using Classification Trees and Random Forests, with k and
C chosen using nested cross-validation. Each point represents the (full feature AUC, SVD AUC) pair for
one classification task. Points falling below the y = x line have better full feature performance, and vice-
versa. The differences between SVD and full feature performance are not statistically significant for these
classifiers

4.5 Other DRmethods

As discussed in Sect. 3.3, SVD is not the only MF-based DR algorithm. We now present
results for NMF (Non-negative Matrix Factorization) and LDA (Latent Dirichlet Allo-
cation).
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(a) NMF (b) LDA

Fig. 13 DR versus full feature performance using NMF and LDA, with k and C chosen using nested cross-
validation. Each point represents the (full feature AUC, DR AUC) pair for one classification task. Points
falling below the y = x line have better full feature performance, and vice versa. Similarly to the SVD
features, using the DR features when modeling using L2-LR yields significantly worse performance than
using the full features

Figure 13a, b replicates the experiments from Sect. 4.2, with NMF and LDA replac-
ing SVD. The results are very similar to those found using SVD. For NMF, the median
benefit from using NMF is −0.020 and the Wilcoxon signed-rank test z = −3.980 (so,
the full feature performance is better at p = .01). LDA also produces qualitatively
similar results: the median difference between DR and full features is −0.033, z =

−3.910 (the full features are significantly better at p = .01).
Note that the SVD performance is on average the highest out of the three DR

techniques (using L2-LR, the respective averages are .733 for SVD, .724 for NMF,
and .712 for LDA). This is perhaps because of the advantages listed in Sect. 3.3;
additionally, NMF and LDA come with many more parameters that could be tuned
other than k. These methods may be improved with further tuning; of course, this
would add to the total computation time.

This section’s experiments with the alternative DR methods NMF and LDA not
only strengthen our prior results regarding DR’s performance relative to the original
features, they also provide additional insights. Specifically, we still can’t conclude that
DR features perform better than original features; this additional preprocessing step
frequently degrades predictive performance. Further, none of the DR methods perform
better than L2-LR on the full feature set. NMF and LDA, if anything, perform worse
than SVD and thus the additional complexity they introduce (they are more time-
consuming to compute and have more parameters to tune) is unnecessary.

4.6 Additional data sets and kNN

To ensure the above results were not simply due to the choice of data sets, we also
replicated the same experiments on 15 additional large, sparse data sets, comprising
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(a) SVD (b) NMF (c) LDA

Fig. 14 Plots of DR versus full performance for 15 additional data sets comprising 76 binary prediction
tasks, using L2-LR

76 total binary prediction tasks. Figure 14 compares the performance between DR and
full features on the additional tasks, using L2-LR as the classifier. In summary, the
aggregate conclusions we draw are similar to those from the 21 Facebook data sets.
Appendix C contains additional plots of results for these additional data sets using
SVD, NMF, and LDA, and the remaining classifiers.

Off-the-shelf implementations of k-Nearest Neighbors models are generally not
suitable for use with very large data sets. This is because the prediction time increases
with the square of the number of instances. Indeed, training time for some of the
largest feature sets that we studied exceeded 30 hours per fold. Therefore, because
this method is not commonly used with the type of large data sets that we study, we do
not include a comparison in our core results. However, we do include a comparison
using all but the largest data sets/prediction tasks (including tasks from the additional
data sets). The results are shown in Fig. 15.

The results are striking in that this is the only classifier for which the DR features
are unequivocally superior to the results generated with the full feature sets. The
median difference between the SVD and full features is .040, z = 7.46 (significant at
p < .01); between NMF and full features is .027, z = 6.68 (significant at p < .01);
and between LDA and full features is .042, z = 5.11 (significant at p < .01). This is
not necessarily surprising, as kNN models are especially susceptible to the “curse of
dimensionality”: in very high-dimensional space, no two instances look similar. On
the other hand, even the DR-feature kNN predictions perform worse than the best of
the other classifiers.

Figure 16 summarizes the overall mean performance of all of the classifiers on
the extended collection of data sets. (To facilitate a fair comparison with kNN, we
include only the 77 smallest binary prediction tasks.) These results illuminate two
key findings. First, L2-LR on the full feature set dominates all of the methods tried
so far. Feature-selection-oriented methods in general do not perform as well. Second,
when used in conjunction with L1-LR or random forest modeling, DR has better
performance relative to the full feature set than it does when used with L2-LR. We
can’t confidently conclude that using the DR features is worse than using the full
feature set (although, neither can we conclude that it is better). Thus, if you are going
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(a) SVD (b) NMF (c) LDA

Fig. 15 DR versus full performance using kNN, for all but the largest Facebook and additional tasks (77
total tasks)

Fig. 16 Mean performance of SVD and full feature sets across the 77 smallest tasks for each classifier.
L2-LR with the full feature set has the best overall performance, with SVM/full feature and L1-LR/SVD
also in the top three. Overall, decision tree and kNN models have the worst performance

to choose a feature-selection-based learning algorithm for some other reason, you may
well want to consider using DR features.

4.7 Binary prediction summary

This paper has presented a thorough investigation of DR for binary classification on
21 data sets representing predictive modeling tasks drawing from very similar sets
of features, as well as a broader investigation across different data sets of varied
sizes, shapes, sparsity levels, and base rates. Table 3 summarizes the performance
of the various DR methods and modeling algorithms across the entire suite of 97
predictive tasks. In summary, L2-LR and SVM models have the best performance
overall and they perform significantly better when using the original, full feature set.
The classifiers that perform implicit feature selection—L1-LR, decision trees, and
random forests—have mixed results between DR and full-feature modeling. We also
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Table 3 Summary of DR versus full features, for various modeling algorithms and DR methods

DR method Median DR benefit z-score DR better Full better

L2-LR SVD − 0.012 − 7.862(∗∗∗) �

NMF − 0.019 − 7.738(∗∗∗) �

LDA − 0.038 − 8.282(∗∗∗) �

SVM SVD − 0.005 − 3.165(∗∗∗) �

NMF − 0.022 − 5.514(∗∗∗) �

LDA − 0.037 − 7.716(∗∗∗) �

L1-LR SVD 0.002 2.639(∗∗∗) �

NMF − 0.004 − 3.587(∗∗∗) �

LDA − 0.023 − 6.471(∗∗∗) �

Tree SVD − 0.001 − 1.225

NMF 0.019 7.378(∗∗∗) �

LDA 0.011 2.977(∗∗∗) �

RF SVD − 0.010 − 3.557(∗∗∗) �

NMF 0.004 4.482(∗∗∗) �

LDA − 0.012 − 3.888(∗∗∗) �

kNN SVD 0.081 7.248(∗∗∗) �

NMF 0.062 6.238(∗∗∗) �

LDA 0.071 5.238(∗∗∗) �

Note that the kNN statistics here are based on a subset of the 97 tasks

note that L1-LR with SVD features is among the top classification methods that we
experimented with. Finally, kNN sees the greatest relative benefit when modeling
with DR features; however, recall from Fig. 16 that kNN’s classifications are not
competitive (and furthermore, kNN is not really suited to very large data sets). DR
has marginal benefit at best when predictive performance is the goal, and is very
often worse. We therefore conclude that it should be avoided in order to keep the
predictive modeling process as simple as possible, unless there is strong evidence that
it is beneficial for one’s particular task. Also note that these results are similar when
using other evaluation metrics. Tables 8, 9, and 10 in Appendix B replicate Table 3
using the H-measure, AUCH, and lift at 5%, respectively.

Thus, we are able to do a complete comparison of all predictive modeling methods
across all of the tasks (21 Facebook modeling tasks and 76 from the other data sets).
Figure 17 shows the L2-LR performance using the full feature set versus performance
for each of the other combinations of DR type and classifier. These results emphasize
that using the full feature set yields superior performance, especially for L2-LR. Thus,
we can recommend L2-LR as the default baseline method of choice when doing binary
classification with large, sparse data. This concurs with recent independent results
experimenting with alternative classification techniques (but not DR) for similar data
to those we use here (De Cnudde et al. 2017), as well as with prior observations from
practice (e.g., Raeder et al. 2013; Dalessandro et al. 2014).

Table 4 shows the average performance for each feature set/classifier pair, across
four evaluation metrics and 97 classification tasks (because we did not run kNN for
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Fig. 17 Each chart plots L2-regularized logistic regression performance on the x-axis versus performance
using each of the other feature set/modeling algorithm combinations on the y-axis. Points falling below the
y = x line are where L2-LR on the full feature set is better. Clearly this method is superior to every other
combination of feature set and modeling algorithm in terms of predictive performance. Note that the kNN
statistics here are based on a subset of the 97 tasks
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all tasks, we have excluded it from this table). A result that immediately stands out is
that for each metric L2-LR has the best performance in the majority of tasks; no other
method even comes close. This method also has the highest average AUC across all
tasks (.88), and the lowest average rank among the 20 feature/method combinations
(4.15). If one were to want to use DR for another reason besides improving predictive
performance, among the DR feature sets, SVD shows the best performance, especially
when used with L1-LR; it had the best performance in 11 classification tasks, the
second highest mean AUC (.88) and the second-lowest average rank (of an SVD
method, 10.44). These results are roughly equivalent across all four evaluation metrics
and therefore were not due to a lucky choice of metric. Note that presenting results in
this fashion stands the risk of a severe multiple comparisons problem (not in favor of
the winner): comparing all other methods to L2-LR means that at least one of those
other methods may be superior by chance. Even so, the results are quite striking.

These two sets of results enable us to make some conclusions that should prove
useful for those wishing to use DR for binary classification. For the best performance
overall, use L2-LR with the full feature set and state-of-the-art selection of the regu-
larization parameters. If it is desirable to use unsupervised matrix-factorization-based
DR for any of the other benefits mentioned in Sect. 2 (such as potential data set com-
pression or reduced modeling time across many tasks with the same feature set), SVD
is the superior method, and it performs best if L1-LR is the modeling algorithm used.
Similarly, if you need to use feature selection, L1-LR is the best feature-selection-
based modeling algorithm on these data, and it works best when paired with features
generated by SVD (rather than the full feature set). kNN and decision tree classifiers
should be avoided as they have the lowest overall performance.

Furthermore, we emphasize that these results were generated using nested cross-
validation to do a grid search over both the regularization parameter C (or other
complexity parameters in the cases of classification trees, random forests, and kNN)
and the number of DR components k. If NCV were not employed, we would have
made different conclusions, as shown earlier.

4.8 Other tasks: numerical regression andmulticlass classification

It is also worth investigating the efficacy of SVD for numerical regression and multi-
class classification. Fortunately, the Facebook data set has 10 numerical target variables
(which we had binarized for the previous sections), so we can study numerical regres-
sion with the same overall feature set as for the paper’s main experiments. Although we
have not done as deep of an investigation on these tasks, these more limited analyses
suggest intriguing avenues for future research.

Figure 18 shows Pearson’s r score for full features versus SVD resulting from
numerical modeling via Ridge Regression for the 10 predictive tasks. The median
benefit from SVD is .048 (and, in fact, SVD performs better than the full feature
set for all but one target variable), so it appears that SVD does provide benefit for
numerical regression. This not only is in contrast to the results for classification, but

also is counter to the guidance provided in the textbooks!
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Fig. 18 Comparing Pearson’s r score for numerical regression using SVD versus full features. Each point
represents the (full feature r score, SVD r score) pair for one classification task. Points falling below the
y = x line have better full feature performance, and vice versa. SVD provides positive benefit for all but
one of the ten numerical target variables

Fig. 19 Mean improvement in performance by using SVD for various numbers of classes. The amount of
improvement that can be gained by using SVD increases with the number of classes in the data
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In addition to numerical regression, the numerical target variables allow us to
perform ordinal multiclass classification by grouping instances into roughly equal-
sized classes based on their numerical value. Just as the results in prior sections
grouped the instances into two classes, we grouped them into four, eight, and six-
teen classes for the results below. The performance reported is the average AUC
using one-versus-rest classification for each of the classes (with L2-LR using nested
cross-validation to select C and k). Figure 19 summarizes the average difference in
performance across tasks between DR and full features versus the number of classes
in the data.

Intriguingly, it appears that SVD provides more benefit as the number of classes in
the data increases. Binary classification has the fewest possible values for the target
variable to take on. Although ordinal multiclass classification and numerical regression
are different (specifically, numerical regression orders the instances while multiclass
classification does not consider the ordering of the classes while modeling), they
both yield more possible values for the target variable. If one considers that ordinal
multiclass classification with an increasing number of classes increasingly resembles
numerical regression, then these results show a clear trend in the benefit versus harm
of using DR.

5 Conclusion

Unsupervised DR is commonly used with the goal of improving predictive modeling
performance. The theoretical motivation to use unsupervised DR is well-understood,
but overlaps with the reason for using supervised regularization: both techniques lever-
age a bias/variance tradeoff. Textbooks largely recommend supervised regularization
as the better alternative, but neither practitioners nor researchers seem to follow those
recommendations—especially when applying predictive modeling to massive, sparse
feature sets. Further, the textbooks that we surveyed largely treat this as an either/or
proposition, and do not consider that regularization and DR can be (and usually are)
used in conjunction. Indeed, in the applied predictive modeling literature, DR features
are often used without mention of a comparison with using the original full set of fea-
tures. This seeming confusion is particularly troubling in light of our empirical results:
that using the full feature set, with state-of-the-art regularization, usually gives better
generalization performance.

This paper satisfies the need for a reference on whether and when to use DR for
binary classification using large, sparse feature sets. It fills in several holes in the exist-
ing literature. Namely, past analyses don’t treat DR and regularization as potentially
complementary techniques, haven’t experimented with different modeling methods,
have used much smaller data sets, and have not focused on the high-dimensional,
sparse data for which researchers and practitioners tend to gravitate to DR.

The experiments in this paper consist of a comparison on a test-bed comprising 21
varied binary classification tasks using (subsets of) the same massive feature set, as
well as 76 supplementary tasks from a total of 15 publicly available data sets. We find
that the methodology used to select and evaluate crucial modeling parameters has a
substantial effect on the relative performance of DR versus full features. When using
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L2-LR (or SVMs) and a state-of-the-art hyperparameter tuning and evaluation method-
ology (nested cross-validation) for selecting the regularization parameter, SVD does
not improve performance. However, when using less sophisticated model selection and
evaluation procedures, SVD can sometimes have better performance, for instance, if no
supervised regularization is employed at all, or if default values are used for the regular-
ization parameter and/or the number of SVD components. However, as expected, these
methodologies result in worse overall performance. Furthermore, classifiers—like tree
induction and L1-LR—that effectively incorporate feature selection can perform bet-
ter when using DR features, although these classifiers tend to have worse performance
overall on these data sets. kNN classifiers universally improve when using DR fea-
tures, but again have worse performance overall than the top-performing classifiers.
These results are consistent across two DR techniques in addition to SVD—NMF
and LDA—and are also consistent across four evaluation metrics: AUC, H measure,
AUCH, and lift over random targeting at the top 5% of instances.

In addition to the practical implications directly related to the use of DR, our results
help benchmark other modeling choices. L2-LR with full features and state-of-the-
art selection of the regularization parameter is hard to beat for this type of large,
sparse data for binary classification (cf., Raeder et al. 2013; Dalessandro et al. 2014;
De Cnudde et al. 2017). This suggests that this method should be considered to be
the baseline against which to compare when faced with such data. L1-LR with SVD
features is also a strong contender, and is the best option if using DR is desirable for
other reasons. SVD is the best-performing DR method of the three that we evaluated.

The results in this paper are largely limited to one sort of data (large, sparse data
mainly generated by human behavior), and one type of predictive modeling task (binary
classification). This particular combination of data type and task has become quite
common in the predictive modeling literature as well as in industry use, and our
results are relatively conclusive; however, we do not mean to imply that unsupervised
DR will not work for any data type or modeling task. In Sect. 4.8, we show preliminary
results for a few other predictive tasks where DR does seem to add substantial value:
numerical regression and ordinal, multi-class classification. Furthermore, there is an
intriguing trend in the results for ordinal multi-class classification: increasing the
number of classes leads to increasing benefit from DR. While the results from Sect. 4.8
should not be taken as a comprehensive study due to the more limited nature of the
investigation and smaller number of data points, this observation provides a basis for
interesting future work.

An additional limitation is that this study focuses on unsupervised matrix-
factorization-based DR techniques. Alternative methods include supervised dimen-
sionality reduction techniques such as Linear Discriminant Analysis (Friedman
et al. 2001) or neural-network-based approaches such as deep learning or word2vec
(Mikolov et al. 2013). We focused on unsupervised DR for reasons mentioned above:
using unsupervised DR as a preprocessing step is relatively common, and most other
methods are more computationally complex and don’t have implementations for sparse
feature sets widely available. However, we are not aware of a systematic study such
as this one evaluating supervised DR or other methods, and such a study would make
another good avenue for future work.
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There are a multitude of major and minor variants and modifications that can be
made to the predictive modeling process. Ultimately the core lesson of this paper
can be summarized as one of basic system design principles: exercise caution when
adding complexity via a dimensionality reduction step to the predictive modeling
process, even if one feels confident that DR will benefit the performance. We have
both established that this principle is frequently violated in the predictive modeling
literature, and conducted a comprehensive study showing that this violation is a mistake
that leads to weaker results than might otherwise be possible. However, it is important
that our results don’t cause other researchers to make the same mistake in reverse! We
show a few classes of model selection methodologies and predictive tasks—numerical
regression and multiclass classification—where DR does add value, further supporting
our main message: don’t rely on intuition or results from other contexts, but compare
design alternatives carefully. Unless there is a very good reason, applied researchers
and practitioners should keep the process as simple as possible so as not to inadvertently
harm predictive performance or perform unnecessary computation.
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Appendix A: data set details

Table 5 shows the number of users and Likes currently available for each binary target
variable and the base rates for each of the variables provided by Kosinski et al. (2013).

Table 6 shows the number of users and Likes for which there is labeled data for
each numerical target variable, the thresholds for denoting positive versus negative
instances, and the resulting base rates.

Table 7 summarizes the characteristics of the 15 additional large, sparse data sets
included in this paper besides the Facebook data.
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Appendix B: results using other evaluationmetrics

Table 8 reports the median difference in H measure between DR and full feature
performance, for each classifier/DR method pair, averaged across 97 tasks (or 77, in
the case of kNN). It also reports the z-statistic from a Wilcoxon signed-rank test, the
significance level, and whether DR or full features are significantly better.

Table 9 reports the median difference in AUCH between DR and full feature
performance, for each classifier/DR method pair, averaged across 97 tasks (or 77,
in the case of kNN). It also reports the z-statistic from a Wilcoxon signed-rank
test, the significance level, and whether DR or full features are significantly better
(Fig. 20).

Table 10 reports the median difference in lift over random targeting at the top 5%
of instances between DR and full feature performance, for each classifier/DR method

Table 5 Data details for binary target variables

Target n d Base rate (%)

Single versus in relationship 162,980 179,605 47

Parents together at 21 2088 84,813 50

Smokes cigarettes 3690 118,643 25

Drinks alcohol 3667 118,604 51

Uses drugs 2711 104,869 17

Caucasian versus African
American

2645 100,506 95

Christianity versus Islam 3625 105,023 95

Democrat versus Republican 12,936 147,759 59

Gay 25,813 167,307 5

Lesbian 30,087 173,375 3

Gender 210,004 179,605 61

Table 6 Data details for numeric target variables

Target n d Threshold Base rate (%)

Satisfaction with life 6512 141,815 5 37

Intelligence 6129 137,558 115 49

Emotional stability 173,109 179,443 2.75 54

Agreeableness 173,109 179,443 3.6 50

Extraversion 173,109 179,443 3.56 50

Conscientiousness 173,109 179,443 3.5 52

Openness 173,109 179,443 4 51

Network density 46,265 178,914 .05 25

Number of friends 171,789 179,402 334 25

Age 185,692 179,605 30 24
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Table 7 Characteristics of additional “Big Data” data sets

Data set n d Base rate % nonzero entries

Book 285,089 62,107 46% .0047

Flickr 88,787 100,000 27% .0035

Movies 11,916 7619 29% .23

Ta-Feng 23,812 32,266 54% .10

URL 358,073 100,000 33% .03

Movielens-users 6040 3706 (Varies) 4.5

Movielens-movies 3706 6040 (Varies) 4.5

CiteSeer 100,000 105,354 0.1% .001

Daily and sports activities 9120 5625 (Varies) 5

DeliciousMIL 12,234 8520 (Varies) .1

E-commerce 29,998 36,111 78% .006

Farm Ads 4143 54,877 53% .3

Gisette 7000 5000 50% 13.0

IMDB 95,220 100,000 0.5% .01

p53 mutants 31,420 5407 0.5% 5

Reuters 111,740 21,531 (Varies) .2

Table 8 Summary of DR versus full features, for various modeling algorithms and DR methods, measured
using the H measure

DR method Median DR benefit z-score DR better Full better

L2-LR SVD − 0.038 − 8.136(∗∗∗) �

NMF − 0.044 − 7.994(∗∗∗) �

LDA − 0.082 − 8.473(∗∗∗) �

SVM SVD − 0.023 − 4.611(∗∗∗) �

NMF − 0.046 − 5.896(∗∗∗) �

LDA − 0.077 − 7.918(∗∗∗) �

L1-LR SVD 0.000 0.743

NMF − 0.011 − 3.338(∗∗∗) �

LDA − 0.056 − 6.554(∗∗∗) �

Tree SVD − 0.016 − 2.233(∗∗) �

NMF 0.023 6.532(∗∗∗) �

LDA 0.010 1.379

RF SVD − 0.016 − 2.693(∗∗∗) �

NMF 0.011 4.244(∗∗∗) �

LDA − 0.034 − 3.373(∗∗∗) �

kNN SVD 0.081 7.248(∗∗∗) �

NMF 0.062 6.238(∗∗∗) �

LDA 0.071 5.283(∗∗∗) �

Note that the kNN statistics here are based on a subset of the 97 tasks
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Table 9 Summary of DR versus full features, for various modeling algorithms and DR methods, measured
using AUCH

DR method Median DR benefit z-score DR better Full better

L2-LR SVD − 0.011 − 7.935(∗∗∗) �

NMF − 0.018 − 7.800(∗∗∗) �

LDA − 0.034 − 8.337(∗∗∗) �

SVM SVD − 0.004 − 3.237(∗∗∗) �

NMF − 0.020 − 5.798(∗∗∗) �

LDA − 0.033 − 7.659(∗∗∗) �

L1-LR SVD 0.001 2.700(∗∗∗) �

NMF − 0.003 − 3.524(∗∗∗) �

LDA − 0.021 − 6.345(∗∗∗) �

Tree SVD − 0.002 − 1.319

NMF 0.018 7.389(∗∗∗) �

LDA 0.013 2.855(∗∗∗) �

RF SVD − 0.009 − 3.557(∗∗∗) �

NMF 0.003 4.334(∗∗∗) �

LDA − 0.010 − 4.104(∗∗∗) �

kNN SVD 0.081 7.248(∗∗∗) �

NMF 0.062 6.237(∗∗∗) �

LDA 0.071 5.283(∗∗∗) �

Note that the kNN statistics here are based on a subset of the 97 tasks

(a) SVD (b) NMF (c) LDA

Fig. 20 Plots of DR versus full performance for 15 additional data sets comprising 76 binary prediction
tasks, using SVMs

pair, averaged across 97 tasks (or 77, in the case of kNN). It also reports the z-statistic
from a Wilcoxon signed-rank test, the significance level, and whether DR or full
features are significantly better.
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Table 10 Summary of DR versus full features, for various modeling algorithms and DR methods, measured
using lift at the top 5% of instances

DR method Median DR benefit z-score DR better Full better

L2-LR SVD − 0.154 − 4.825(∗∗∗) �

NMF − 0.105 − 4.386(∗∗∗) �

LDA − 0.781 − 7.331(∗∗∗) �

SVM SVD − 0.011 − 2.152(∗∗) �

NMF − 0.226 − 4.359(∗∗∗) �

LDA − 0.536 − 7.142(∗∗∗) �

L1-LR SVD 0.000 − 1.594

NMF − 0.000 − 1.829(∗) �

LDA − 0.413 − 5.998(∗∗∗) �

Tree SVD 0.000 − 0.980

NMF 0.057 2.785(∗∗∗) �

LDA 0.000 − 0.077

RF SVD 0.000 − 1.661(∗) �

NMF 0.000 − 0.727

LDA − 0.085 − 3.691(∗∗∗) �

kNN SVD 0.545 4.942(∗∗∗) �

NMF 0.333 3.401(∗∗∗) �

LDA 0.272 2.707(∗∗∗) �

Note that the kNN statistics here are based on a subset of the 97 tasks

(a) SVD (b) NMF (c) LDA

Fig. 21 Plots of DR versus full performance for 15 additional data sets comprising 76 binary prediction
tasks, using L1-LR

Appendix C: individual results for additional data sets

Each plot in this section shows DR versus full-feature performance on the 76 incre-
mental tasks coming from 15 publicly available data sets, for one classifier/DR method
pair (Figs. 21, 22, 23). The results for L2-LR are in Fig. 14 in Sect. 4.6.
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(a) SVD (b) NMF (c) LDA

Fig. 22 Plots of DR versus full performance for 15 additional data sets comprising 76 binary prediction
tasks, using Classification Trees

(a) SVD (b) NMF (c) LDA

Fig. 23 Plots of DR versus full performance for 15 additional data sets comprising 76 binary prediction
tasks, using Random Forests
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