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CMP, Dept. of Cybernetics, Faculty of Elec. Eng., Czech Technical University in Prague

chum@cmp.felk.cvut.cz

Abstract

An efficient min-Hash based algorithm for discovery of

dependencies in sparse high-dimensional data is presented.

The dependencies are represented by sets of features co-

occurring with high probability and are called co-ocsets.

Sparse high dimensional descriptors, such as bag of

words, have been proven very effective in the domain of

image retrieval. To maintain high efficiency even for very

large data collection, features are assumed independent.

We show experimentally that co-ocsets are not rare, i.e. the

independence assumption is often violated, and that they

may ruin retrieval performance if present in the query im-

age. Two methods for managing co-ocsets in such cases are

proposed. Both methods significantly outperform the state-

of-the-art in image retrieval, one is also significantly faster.

1. Introduction

Methods1 describing images by bags or sets of visual

words, i.e. quantized descriptors of image patches, repre-

sent the state-of-the-art in image retrieval [19, 14, 16, 10]

and related tasks as image clustering or unsupervised object

discovery [20, 17, 18]. A bag of words description is com-

pact, and thus suitable for huge databases, and supports fast

search via inverted files that list all documents with a given

visual word.

One key issue in an image retrieval system exploiting vi-

sual word is the definition of image similarity. By far the

most common is based on term frequencies (tf) and inverse

1The authors were supported by GAČR project 102/09/P423, by EC

project ICT-215078 DIPLECS and by ČVUT SGS10/069/OHK3/1T/13.

Figure 1. A query image (left) and top ranked images retrieved by two methods from a database of 5 million images: standard (tf-idf with

spatial verification) retrieval (top) and the same method after automatic detection and removal of co-ocset features (bottom).

document frequencies (idf) of words [19]; visual similar-

ity is defined as a normalized sum, over all visual words,

of terms that are a function of tf and idf in the query and

database images.

In retrieval and recognition, the use of a similarity mea-

sure is typically justified by its probabilistic interpretation.

Any similarity measure employing summing over all visual

words implicitly assumes that occurrences of instances of

visual words are independent. The assumption of indepen-

dence in the popular tf-idf scheme is not made out of con-

viction it holds - it is intuitively obvious that it does not - but

for computational convenience. Modelling any probabilis-

tic structure for a standard vocabulary sizes of 104 to 106 is

challenging; even exhaustively checking for the simplest of

dependencies among pairs of visual words is prohibitive.

As the main contribution of the paper, we present

a method capable of detecting significant dependencies2

within a very large set of binary random variables. The

method is especially suitable for rare events. The approach

relies on a novel application of the min-Hash algorithm [4],

treating the inverted file (not the image) as a document.

With the proposed method, we demonstrate that dependen-

cies of visual words are fairly common in large datasets and

that ignoring the dependence hurts retrieval performance.

We call groups of non-incidentally co-occurring words

co-ocsets. We show that modelling of dependencies within

co-ocsets leads to improvement in retrieval performance.

One such example is visualized in Fig.1. If highly depen-

dent visual words on the water surface are treated as inde-

pendent, the most similar images are ”full of water”. The

bottom results are obtained if co-ocsets are ignored (other

2The precise meaning of ”significant” is given in Section 4.
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possibilities are discussed in section 5.2).

As a second contribution, we present two methods for

managing co-ocsets that outperform the state-of-the-art in

image retrieval on a standard benchmark. For difficult

cases, where the standard methods fail completely, the pro-

posed methods give good results as well as a speed-up.

Image retrieval is not the only application of the pro-

posed method. High dimensional sparse binary features

arise in other applications, e.g. document analysis and rare

event detection. The proposed method is suitable, as exper-

iments show, for large high dimensional datasets (106) with

rare (probability < 0.001) of co-occurring events. Standard

Monte-Carlo type methods for estimating co-occurrence of

such events are inefficient.

1.1. Related work

The standard text or image retrieval with tf-idf similarity

function [2, 19] weights contributions of different words.

Recently, the problem that certain individual visual words

are observed more times in a single document than the prob-

ability model predicts (so called burstiness) has been ad-

dressed in [11]. It was shown that burstiness deals well

with independent, repeating words by modelling first-order

statistics of word occurrences better than tf-idf. The co-

ocsets represent second order statistics. As shown in the

experiments, this becomes critical in the case of many in-

frequent co-occurring words, see Fig. 8. With large vocabu-

laries, co-occurring infrequent visual words are much more

common than frequent individual words.

Approaches that model the document as (mixtures of)

topics, such as probabilistic Latent Semantic Analysis

(pLSA) [7] and Latent Dirichlet Allocation (LDA) [3] do

capture relations between visual words. However, learn-

ing such models is prohibitively computationally expensive

in very high dimensional spaces and large databases. The

problem of co-ocset discovery can be seen as a search for

‘topics’ that generate a number of features with high con-

ditional probability on the ‘topic’. Note that in this task

neither all documents need to be explained, nor all features

need to be ‘generated’.

The closest related work in the field of computer vision

is [17] by Quack et al., who developed a method for min-

ing frequent and discriminative feature configurations. The

first significant difference is that the approach of [17] is

semi-supervised: it is known a priori in which groups of

images the co-occurring features might appear, while our

approach is fully unsupervised. The second difference is in

the efficiency. In [17], a data-mining algorithm APriori [1]

is used. This algorithm discovers co-occuring events with

frequency higher than a certain (user specified) threshold. If

the elementary events that compose the co-occurrences are

less frequent than the majority of the elementary events, the

threshold on frequency has to be set low. This results in an

extremely time–demanding process.

The rest of the paper is structured as follows. In Sec-

tion 2, a brief overview of the standard min-Hash algorithm

is given since min-Hash is the core part of the co-ocset dis-

covery algorithm. The problem of over-counting in (image)

retrieval is discussed in Section 3. In Section 4, an algo-

rithm for efficient co-ocset detection is introduced. Experi-

mental validation of the approach is given in Section 5.

2. Overview of the min-Hash Algorithm

The min-Hash algorithm is a Locality Sensitive Hashing

method [9] for sets. A brief overview of the min-Hash al-

gorithm follows; for detailed description see [4, 6].

In standard min-Hashing, documents (images) are rep-

resented as sets of (visual) words. Note that outside this

section, the roles of documents and words are interchanged,

i.e. in the rest of the paper, each word will be represented as

a set of documents the word appears in. We will be looking

for ‘similar’ words rather than similar documents.

A min-Hash is a function f that assigns a number to each

set of visual words (each image representation). The func-

tion has the property that the probability of two sets having

the same value of the min-Hash function is equal to their set

overlap, i.e. the ratio of the intersection and union of their

set representations:

P{f(A) = f(B)} = ovr(A,B) =
|A ∩ B|

|A ∪ B|
∈ [0, 1]. (1)

To estimate the word overlap of two images, multiple

independent min-Hash functions fi are used. The fraction

of the min-Hash functions that assigns an identical value to

the two sets is an unbiased estimate of the similarity of the

two images. To efficiently retrieve images with high simi-

larity, the values of min-Hash functions fi are grouped into

s-tuples called sketches. Similar images share many values

of the min-Hash function and hence have high probability

of producing the same sketches. On the other hand, dissim-

ilar images have low chance of forming an identical sketch.

Identical sketches are efficiently found by hashing.

The recall of min-Hash is increased by repeating the ran-

dom selection of s-tuples k times. A pair of images is a po-

tential match when at least one sketch collision is encoun-

tered. Potential matches are typically further verified. The

probability of a pair of images having at least one sketch out

of k in common is a function of the word overlap

P{collision} = 1 − (1 − ovr(A,B)s)k. (2)

3. Word Dependence and Similarity Overesti-

mation (Over-counting)

Let P (A) stand for the probability that a visual word A
is present in an image, that is P (A) = |A|/D, where A is a
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set of images containing word A and D is the total number

of images. The self-information weight (often referred to as

inverse document frequency idf) of a word is defined as

idf(A) = − log P (A).

This quantity measures the influence of word A on the sim-

ilarity of two images. Now let us consider two visual words

A and B co-occurring in a document. Under the assumption

of independence, their contribution to the similarity func-

tion is:

idf(A,B) = − log P (A,B) = − log P (A) − log P (B)

= idf(A) + idf(B).

However, if B is dependent on A to a level that P (A,B) =
P (B|A)P (A) ≈ P (A), the correct joint contribution of the

two words is:

idf(A,B) = idf(A) + idf(B|A)

= − log P (A) − log P (B|A) ≈ − log P (A),

i.e. the contribution of the two words under the indepen-

dence assumption is almost twice its probabilistically justi-

fiable value. The over-counting gets more prominent when

co-ocsets becomes large and contributions from highly de-

pendent words dominate similarity calculation, suppressing

other content. Detection of co-ocsets, especially the large

ones, therefore significantly influences results. Next, we

present an algorithm for co-ocset detection.

4. Detection of Co-ocset via min-Hash

Given P (A), P (B), and P (A,B), it turns out to be con-

venient to introduce an implicitly defined measure λ of vi-

sual word dependence:

P (A,B)λ = P (A)P (B), 0 ≤ λ ≤ 2. (3)

The measure λ linearly relates to over-estimating the self-

information weight of the visual words:

λ (− log P (A,B)) = − log P (A) − log P (B).

Values of λ ≤ 1 mean that the events are uncorrelated or

anti-correlated, which is a case that is not interesting here.

The value of λ is always smaller or equal to 2 since

P (A,B)2 = P (A)P (B|A) ·P (B)P (A|B) ≤ P (A)P (B).

In the range (1, 2), λ expresses the dependence of visual

words in terms of the ”over-counting” factor; λ = 1 means

no over-counting, i.e. independence, λ = 2 a duplication,

i.e. double counting.

A visual word is represented as a set of images con-

taining that word. Again, note that the roles of words and

documents has been swapped in comparison to standard re-

trieval. The proposed co-ocset detection algorithm exploits

the relation between the set overlap ovr of sets representing

two visual words and the measure λ. The overlap defines

the probability of detection by min-Hash, while λ repre-

sents the severity of problem caused by dependence. The

value of the set overlap ovr and λ is related as follows:

ovr =
P (A,B)

P (A) + P (B) − P (A,B)

=
P (A)1/λP (B)1/λ

P (A) + P (B) − P (A)1/λP (B)1/λ
. (4)

For visualization purposes (to avoid 3D plots), we as-

sume that co-occurring features A and B are approximately

equally frequent, that is P (A) ≈ P (B), which leads to:

ovr ≈
P (A)2/λ−1

2 − P (A)2/λ−1
. (5)

Note that this assumption is not necessary for further deriva-

tion. Plots of isocontours of λ as a function of P (A) and

ovr, and of ovr as a function of P (A) and λ are shown in

Figure 2. In the plots, the range of P (A) has been chosen

to correspond to observed values in a real database - see the

histogram of word frequencies in Figure 4 (left).

Finally, the conversion from the set overlap to λ is ob-

tained

λ =
log (P (A)P (B))

log(P (A) + P (B)) + log(ovr) − log(ovr + 1)
. (6)

Each co-ocset is defined as an ordered pair (Ki,Fi) of

sets of visual words. The first set Ki, called core, contains

highly correlated words. The other set Fi, called fringe,

contains words that often occur in images where the core

words are present, i.e. words with high conditional proba-

bility P (A|Ki). The core is used to detect the presence of

words from a co-ocset in an image, the fringe plays a role in

similarity adjustment. Each visual word appears in at most

one core, but possibly in multiple fringes.

To discover a core of a co-ocset, transitivity is assumed:

if word A is highly correlated with B, and B is highly cor-

related with C, then A is highly correlated with C. Fol-

lowing the assumption, cores are constructed as transitive

closures of words with the λ factor exceeding a threshold

λ0. To avoid intractable estimation of λ for every pair of

visual words, the min-Hash algorithm is used to efficiently

find pairs of visual words with a high value of λ. The con-

struction naturally enforces that each visual word is in at

most one co-ocset core.

Given co-ocset cores, an image is defined to contain a

co-ocset iff it contains at least α|Ki| different visual words

from the core Ki. The co-ocset fringe is then formed from
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Figure 2. Isocontours of λ given P (A) and the set overlap (ovr)

(left) and isocontours of ovr given P (A) and λ (right) according

to equation (5). P (A) ≈ P (B) is assumed.

Figure 3. Sample images containing the largest (4426 words) dis-

covered co-ocset ‘dark text on light background’ and positions of

core (left) and fringe (right) features.

words that appear in images containing a co-ocset Ki signif-

icantly more frequently than in random images. The fringe

features are efficiently found using ‘feature’ retrieval, where

each list of image features serves as an inverted file. The al-

gorithm for automatic detection of co-ocsets is summarized

in algorithm 1.

1. For each inverted file, i.e. a list of documents containing a

given visual word, compute ks min-Hashes.
2. Record the s-tuples of min-Hashes in a hash table.
3. For each pair A, B of visual words that encountered a sketch

collision, estimate the set overlap ovr and compute λ using

eqn. (6).
4. Build a graph Gλ where words are vertices and edges connect

pairs of words with λ > λ
∗, (λ∗ = 1.5).

5. Form the co-ocset cores Ki as connected components in Gλ.
6. For each core Ki find a set of images I containing at least

α|Ki| words from the core Ki, (α = 0.05).

7. Form the co-ocset fringes as words A satisfying
P (A|Ki)

P (A)
>

r0, (r0 = 10).

Algorithm 1: Discovery of co-ocsets via min-Hash.

5. Experiments

Like most of the recent work on image retrieval [19, 14,

16, 10], we apply the following approach. First, affine in-

variant features and descriptors [13] are extracted and im-

ages are represented as bags of visual words (vector quan-

tized descriptors) [19]. In particular, we use hessian affine

features and the SIFT descriptor [12].

All experiments were conducted with co-ocsets discov-

ered in the Oxford 100k dataset3 [16] (containing 2.3 · 108

features) for visual vocabulary of 106 words.

3Note that Oxford-100k does not include Oxford-5k landmark dataset.
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Figure 4. Histograms of visual word frequencies on the Oxford

100k dataset for all words (left) and the core words (right). Note

the log scale on x-axis. Red and greed dashed lines denote the

location of the modes in the first and the second plot respectively.

Parameters of the discovery process were (see Alg. 1):

k = 85 sketches of size s = 3; 255 independent min-Hash

functions were generated. First, selected statistics of the

dataset and the co-ocsets are presented. Then, the influence

of co-ocsets to image (or rather particular object) retrieval

are shown and discussed.

5.1. Statistics

First, consider two histograms of probabilities P (A) (i.e.

word frequencies) in Figure 4. Note (i) the logarithmic scale

on the x-axis and (ii) that the vertical axes of the two plots

have different scales. The left plot shows the frequencies

of all 1M visual words, while the right plot shows the fre-

quencies of co-ocset core words. Suprisingly, the median

of all word frequencies (0.0019) is larger than the median

of the core word frequencies (0.0015). This means that

the co-occurring sets of visual words are mostly composed

of words occurring less frequently than an ‘average’ word.

Highly frequent words are rarely part of a co-ocset core. As

a consequence, greedy algorithm trying out combinations

of frequent words are unlikely to produce good results in

sub-quadratic time.

In the Oxford 100k database, 103 co-ocset cores were

discovered. The number of words in the cores ranges from

6 (acceptance threshold) to 4426 words. More than half of

the cores are smaller than 15, only 14 large cores with more

than 50 words were found. In total, 18071 visual words, i.e.

close to 2%, are in a co-ocset core. The number of words

in a co-ocset fringe ranges from 500-13000, the average be-

ing 6063 words. In total, fringes contain 246,782 different

words, i.e. almost 25% of all words.

Two images containing features from the largest co-ocset

and the spatial distributions of core and fringe words are

shown in Figure 3. More examples are presented in the col-

ored boxes in Figure 5 and in Figure 6. From the images it

can be seen that the co-ocset words are well spatially local-

ized.

5.2. Application: Image retrieval

Managing co-ocsets. We implemented two methods for
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Figure 5. Locations of features belonging to three detected co-ocsets are colour-coded in a query image (left). For each co-ocset (‘bricks’

in red, ‘railings’ in green, and ‘light text on dark background’ in blue), a few selected images (from the Oxford 100k dataset) containing a

large number of the co-ocset words, their spatial location, and sample of co-ocset feature patches are shown.

Figure 6. Examples of different co-ocsets with a sample of patches associated with core features. The colour shows the spatial distribution

of the co-ocset features.

incorporating information about dependent words into an

image retrieval system. Both methods check for the pres-

ence of co-ocset cores in the query image. If there is no co-

ocset detected in the image, the process is exactly the same

as in the case of the baseline algorithm. Otherwise, the first

mehod, denoted ’Rmv’, removes words belonging to co-

ocsets (both core and fringe) from the query. The second

method, denoted ’Full’, applies an analogy to the burstiness

feature reweighting ([11], eq. (4)) in each database-query

similarity calculation:

s′f = sf

√

sf
∑

p∈K∪F
sp

,

where K and F are the core and fringe of the co-ocset

features f belongs to, sf is the standard tf-idf based con-

tribution of f to the matching score. Experiments show

that the ’Full’ method is slightly more precise (see Tables

1 and 3). The ’Rmv’ method outperforms the ’Full’ method

in certain situations, e.g. when the co-ocsets happen to be

on occluding or irrelevant structures. In such cases, like

for the query 4 in Table 1, the best course of action is co-

ocset removal. On the other hand, in rare cases, when the

image is composed of co-ocsets features only, the ’Rmv’

method fails, as in Figure 7. From a practical point of view,

the slightly higher robustness and precision of the ’Full’

method is probably more than compensated for by the speed

of the ’Rmv’ method.

The baseline method follows the architecture described

in [15]. First, images are ranked using the tf-idf scoring.

This procedure is fast, all documents in the database are

considered. In the second step, geometric constraints are

used to re-rank top ranked images. The spatial re-ranking

using RANSAC approach [16] is relatively slow and only

top 1000 documents are re-ranked. The spatial verification

guarantees a low false-positive rate, if a correct image is

ranked high enough in the tf-idf scoring, it is usually cor-

rectly retrieved. However, if the initial ranking fails to pro-

pose correct images, the spatial re-ranking has no chance of

improving it.

Efficiency of co-ocset discovery. For the Oxford 100k

database, the process requires less than 1 hour for a Mat-

lab implementation run on a single machine. Such a time

demand is orders of magnitude lower than the time spent

on feature detection, SIFT descriptor extraction, and vec-

tor quantization into visual words. The time to pre-process

the query is negligible (not measurable) with respect to the

query time (for query times see Table 2).

5.2.1 Experiment Q8

With co-ocsets detected on the Oxford 100k database, im-

age retrieval was performed on a database of 5 million

Flickr [8] images. Eight queries, each including features

from a different co-ocset, were used. The query images are

shown above Table 1, selected retrieval resultsfor the base-

line and ’Rmv’ methods are presented in Figures 9 and 1.

Accuracy of image retrieval for the 8 queries is sum-

marized in Table 1. The average precision of the baseline

method is very low, while both ’Full’ and ’Rmv’ methods

have very high average precision, typically about an order

of magnitude higher. The result might lead to unjustified

optimism. The poor performance of the baseline method is

not a surprise as only queries containing co-ocsets, prob-

lematic for the tf-idf similarity, were selected. The result

demonstrates that there are images where the tf-idf similar-

ity scheme effectively fails, not how common such images

are in real-world retrieval problems. In general, the base-
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Figure 7. Failure case for the ’Rmv’ method (bottom): the ghost figure (close up overlaid) composed of coloured cubes. Sample of the

query image patches (right). The ’Full’ method is successful (top).

1 3 5 7

2 4 6 8

Experiment Q8: the eight queries with different

co-ocsets.

Base Full Rmv Base Full Rmv

QE QE QE

1 0.038 0.340 0.304 0.038 0.676 0.676

2 0.073 0.639 0.615 0.071 0.816 0.816

3 0.144 0.430 0.430 0.143 1 1

4 0.041 0.073 0.084 0.148 0.778 0.954

5 0.067 0.468 0.534 0.067 1 1

6 0.031 0.625 0.787 0.031 0.926 0.926

7 0.150 0.403 0.550 0.150 1 1

8 0.200 0.400 0.400 0.200 1 1

Table 1. Experiment Q8: Average precision for the baseline[15],

’Full’ and ’Rmv’ methods (without and with Query Expansion [5])

in a database of 5M Flicker images. Note: the scores are upper

bounds as full ground truth is unknown.

Baseline Rmv Baseline+QE Rmv+QE

1 106 32 519 82

2 465 66 971 200

3 95 76 190 137

4 97 83 199 157

5 127 58 522 101

6 117 26 328 119

7 234 19 686 74

8 309 62 775 105

Table 2. Experiment Q8: Speed (in milliseconds). On average,

’Rmv’ is over 4 times faster than the baseline on Q8.

line method weighs high uninformative (for most specific

queries) structures that contain a large number of frequently

co-occurring words.

The high average precision of the ’Full’ and ’Rmv’ meth-

ods might be an artefact of the way ground truth was ob-

tained. All tested methods were run and all correctly re-

trieved images among a few hundred top ones were marked.

The precision is thus an upper bound; we have no way of

checking five million images. The ordering of the average

precisions is thus correct, and the comparison of methods is

fair, but the absolute value is an upper bound.

Retrieval speed. The speed of the baseline and ’Rmv’

methods is compared in Table 2. Since the ’Rmv’ method

reduces the number of query words, it traverses through less

inverted files as well as reduces the number of tentative cor-

respondences in the spatial verification. As a result, the

method might be up to over nine times faster. The speed-up

depends on the fraction of words in the query image belong-

ing to co-ocsets. The speed of the ’Full’ method is compa-

rable to the baseline method.

Comparison with burstiness. It has been observed that

high visual word counts in a single image occur much more

often than predicted by the tf-idf statistical model, Jegou et

al. [11] proposed a method that deals with such ”bursts” of

features, caused by repetitive pattern in the image.

For the queries included in the Q8 experiment, the bursti-

ness similarity function of [11] does not significantly im-

prove the retrieval output, see Figure 8 and compare the

results with Figure 1 and 9. This is not surprising, e.g. the

water features repeat only 1.05 times on average. Burstiness

works well for a few highly repeating features, co-ocsets al-

low to deal with many features which are individually not

frequent. The two methods can be combined - we adopted

the burstiness similarity score in the ’Full’ method.

5.2.2 Retrieval benchmark

The two methods for co-ocset management were evaluated

on the standard Oxford building retrieval benchmark. The

results of all the method are similar, both ’Full’ and ’Rmv’

methods slightly outperformed the standard (state-of-the-

art) method, see Table 3. In the experiment with the Paris

vocabulary, co-ocsets discovered in this vocabulary were

used. The protocol of the benchmark defines query boxes

that do not contain significant distracting co-ocsets. For

such queries the standard approach works well and only

marginally better results are achieved with the proposed

method.

5.3. Application: Image clustering

The benefit in the image retrieval is not achieved by im-

proving the score of correctly matching images, but by sup-

pressing false matches caused by over-counting. This turns
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Figure 8. Retrieval results using the burstiness similarity function [11].

Oxford 5k vocab Paris

QE QE

Baseline 0.727 0.862 0.574 0.728

Full 0.731 0.864 0.579 0.732

Rmv 0.731 0.864 0.574 0.731
Table 3. Results on the 105k Oxford database, with (QE) and with-

out (blank) query expansion for a vocabulary trained on the Oxford

and Paris datasets respectively, following the protocol in [16].

Figure 10. Geometrically consistent set of co-occuring features.

Figure 11. Images from the same cluster: (a) Oxford, UK, (b)

Versailles, France, (c) Granada, Spain, (d) Marseilles, France, (e)

Chenonceaux, France, (f) Prague, Czech Republic, (g) Barcelona,

Spain, (h) Lansing, Michigan.

out to be very important for clustering of spatially related

images as it avoids linking e.g. different historical spots

through the information boards. This phenomenon can be

observed in the ‘Dragon Wall’ query image (Figure 9 top).

Three different co-ocsets were detected as shown in Fig-

ure 5, the ‘text’ being by far the strongest. For the ‘Dragon

Wall’, the baseline method retrieves four images of the same

information board, followed by a number of (different) in-

formation boards of the same type progressively changing

into a generic text on a dark background. Figure 10 shows

an example of spatially consistent matches on unrelated ob-

ject. Another example is a cluster of eight different loca-

tions sharing the tiled floor, see Figure 11.

6. Conclusions

We have proposed an efficient algorithm, based on

min-Hash, for discovery of dependencies in sparse high-

dimensional data. The dependencies are represented by co-

ocsets, i.e. sets of features co-occurring with high probabil-

ity. We have demonstrated the influence of co-ocsets and the

invalid assumption of visual word independence on image

retrieval results. We have shown that there exist a large vari-

ety of images containing co-occurring words. These struc-

tures dominate the computed similarity, completely ruining

the results of standard retrieval. Two methods for manag-

ing co-ocsets in such case have been proposed. Both meth-

ods significantly outperform the state-of-the-art, the ’Rmv’

method is also significantly faster.
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Dragon Wall (50)

St. Ignazio (13)

Barcelona (14)

University College (18)

Vatican (19)

Bridge (4)
Figure 9. Examples of queries (leftmost images) where standard image retrieval fails to return images of the query object (upper rows of

results). The results of the ’Rmv+QE’ method are shown in the lower rows. The number of true-positive results prior to first false-positive

of the proposed method is shown next to the query image name.
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