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Abstract
Fear of increasing prices and concern about climate change
are motivating residential power conservation efforts. We
investigate the effectiveness of several unsupervised disag-
gregation methods on low frequency power measurements
collected in real homes. Specifically, we consider variants
of the factorial hidden Markov model. Our results indi-
cate that a conditional factorial hidden semi-Markov model,
which integrates additional features related to when and
how appliances are used in the home and more accurately
represents the power use of individual appliances, outper-
forms the other unsupervised disaggregation methods. Our
results show that unsupervised techniques can provide per-
appliance power usage information in a non-invasive manner,
which is ideal for enabling power conservation efforts.

1 Introduction

Concern over global climate change has motivated ef-
forts to reduce the emissions of CO2 and other GHGs
(greenhouse gases). Energy use in the residential sector
is a significant contributor of GHGs [49]. For example,
the residential sector is responsible for over one third of
all electricity use in the United States [2]. While infor-
mation is available on the typical use of electricity in
homes (e.g., space heating, space cooling, water heat-
ing and lighting account for about 50% of all residential
electricity use [3]), it has not enabled most home owners
to reduce their electricity consumption.

Two typical approaches to conserving energy are ef-
ficiency and curtailment [1]. The former involves one-
time actions (e.g., upgrading to more energy-efficient
appliances) that have a higher cost. The latter re-
quires continuous participation (e.g., using less heat-
ing/cooling on a daily basis), with a smaller incremen-
tal cost. There are two general issues that inhibit con-
sumers from applying these techniques. First, energy
use is a very abstract concept to most consumers [24, 8].
Second, consumers are often mistaken about how en-
ergy is used in the home, and thus which actions would
be most beneficial for conserving energy [15, 4, 38].
Numerous studies have identified the attributes of a
solution to these issues: personalized, frequent, con-
tinuous, credible, clear and concise feedback that pro-
vides an appliance-specific breakdown of how energy is
used in the home [5, 19, 7, 1, 11, 13, 15, 38]. Field
studies showed that with proper feedback, residential
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electricity and/or gas use could be reduced by up to
50% [14], although typical savings were in the 9%-20%
range [42, 20, 45, 1, 47]. Improved feedback can also
help curtail peak use by up to 50% [27, 44].

Much of this research occurred decades ago, in re-
sponse to the oil crisis in the 1970s [39]. At that time,
computer hardware technology was not as advanced, so
providing frequent feedback to home owners cost effec-
tively seemed infeasible [19]. As the crisis subsided
(and prices dropped), the financial incentive to con-
serve diminished [45]. The growing concern over climate
change has revived the importance of conservation. To-
day, computer hardware technology is more advanced,
so frequent feedback is now feasible. In particular, as
old power meters are replaced with smart meters, more
information will be available to consumers [38].

An open issue is how to provide an appliance-
specific breakdown of energy use in a cost-effective
manner. Without this, residential energy conservation
efforts are unlikely to achieve widespread success. This
paper investigates how to obtain this information via
power load disaggregation. While this topic has received
attention since the early 1990s [18], our work has three
distinguishing characteristics. First, we assume only low
frequency measurements are available. This makes our
techniques more widely applicable since smart meters
typically provide samples no more than once per second.
Second, we use an unsupervised disaggregation approach,
as this does not require the data to be labeled, which can
be laborious and intrusive. Third, we use empirical data
collected from seven homes over a six month period.

The specific problem we address is as follows. Given
the aggregate power consumption for T time periods,
Y = 〈y1, y2, . . . , yT 〉, and the number of appliances,
M , we want to infer the power load of each of the M
appliances, that is,

Q(1) = 〈q(1)1 , q
(1)
2 , . . . , q

(1)
T 〉

Q(2) = 〈q(2)1 , q
(2)
2 , . . . , q

(2)
T 〉

...

Q(M) = 〈q(M)
1 , q

(M)
2 , . . . , q

(M)
T 〉

such that yt =
∑M
i=1 q

(i)
t , where q

(i)
t is the power load

of appliance i at time t.
We achieve this using energy disaggregation meth-
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ods based on extensions of a hidden Markov model
(HMM). We use four HMM variants to model the data.
Factorial HMM (FHMM) models the hidden states of
all the appliances. Conditional FHMM (CFHMM) ex-
tends FHMM to incorporate additional features, such
as time of day, other sensor measurements, and depen-
dency between appliances. A third variant, factorial
hidden semi-Markov model (FHSMM) extends FHMM
to better fit the probability distributions of the state oc-
cupancy durations of the appliances. The fourth variant
composes FHSMM and CFHMM, to consider the addi-
tional features together with the more accurate proba-
bility distributions of the state occupancy durations of
the appliances. We refer to this variant as conditional
factorial hidden semi-Markov model (CFHSMM).

Our paper makes two key contributions. First, we
explore four unsupervised techniques for disaggregating
low frequency power load data. Second, we provide a
performance evaluation of the techniques using power
load data from real homes. We find that CFHSMM
outperforms the other variants, and demonstrate that
unsupervised disaggregation techniques are feasible.

The remainder of the paper is organized as follows.
Section 2 provides background information and related
work. Section 3 discusses features that can be used for
disaggregation of low frequency power measurements.
Section 4 describes the four models we use to identify
the stable-state signatures of household appliances. Sec-
tion 5 presents our results, using power load data from
actual homes. Section 6 summarizes our work.

2 Background and Related Work

2.1 Background Hidden Markov Models (HMM)
are used for probabilistically modeling sequential data.
HMMs are known to perform well at tasks such as
speech recognition [37], problems in computational bi-
ology [28], etc.

A discrete-time hidden Markov model can be viewed
as a Markov model whose states are not directly ob-
served: instead, each state is characterized by a prob-
ability distribution function, modeling the observations
corresponding to that state. More formally, an HMM is
defined by the following:

– S = {S1, S2, · · · , SN} the finite set of hidden states.

– the transition matrix A = {aij , 1 ≤ i, j ≤ N}
representing the probability of moving from state
Si to state Sj ,

aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N,

with aij ≥ 0,
∑N
j=1 aij = 1, and where qt denotes

the state occupied by the system at time t.
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Figure 1: Graphical representation of factorial HMM.

– the emission matrix B = {b(o|Sj)}, indicating the
probability of emission of symbol o ∈ V when
system state is Sj ; V can be a discrete or a
continuous set, in which case b(o|Sj) is a probability
density function.

– π = {πi}, the initial state probability distribution,

πi = P (q1 = Si), 1 ≤ i ≤ N

with πi ≥ 0 and
∑N
i=1 πi = 1.

Suppose we have sequential data y =
{y1, y2, . . . , yt, . . . , yT }. Every yt is generated
by a hidden state, qt. The underlying states
q = {q1, q2, · · · , qt, . . . , qT } form a Markov chain.
Given the current state, the next state is independent
of the past (Markov property).

P (qt+1|qt, qt−1, . . . , q1) = P (qt+1|qt)

As an extension of HMMs, Ghahramani and Jor-
dan [17] introduced factorial HMMs to model multiple
independent hidden state sequences, as shown in Figure
1. In a FHMM, if we consider Y = 〈y1, y2, . . . , yT 〉 to be
the observed sequence then q = {q(1), q(2), . . . , q(M)}
represents the set of underlying state sequences, where

q(i) = (q
(i)
1 , q

(i)
2 , . . . , q

(i)
T ) is the hidden state sequence of

the chain i. In general, factorial learning algorithms are
used to discover multiple independent causes or factors
underlying the data. FHMMs are preferred to HMMs
for modeling time series generated by the interaction of
several independent processes because using HMMs to
model such processes requires exponentially many pa-
rameters to represent all the states.

2.2 Related Work The initial solution for disaggre-
gating residential power load information was proposed
by Hart [18]. Hart demonstrated how different electrical
appliances generated distinct power consumption signa-
tures, which often could be seen in the aggregated power
load. He showed how on-off events were sufficient to
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characterize the use of some appliances. For other ap-
pliances, Hart considered using Finite State Machines
to develop signatures. Hart called this approach “Non-
intrusive Appliance Load Monitoring”(NALM).

Other research efforts have attempted to improve
NALM, often by proposing alternative signature identi-
fication techniques. Farinaccio and Zmeureanu [12] use
a pattern recognition approach to disaggregate whole-
house electricity consumption into its major end-uses.
Prudenzi [36] proposes a neural net approach for identi-
fying the electrical signatures of residential appliances.
Laughman et al. suggest collecting data at higher fre-
quencies (e.g., 8,000 Hz) to use higher harmonics in the
aggregate current signal to generate appliance signa-
tures [29]. Ito et al. [22] extract features from the cur-
rent (e.g., amplitude, form, timing) to develop appliance
signatures. Suzuki et al. [46] use an integer program-
ming approach to disaggregate residential power use.
Saitoh et al. [41] extract nine features from the mea-
sured current signal, and use them to classify the state of
an appliance. Kato et al. [23] describe an “electric appli-
ance recognition method”. It uses Principal Component
Analysis (PCA) to extract features from electric signals.
These features are classified using a Support Vector Ma-
chine. For “unregistered” appliances, a one-class SVM
is used. Lin et al. [31] use a dynamic Bayesian network
to take user behavior into account, and a Bayes filter to
disaggregate the data online. However, these methods
have practical limitations which motivate the develop-
ment of alternative techniques. Matthews et al. reflect
on some of these works and describe the characteristics
of a workable solution [32]. Our work focuses specifically
on disaggregating low frequency power load data with-
out the need for extra sensors, as these are important
attributes of a cost-effective solution.

Several research efforts have prototyped tools for
in-home use. Serra et al. built a prototype power me-
ter, which included software to disaggregate the power
consumption and automatically identify different ap-
pliances (as well as to detect malfunctioning appli-
ances) [43]. However, they considered only a small num-
ber of appliances and used very simple signatures; thus
the approach seems unsuitable for actual home environ-
ments. Kim et al. augment electricity usage data from
a single power meter with ambient signals from inexpen-
sive sensors placed near appliances [25]. They use three
types of indirect sensors: magnetic, acoustic and light,
to distinguish between multiple appliances that are si-
multaneously on and monitor variable power consump-
tion. Unfortunately, the need for additional sensors is
undesirable from a practical perspective.

An interesting variation on the NALM approach
was proposed by Patel et al. [35]. They use a plug-in

sensor to detect electrical events within a home. They
leverage the fact that mechanical switches produce elec-
trical noise [21], and that the noise characteristics can
vary dramatically by appliance [48]. They apply ma-
chine learning techniques to recognize specific devices
being turned on or off. More specifically, they perform
a Fast Fourier Transform on the incoming signal to sep-
arate the component frequencies. They then use a Sup-
port Vector Machine to classify which appliance was
turned on. In several trials, they found accuracies of
85–90% in classifying the events. However, they cannot
determine the power consumed during each event from
the noise. To address this, they developed a sensor that
can be installed by the end user [34].

Disaggregating power data in commercial settings
has additional challenges. For example, Norford and
Leeb [33] present results for space-conditioning equip-
ment in an commercial setting. Some of the challenges
include more identical appliances, and more complex
appliance signatures.

Lastly, hidden Markov models have been applied
to a wide range of topics. One relevant study is
from Yadwadkar et al. [50]. They use profile hidden
Markov models to recognize distinct applications within
a network file trace. The success of their approach
motivates us to explore HMMs for developing appliance
signatures for residential power use.

3 Disaggregation with Low Sampling Rates

There are two kinds of features for power disaggregation
– transient signatures and stable-state signatures [18].
Transient signatures capture electrical events, such as
high frequency noise in electrical current or voltage,
generated as a result of an appliance turning on or
off [35]. Although these features are good candidates
for use in disaggregation, sampling data fast enough
to capture them requires special instrumentation. For
example, Patel et al. use a custom built device to
measure at rates up to 100KHz [35]. However, most
smart meters deployed in the U.S. have low sampling
rates, typically 1Hz or less.

Stable-state signatures relate to more sustained
changes in power characteristics when an appliance is
turned on/off. These persist until the state of the
appliance changes, which can be captured with low
frequency sampling. But even for stable-state features,
the frequency of sampling is important since at low
sampling rates the probability of multiple on/off events
occurring between two measurements increases, making
the disaggregation task more difficult. In addition to
the real power measurement, AC power meters typically
provide several other metrics, such as, reactive power,
frequency, power factor, etc., each of which could
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Label Location Appliance Power
fam tv Family Room Television 73 W
fam ps3 Family Room Playstation 3 67 W
fam stereo Family Room Home Theater 41 W
kit ref Kitchen Refrigerator 82 W
liv tv Living Room Television 177 W
liv xbox Living Room Xbox 360 111 W
off laptop Office Laptop 61 W
off monitor Office Monitor 38 W

Table 1: Summary of the household appliances.

potentially be used as additional features depending on
the set of appliances to be disaggregated.

In this work, we focus on stable-state features
since these features can be more readily obtained,
e.g., from smart meters, in which case no additional
instrumentation is required in the homes. The most
effective feature for disaggregation is the real power
measurement. However, other power features may help
distinguish appliances, so our approach is designed
to allow multiple other features to be integrated into
the model. Other useful features, unrelated to power
metrics, are: duration on/off, date/time, dependency
between appliances, daily schedule of the occupants,
etc. Further, unlike past work, we develop unsupervised
learning algorithms for disaggregating the appliances.

We collected detailed power measurements from 7
homes in California, for a period of six months. To en-
able us to know the ground truth, we installed extensive
instrumentation in the home, collecting data at the indi-
vidual appliance level. We then aggregate the data from
multiple individual appliances to test the ability of the
methods to disaggregate this data. We use the original
traces of power use for each instrumented appliance to
assess the performance of the disaggregation methods.
It is important to clarify that if we can successfully dis-
aggregate the aggregate power data, thorough (and ex-
pensive) instrumentation of homes will not be necessary
to obtain per-appliance measurements. Further, labo-
rious ”labelling” of the collected data is not required.
This is an important practical consideration, and the
motivation for our focus on unsupervised techniques.

In the following subsections, we focus on one home,
and investigate the possible stable-state features. Ta-
ble 1 lists a subset of the monitored appliances in the
home. Each “Label” is an abbreviation formed from the
appliance type and its location. For example, “fam tv”
is the television located in the Family Room, while
“liv tv” is the television located in the Living Room.

3.1 Power Consumption The real power consump-
tion is the most significant feature. Table 1 shows the
average values for each of the appliances. We assume
that each appliance has two states (on and off) and
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Figure 2: Histograms of appliance power consumption.
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Figure 3: Histograms of appliance ON-durations.

its power consumption follows the Gaussian distribu-
tion when the appliance is on. As seen in Figure 2,
this assumption is valid for most of the home appli-
ances, except for the family room TV (fam tv) and of-
fice laptop (off laptop). fam tv has a standby-mode in
which it consumes less power. The power consumption
of off laptop varies depending on whether its battery is
being charged, and its power state. Even though some
appliances have multiple states, they can be considered
to be composed of two or more two-state appliances.

3.1.1 ON-Duration Distribution Since we use
HMMs to model the appliances, we want to determine
what probability distribution function accurately cap-
tures the ON-durations. The geometric distribution is
used for state occupancy in regular HMMs. However,
the histograms of ON-durations shown in Figure 3 do
not appear to be geometric. In geometric distributions,
Pr(d = x) ≥ Pr(d = y) ⇐⇒ x ≤ y. Thus, if we
model the ON-state occupancy durations with a geo-
metric distribution, it would mean that using an appli-
ance for only one second occurs more frequently than
using it for one minute. Obviously, this property does
not hold for many household appliances. As Figure 3
shows, most of the peaks are not located in the first bin
of the histograms. Thus, the ON-state occupancy dura-
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Figure 4: Histograms of appliance OFF-durations.
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Figure 5: Exponential and Gamma distributions.

tions need to be modeled with a different distribution.
We found that the gamma distribution is closer

to most ON-duration distributions. Since the gamma
distribution has two parameters, it has more freedom
in terms of the distribution’s shape. Figure 5 shows
a set of exponential distributions, the equivalent of
geometric distributions in the continuous domain, and a
set of gamma distributions. We perform a quantitative
comparison of the fitness of the gamma distribution with
that of the exponential distribution.

For each appliance, we use maximum likelihood
estimation (MLE) on the ON-durations to estimate the
parameters for the exponential distribution and gamma
distribution. The fitness of these distributions on the
data is compared using log-likelihood ratio (LLR):

LLR = log

(
maxk,θ P (durations|Gamma(k, θ))

maxλ P (durations|Exp(λ))

)
Table 2 shows that all LLR values are positive, and

most are large. This indicates that the gamma distri-
bution is a better fit than the exponential distribution
for all appliances.

3.1.2 OFF-Duration Shape As shown in Figure 4,
there are generally two peaks in the OFF-duration
distributions. The reason for the second peak is that
most appliances are not used at night. This indicates
the dependency between time of day and appliance use.

Label λ k θ LLR
fam tv 0.00991 1.804 38.307 17.29
fam ps3 0.01447 1.135 88.821 5.077
fam stereo 0.00395 0.975 259.38 0.029
kit ref 0.07783 5.895 2.1793 4151
liv tv 0.01576 2.175 29.184 98.50
liv xbox 0.01669 2.763 21.676 70.63
off laptop 0.01840 1.371 39.633 26.73
off monitor 0.00076 0.676 1945.2 7.143

Table 2: Estimated parameters for the exponential (λ)
and gamma (k, θ) distributions, and LLR.
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Figure 6: Correlations between the appliances.

If the second peaks are removed, the OFF-durations are
approximated well by geometric distributions.

3.2 Dependency between appliances Usage pat-
terns of some appliances show strong correlation with
those of others. For example, an Xbox 360 cannot be
used without a television, and a monitor cannot be used
alone without a desktop or a laptop. We tested these
dependencies in our dataset by measuring the correla-
tions between every pair of appliances.

Figure 6 shows the Pearson’s coefficients of all
pairs of appliances as a heatmap. The figure shows
four groups of strongly correlated appliances: {fam tv,
fam stereo, fam ps3}, {kit ref}, {liv tv, liv xbox}, and
{off laptop, off monitor}. Further, liv tv and fam tv
are correlated, which implies that the family members
in the house usually watch televisions at similar times.
We also compute the conditional probabilities for every
pair of appliances. The pairs with conditional proba-
bility greater than 0.9 are: P(fam tv|fam ps3) = 0.963,
P(fam stereo|fam tv) = 0.944, P(fam stereo|fam ps3)
= 0.998, P(liv tv|liv xbox) = 0.990, and
P(off monitor|off laptop) = 1.000. Our results show
that strong dependencies exist between appliances,
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Figure 7: Daily and weekly usage patterns of appliances.

Algorithm 1 The Generative Approach with Hidden
Variables.

1: λ← Initial parameters
2: repeat
3: λ′ ← λ
4: λ← arg maxλE [logP (Y , q|λ)|Y , λ′]
5: until λ converges
6: q∗ ← arg maxq P (q|λ,Y )

which can be used as features for disaggregation.

3.3 Additional Features The performance of
power load disaggregation can be improved if addi-
tional inputs that indirectly relate to the state of an
appliance are available. We focus on inputs that do
not require additional instrumentation. For example,
people tend to have daily and weekly patterns in their
activities. Thus, we expect usage of appliances to also
have temporal patterns. Figure 7 shows the usage of
fam tv and off laptop for each day of a week, aggre-
gated over 6 months. The figure shows that the TV
is watched more at night and on weekends; the laptop
is used every weekday morning. Other appliances also
exhibit temporal usage patterns (not shown). Thus,
time of day and day of the week are useful features.
In this work, we consider only time of day and day of
week as additional features, as this information does
not require additional instrumentation to be used.
However, the models developed in the next section
could integrate other features, if the information
were available. For example, the outside temperature
would strongly correlate with the use of heating or
air conditioning. Similarly, sound, light or vibration
sensors can help identify a variety of appliances [25].

4 Appliance Models

In this section, we develop probabilistic models of
appliance behavior. These models integrate the stable-
state features described earlier. Further, learning the
parameters of these models is unsupervised. This is
highly desirable for residential power disaggregation, as
labeled data is not required, simplifying deployment.

Being variants of HMM, our models are generative,
that is, we define a probabilistic model that explains the
generating process of the observed data. These models
can contain hidden variables that are not observed. In
our case, the states of appliances are the hidden vari-
ables, and the aggregate power load is the observation.

The models have several parameters that can be
learned from data. The learning process consists of
estimating the parameters from the observations such
that the model can best describe the observations.
Then, using the model with these parameters, we
estimate the hidden variables, which are the states of
the appliances. Specifically, this algorithm is described
in Algorithm 1. We first initialize the parameters. For
a given observation Y , we estimate the parameters in a
model by an Expectation-Maximization algorithm (EM:
Line 2-5). Then, we estimate the hidden states by using
Maximum Likelihood Estimation (MLE: Line 6).

As our base model we chose a factorial hidden
Markov model (FHMM), which is described in Section 2.
Based on the observations from Section 3, we create
three variants, which we describe next.

4.1 FHSMM An inherent problem in FHMMs is
that a state occupancy duration is constrained to be
geometrically distributed. However, as shown in Sec-
tion 3.1.1, the ON-durations are modeled better with
a gamma distribution. Modeling state occupancy dura-
tions in HMMs has been studied in [40, 30]. The models
are called Hidden Semi-Markov Model (HSMM) or Non-
Stationary Hidden Markov Model (NSHMM). We define
a Factorial Hidden Semi-Markov Model (FHSMM) as
the model obtained by combining the method of model-
ing state occupancy durations in HSMM with FHMM.

4.2 CFHMM FHMMs do not consider additional
features such as time of day, day of week, or input from
other sensors. To use these, we propose a Conditional
Factorial Hidden Markov Model (CFHMM), where the
transition probabilities are not constant but are condi-
tioned on the extra features. This model is similar to a
coupled hidden Markov model (CHMM) [6]. However,
CFHMMs have a more general form, as they consider
the dependencies between hidden state sequences and
the additional input sequences.

Figure 8 shows the relationship of these two models
with FHMM. Next, we combine FHSMM and CFHMM
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Figure 9: The graphical representation of CFHSMM.

to create the Conditional Factorial Hidden Semi-Markov
Model (CFHSMM).

4.3 CFHSMM We extend the FHMM model to
create the Conditional Factorial Hidden Semi-Markov
Model (CFHSMM). This new model has the advantages
of both FHSMM and CFHMM. Figure 9 shows the
graphical representation of CFHSMM. c1, c2, . . . , cK
represent the additional features. Further, the model
uses a gamma distribution for ON-durations. Lastly,
the state of an appliance at time t also depends on the
states of other appliances, and the additional features
at time (t − 1). This extension allows the model to
consider the dependencies between appliances and the
dependencies on additional features.

4.3.1 Parameter Estimations There are several
parameters in the model.

• π
(i)
j , the initial probabilities, P (q

(i)
1 = j)

• f
(i)
jkl, the conditional probability for feature k of

value l, P (c
(k)
t−1 = l|q(i)t = j)

• m
(i)
jkl, the conditional probability for appliance k of

state l, P (q
(k)
t−1 = l|q(i)t = j)

• µ(i), the mean of the power consumption for the
appliance i

• κ(i) and θ(i), the parameters for the gamma distri-
bution of ON-state duration

For a given set of parameter λ, the joint probability
of the observation sequence Y and the set of the state
sequences q is the product of the initial probability, the
emission probability, and the transition probability.
(4.1)

P (Y , q|λ) = ψin(Y , q|λ) · ψe(Y , q|λ) · ψt(Y , q|λ)

The initial probability is

ψin(Y , q|λ) =

M∏
i=1

π
(i)

q
(i)
1

The emission probability is

ψe(Y , q|λ) =

T∏
t=1

bqt(yt)

The transition probability is

ψt(Y , q|λ)

=

M∏
i=1

∏
t:q

(i)
t =0

 M∏
j=1

m
(i)

q
(i)
t+1jq

(j)
t

 K∏
j=1

f
(i)

q
(i)
t+1jc

(j)
t


∏

t:q
(i)
t =1

 M∏
j=1:i 6=j

m
(i)

q
(i)
t+1jq

(j)
t

 K∏
j=1

f
(i)

q
(i)
t+1jc

(j)
t


∏

t:q
(i)
t =1,q

(i)
t−1=0

P (d = `
(i)
t |κ(i), θ(i))

where `
(i)
t is the length of the ON-state subsequence of

the appliance i starting at time t. All these parameters
can be estimated using the Expectation Maximization
(EM) algorithm. EM iteratively re-estimates the pa-
rameter values using an “auxiliary function” until con-
vergence to a local maximum occurs.

The auxiliary function to be maximized is

φ(λ, λ′) =
∑
q

P (Y , q|λ′) logP (Y , q|λ)

where λ′ is the set of the parameters in the previous
iteration.

In each iteration, the EM algorithm performs the
E-step and M-step. In the E-step, the conditional distri-
bution P (Y , q|λ′) is determined. Then, in the M-step,
the parameters are updated to be arg maxλ φ(λ, λ′).
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We first look at the M-step, and then explain the
E-step.

By Equation 4.1, the auxiliary function becomes:

φ(λ, λ′) =
∑

q P (Y , q|λ′) logψin(Y , q|λ)

+
∑

q P (Y , q|λ′) logψe(Y , q|λ)

+
∑

q P (Y , q|λ′) logψt(Y , q|λ)

Since all the three terms do not have parameters
in common, they can be maximized separately. For the
first term, ∑

q

P (Y , q|λ′) logψin(Y , q|λ)

=
∑
q

P (Y , q|λ′)
M∑
i=1

log π
(i)

q
(i)
1

=

M∑
i=1

∑
q

log π
(i)

q
(i)
1

P (Y , q|λ′)

Now, we can maximize the term of each appliance
separately. For i ∈ {1, 2, . . . ,M},∑
q

log π
(i)

q
(i)
1

P (Y , q|λ′) =
∑

j∈{0,1}

log π
(i)
j P (Y , q

(i)
1 = j|λ′)

by using marginal expression for time t = 1 in the right
hand side. Adding the Lagrange multiplier, using the

constraint that π
(i)
0 +π

(i)
1 = 1, and setting the derivative

equal to zero, we get:

π
(i)
j =

P (Y , q
(i)
1 = j|λ′)

P (Y |λ′)
, ∀j

Similarly, for i ∈ {1, 2, . . . ,M}, we get:

m
(i)
jkl =

∑T−1
t=1 P (Y , q

(k)
t = l, q

(i)
t+1 = j|λ′)∑T−1

t=1 P (Y , q
(i)
t+1 = j|λ′)

, ∀j, k, l

f
(i)
jkl =

∑T−1
t=1 P (Y , c

(k)
t = l, q

(i)
t+1 = j|λ′)∑T−1

t=1 P (Y , q
(i)
t+1 = j|λ′)

, ∀j, k, l

For the emission probability, as mentioned earlier,
we use the gaussian distribution. However, we assume
that the variance of the power consumption for appli-
ances are the same. When we left the variances as free
variables, we found overfitting problems. One possi-
ble explanation is that most of the errors or noise are
caused by a sensor, not by appliances. This assumption
also make it much simpler to estimate the emission pa-
rameters. We use σ to denote the fixed variation. The

updating equation for µ shown here is equivalent to the
one found in [17].

φe(λ, λ
′) ≡

∑
q

P (Y , q|λ′) logψe(Y , q|λ)

=
∑
q

P (Y , q|λ′)
T∑
t=1

log bqt(yt)

=
∑
q

P (Y , q|λ′)
T∑
t=1

(
log 2πσ2

2
−

(yt −
∑M
i=1 q

(i)
t µ(i))2

2σ2

)
Then,

(4.2)

∂φe(λ, λ
′)

∂µ(i)
=

T∑
t=1

ytq
(i)
t P (Y , q|λ′)

−
T∑
t=1

M∑
j=1

µ(j)q
(i)
t q

(j)
t P (Y , q|λ′) = 0

Let 〈q(i)t 〉 =
∑
q q

(i)
t P (Y , q|λ′), and 〈q(i)t q

(j)
t 〉 =∑

q q
(i)
t q

(j)
t P (Y , q|λ′). Then, Equation 4.2 becomes:

∂φe(λ, λ
′)

∂µ(i)
=

T∑
t=1

yt〈q(i)t 〉 −
T∑
t=1

M∑
j=1

µ(j)〈q(i)t q
(j)
t 〉 = 0

These can be solved by the normal equations

µ =

[
T∑
t=1

〈qtqtT 〉〈qtqtT 〉

]−1 [ T∑
t=1

〈qtqtT 〉〈qt〉yt

]

where qt = [q
(1)
t q

(2)
t . . . q

(M)
t ], 〈qtqtT 〉 =∑

q qtqt
TP (Y , q|λ′) and 〈qt〉 =

∑
q qtP (Y , q|λ′).

Lastly, we have κ(i) and θ(i) parameters to be
optimized. Since there are no closed-form equations
for estimating κ(i) and θ(i), we need to estimate them
numerically by the Newton-Raphson method [9].

Let

s(i) = logE[d(i)|Y , λ′]− E[log d(i)|Y , λ′]
= log

∑
q

∑
t:q

(i)
t−1=0,q

(i)
t =1

`
(i)
t P (Y , q|λ′)/P (Y |λ′)

−
∑
q

∑
t:q

(i)
t−1=0,q

(i)
t =1

log `
(i)
t P (Y , q|λ′)/P (Y |λ′)

where d(i) is the random variable for the ON-state
occupancy duration and `

(i)
t is the length of the ON-

state subsequence of the appliance i starting at time
t.

Then, we initialize κ(i) = s(i), and iteratively
update κ(i) by the following equation:

κ(i) = κ(i) − log κ(i) − ψ(κ(i))− s(i)

1/ log κ(i) − ψ′(κ(i))
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where ψ is the digamma function and ψ′ is the trigamma
function.

After iteratively estimating κ(i), we set

θ(i) = E[d(i)|Y , λ′](κ(i))−1

=

∑
q

∑
t:q

(i)
t−1=0,q

(i)
t =1

`
(i)
t

P (Y , q|λ′)
P (Y |λ′)

 (κ(i))−1

These updating equations complete the M-step in
our EM algorithm. In contrast to the M-step, the exact
inference of the conditional distribution P (Y , q|λ′) in
the E-step is computationally intractable as mentioned
in [17]. There are alternative ways to approximate the
inference, including Gibbs sampling and the mean field
approximation [17]. Here, we use Gibbs sampling [16],
one of the Monte Carlo methods, because of its simplic-
ity. Since Gibbs sampling is a well-known tool and easy
to adapt to any model, we omit its details.

4.3.2 Hidden State Estimation The goal of the
energy load disaggregation is to discover the states of
appliances. We are more interested in the sequences
of the hidden variables in the CFHSMM than the
parameters in the model. After learning the parameters,
we need to use Maximum Likelihood Estimation (MLE)
to estimate the sequences of the hidden variables.

In other words, we want to find q∗ such that

q∗ = arg max
q

P (Y , q|λ)

The Viterbi algorithm can efficiently estimate the
hidden states for HMMs. It uses dynamic program-
ming to solve the optimization problem. However, dy-
namic programming for CFHSMMs is computationally
intractable [17]. Thus, we use simulated annealing
(SA) [26] to find q∗. For the same reason as with Gibbs
sampling, we omit the explanation of SA.

5 Experimental Results

5.1 Experiment Setup Our experimental setup
monitors power consumption from seven residential
homes. At each residence we have installed a mix of
sensing nodes, each containing a Zigbee (www.zigbee.
org) radio transceiver, collectively forming an in-home
wireless sensor network using Digi (www.digi.com)
components. Figure 10 shows our residential deploy-
ment topology. It includes a whole-home meter to deter-
mine overall electrical energy use (a smart meter proxy),
several individual energy monitoring nodes (typically
attached to larger appliances), and several clustered en-
ergy monitoring nodes to capture the aggregate con-
sumption from grouped devices, such as an entertain-
ment center. Power data is collected every 3 seconds.

Figure 10: The in-home sensing topology.

A residential gateway connected to a DSL line enables
remote management of the devices and collection of the
power measurements. We combine data from individual
device monitors to create our datasets. This approach
provides us with the ground truth to evaluate the per-
formance of our models.

5.2 Evaluation Metrics Accuracy is a commonly
used evaluation metric. However, with power disaggre-
gation the state distribution is very skewed because us-
ing an appliance is a relatively rare event. Therefore, ac-
curacy is not an appropriate metric for evaluating power
load disaggregation because a model that always says all
the appliances are off will achieve high accuracy.

Instead, we adapt a metric from the information re-
trieval domain, F -measure. In the information retrieval
domain, the common task is to classify relevance of doc-
uments for a given query. Because relevant documents
are relatively rare, evaluation metrics in the information
retrieval consider skewed classes.

F -measure is widely used in this type of evaluation.
In binary classification tasks, there are four possible
outcomes from a binary classifier: true positive (TP ),
true negative (TN), false positive (FP ), and false
negative (FN). F -measure is the harmonic mean of
Precision and Recall. Precision is defined as TP

TP+FP

and Recall is defined as TP
TP+FN . Thus,

F -measure =
2 · Precision ·Recall
Precision+Recall

We use the following process to apply F -measure
to our work. We convert our method to a binary classi-
fier such that if the power consumption of an appliance
is greater than 0, the output label is positive, and oth-
erwise it is negative. However, our task is not only clas-
sifying the states of an appliance, but predicting how
much power it consumes. Therefore, among true pos-
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Figure 11: The effect of ON-duration shape.

itives, we consider predictions that differ significantly
from ground truth as incorrect. More specifically, we
split the true positives into two categories, accurate true
positive (ATP), and inaccurate true positive (ITP). We
distinguish the predictions as follows. Let x be the pre-
dicted value, and x0 be the ground truth value.

• When x = 0 and x0 = 0, the prediction is true
negative (TN).

• When x = 0 and x0 > 0, the prediction is false
negative (FN).

• When x > 0 and x0 = 0, the prediction is false
positive (FP).

• When x > 0, x0 > 0, and |x−x0|
x0

≤ ρ, the prediction
is an accurate true positive (ATP).

• When x > 0, x0 > 0, and |x−x0|
x0

> ρ, the prediction
is an inaccurate true positive (ITP).

where ρ is a threshold.
We redefine Precision and Recall such

that Precision = ATP
ATP+ITP+FP and Recall =

ATP
ATP+ITP+FN . F -measure remains the harmonic
mean of the new Precision and Recall. We use the
new F -measure as our metric with ρ = 0.2 in the
evaluation. Most appliances in our evaluation have
standard variations of around 20% of their means. For
example, the power consumption of kit ref has standard
deviation of 15W, where its mean is 82W.

Since the output of the unsupervised models do not
have labels on each appliance, we compute F -measure
for all possible mappings, and take the maximum values
as their performance.

5.3 ON-Duration Distribution In this section, we
test the effectiveness of ON-duration shape as a feature.

Testdata FHMM CFHMM

fam tv, fam ps3, fam stereo 0.717 0.985
fam tv, liv tv, liv xbox 0.621 0.862
fam tv, fam ps3, liv tv, liv xbox 0.524 0.718
fam tv, fam stereo, liv tv, liv xbox 0.680 0.867
fam tv, fam ps3, liv tv 0.562 0.744
fam tv, fam ps3, fam stereo, liv tv 0.621 0.803
fam tv, fam stereo, liv xbox 0.724 0.881
All 5 appliances 0.594 0.751
liv tv, liv xbox 0.854 0.999
fam tv, fam ps3, fam stereo, liv xbox 0.590 0.731

Table 3: The top 10 most improved testdata.

For this test only, we create two synthetic datasets.
We generate two independent time-series data with the
same power consumption, ON-duration mean, OFF-
duration mean, OFF-duration shape, but different ON-
duration shape.

Each synthetic data set has a power consumption of
100 W, mean ON-duration of 30 time units, mean OFF-
duration of 60 time units, and OFF-duration shape
parameter of 1. The first data set has ON-duration
shape parameter of 1, while the second has various ON-
duration shape parameters from 1 to 10. The shape of a
gamma distribution changes from that of an exponential
distribution to that of a Gaussian distribution as its
shape parameter increases. Thus, as the value of the
shape parameter gets larger, the difference between the
two shapes of ON-durations increases. Figure 11 shows
that FHSMM performs better as the shape parameter
increases, but FHMM shows no change.

5.4 Dependencies Next, we evaluate the gains re-
sulting from modeling the appliance dependencies and
additional features. We chose two groups of appli-
ances that have strong correlations to other appliances
– {fam tv, fam ps3, fam stereo}, and {liv tv, liv xbox}.
We scaled the appliances to have the same power con-
sumption, and generated all the possible combinations
of these five appliances for the testdata. We scaled the
power so that power level becomes ineffective as a fea-
ture for disaggregation. There are 26 testdata with at
least two appliances. For each testdata, we evaluate the
F -measure of FHMM and CFHMM. The averages are
0.734 for FHMM and 0.838 for CFHMM. Table 3 lists
the top 10 test cases where maximum improvement was
seen through use of CFHMM.

These evaluations show the effectiveness of mod-
eling the dependencies between appliances and the
additional features. For {liv tv, liv xbox} testdata,
CFHMM disaggregated the load perfectly because the
model inferred the appliance dependency of liv xbox to
liv tv (i.e., an Xbox needs to be used with a TV).
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Home ID Num. of Appliances FHMM CFHSMM
Home 1 4 0.983 0.998
Home 2 6 0.899 0.930
Home 3 6 0.859 0.881
Home 4 7 0.625 0.693
Home 5 8 0.713 0.781
Home 6 8 0.641 0.722
Home 7 10 0.796 0.874

Table 4: The evaluations on several homes.

5.5 Overall Performance We tested the perfor-
mance of our models on all the seven homes from where
we collected data. Table 4 shows the results. The re-
sults in Sections 3 and 5.4 use Home 6’s data.

Even though we are monitoring more than 20
appliances in each house, we have much fewer appliances
in the data sets because the other appliances were not
active, that is, either they were never turned on, or
were always on. The always-on loads form part of the
base load (also called vampire load). Most of the power
load disaggregation algorithms (including ours) cannot
disaggregate base load since disaggregation is based on
the characteristics of the appliance power state changes.

Figure 12 shows the F -measure of the four models
versus the number of appliances. There are several
important observations. First, disaggregation using low
frequency data becomes more challenging as the number
of appliances increase. Further, the plot shows the
effectiveness of additional features. CFHSMM performs
better in all cases although the difference is more
pronounced for larger number of appliances (7 and 8).
The difference between the performance of CFHSMM
and CFHMM is minimal indicating that for this data
set most of the gain in performance of CFHSMM comes
from additional features considered rather than use
of the gamma distribution for ON-durations. Thus,
for dealing with more appliances, it is desireable to
integrate other additional features into our models.

6 Conclusions

In this paper, we investigated how effective unsuper-
vised disaggregation of low frequency power measure-
ments is. This is an important topic, as an effective
method of this type could facilitate residential electric-
ity conservation efforts. We considered a existing model
FHMM and three new models (FHSMM, CFHMM and
CFHSMM). Using low frequency measurements from
real homes, we showed that CFHSMM outperformed
the other unsupervised methods, and was capable of
accurately disaggregating power data into per-appliance
usage information.

We plan to extend this work in multiple ways. First,
our results revealed that the tested methods work well
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Figure 12: Comparison of model performance.

for appliances with simple or modestly complex power
signatures, but less well for more complex signatures.
Handling this subset of signatures is an important topic.
Second, we need to develop more extra features like
vibrations from sensors to enhance our method to deal
with more number of appliances. Third, we need a
method to estimate the number of appliances in the
whole-home power measurements. Fourth, we intend
to monitor residential gas and water usage, to facilitate
conservation of those resources too.
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