
Unsupervised Discovery of Visual Object Class Hierarchies

Josef Sivic1 Bryan C. Russell1 Andrew Zisserman2,1 William T. Freeman3 Alexei A. Efros4,1

1 INRIA / Ecole Normale Supérieure∗ 2 University of Oxford 3 Massachusetts Institute of Technology 4 Carnegie Mellon University

{josef,russell}@di.ens.fr az@robots.ox.ac.uk billf@csail.mit.edu efros@cs.cmu.edu

Abstract

Objects in the world can be arranged into a hierarchy

based on their semantic meaning (e.g. organism – animal

– feline – cat). What about defining a hierarchy based on

the visual appearance of objects? This paper investigates

ways to automatically discover a hierarchical structure for

the visual world from a collection of unlabeled images. Pre-

vious approaches for unsupervised object and scene discov-

ery focused on partitioning the visual data into a set of non-

overlapping classes of equal granularity. In this work, we

propose to group visual objects using a multi-layer hierar-

chy tree that is based on common visual elements. This is

achieved by adapting to the visual domain the generative

Hierarchical Latent Dirichlet Allocation (hLDA) model pre-

viously used for unsupervised discovery of topic hierarchies

in text. Images are modeled using quantized local image re-

gions as analogues to words in text. Employing the multi-

ple segmentation framework of Russell et al. [22], we show

that meaningful object hierarchies, together with object seg-

mentations, can be automatically learned from unlabeled

and unsegmented image collections without supervision. We

demonstrate improved object classification and localization

performance using hLDA over the previous non-hierarchical

method on the MSRC dataset [33].

1. Introduction

Training data is essential for many machine vision tasks,

including object categorization and scene recognition. The

information used for training can be labelled or unlabelled.

In the case of labelled data, objects or their properties are

given along with the original visual data. This is the most

useful form of training data, but is also the most expensive to

obtain, and the quantities of such datasets are often quite lim-

ited. Hand-labelled data will include any biases or mistakes

on the part of the labellers. Moreover, recent large-scale ob-

ject labeling efforts [13, 23, 33] have demonstrated the dif-

ficulties in deciding on the granularity of the categories to

be labeled. For example, if cars and buses are two separate

categories, shouldn’t commercial and military airplanes be
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Figure 1. A four level object hierarchy learned from a dataset of 125

images of 5 object classes (cars side, car rear, screens, switches, and

traffic lights). Given the set of (unlabelled) images the structure of

the tree, assignments of images to paths in the tree and visual topics

at each node of the tree are learned automatically. Each node in

the tree is illustrated by an average of all images assigned to paths

passing through the node. Images are represented by visual words

with varying degree of spatial localization. Each node of the tree is

a ‘topic’ generating visual words and each image is assumed to be

generated by sampling visual words from topics along a single path

of the tree. Note for example, that car images are split according to

viewpoint (side vs. rear) to two separate paths, which are joined at

node 15. This is because some visual words are shared between all

images of cars and some are specific to each viewpoint.

separated as well? A categorization or labelling of the world

thought up by one person may not in fact be the most useful

for training a machine how to see.

In contrast, an unlabelled training set comes virtually

free; one only needs to point a camera out at the world

to obtain an unlimited supply of training images. There

has been recent research interest in learning from unlabelled

data, including unsupervised algorithms for object catego-

rization [11, 25] and segmentation [22, 27]. These algo-

rithms have functioned as proofs of concept, demonstrating

in some cases that models from the statistical analysis of text

can be modified to apply to unsupervised analysis of images.

In general, learning from unlabelled data will be much

slower than for labelled data. However, working with un-

labelled data can bring benefits. One might hope to learn

common structures or organizations of the visual world by

analyzing unlabelled collections of images. A hierarchy is

a natural structure to consider, and a natural question to ask

is, what is the visual hierarchy of the objects we see in the
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world?

Vision researchers have used hierarchical models for vi-

sual object [3, 10, 26, 32] and scene categories [26, 29, 31],

but mainly in a supervised or semi-supervised setting, where

object labels for (at least some) images are available. Un-

supervised learning has been restricted mainly to part hier-

archies for individual object categories [8, 15, 20, 34]. In

the context of supervised object category recognition and

detection, object/part hierarchies have been shown to im-

prove generalization for small sample sets by sharing fea-

tures/parts between objects [2, 26, 28]. Combining classi-

fiers learnt from images at different levels of a (handcrafted)

object hierarchy was shown to improve object classification

performance [35]. Recently, an object hierarchy, learnt in an

unsupervised way from a small set of images, was shown to

improve supervised classification and object segmentation in

unseen images [1].

Our focus in this work is the unsupervised discovery of

object class hierarchies, where the hierarchy is based on

sharing common visual elements. An example hierarchy is

shown in figure 1. What visual hierarchy structure is implied

by a given set of training data? Does a hierarchical organi-

zation improve the unsupervised categorization of objects in

comparison to a single layer partition?

We build on a hierarchical model developed for text

analysis – the hierarchical Latent Dirichlet Allocation

(hLDA) [5]. This model is a generalization of the (flat)

LDA [6] model. Like LDA, it generates a document as a su-

perposition of topics, but in hLDA the topics are composed

during a path through a tree becoming ever more specialized

from root to leaf. The great merit of the hLDA model is that

both the topics and the structure of the tree are learnt from

the training data – it is not necessary to specify the structure

of the tree in advance. In this paper we investigate whether

the hLDA model can be adapted for discovering object hier-

archies in the visual domain. Recently, and independently of

our work, a modified hLDA model was applied for unsuper-

vised learning of visual object class hierarchies in [4].

The rest of the paper is organized as follows: section 2

describes the structure of the hLDA model. In section 3 we

describe a visual vocabulary that is suitable for this hierarchi-

cal representation, enabling different levels of generalization

in both appearance and spatial layout. We demonstrate learn-

ing of the hierarchical model for two different image sets in

section 5. Finally we test the muscle of the hLDA model on

the extremely difficult problem of unsupervised discovery of

objects and their segmentation from unlabelled and unseg-

mented image dataset [22].

2. The hierarchical topic discovery model

We begin by briefly reviewing the Latent Dirichlet Al-

location (LDA) topic discovery model [6, 12] and then de-

scribe its extension to tree structured topic hierarchies [5].
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Figure 2. (a) LDA graphical model. Nodes inside a given box (plate

notation) indicate that they are replicated the number of times indi-

cated in the top left corner. Here, M is the number of documents

in the corpus and N is the number of words in each document.

Shaded nodes are observed. (b) Hierarchical LDA graphical model,

where the the tree structure T is known and fixed. (c) Hierarchical

LDA model, where the tree structure T is unobserved and governed

by the nested Chinese restaurant process prior with a parameter γ.

Note that the number of topics, which is equal to the number of all

nodes in the tree, is not fixed but grows with the size of the tree.

This is indicated by replication of the topic distribution β using the

plate notation.

We will describe the models using the original terms ‘docu-

ments’ and ‘words’ as used in the text literature. Our visual

application of these (as images and visual words) is given in

the following sections.

Suppose we have a corpus of M documents,

{w1,w2, . . .wM} containing words from a vocabu-

lary of V terms. Further we assume that the order of

words in a particular document does not matter. This is the

‘bag-of-words’ model.

LDA: The Latent Dirichlet Allocation model assumes that
documents are generated from a set of K latent topics. In a
document, each word wi is associated with a hidden variable
zi ∈ {1, . . . ,K} indicating the topic from which wi was
generated. The probability of word wi can be expressed as

P (wi) =
PK

j=1
P (wi|zi = j)P (zi = j), (1)

where P (wi|zi = j) = βij is a probability of word wi in

topic j and P (zi = j) = θj is a document specific mixing

weight indicating the proportion of topic j in the document.

LDA treats the multinomial parameters β and θ as latent

random variables sampled from a Dirichlet prior with pa-

rameters α and η respectively. The corresponding graphical

model is shown in figure 2(a). Each document is obtained us-

ing the following generative process: (i) Sample a K-vector

θ of document specific mixing weights from the Dirichlet

distribution p(θ|α). (ii) For each word, sample topic assign-

ment j according to mixing weights P (z) = θ and draw a

word according to P (w|z = j).

Hierarchical LDA: The LDA model described above has

a flat topic structure. In other words, each document is a su-

perposition of all K topics with document specific mixture

weights. The hierarchical LDA model [5] organizes topics

in a tree of fixed depth L. Each node in the tree has an asso-

ciated topic and each document is assumed to be generated



by topics on a single path (from the root to a leaf) through

the tree.

The hLDA model can also be viewed as a set of standard

LDA models, one along each path of the tree, where the top-

ics associated with internal nodes of the tree are shared by

two or more LDAs, with the root node shared by all LDA

models.

Assuming that the tree structure T is known, we can sam-

ple words in a single document using the following gener-

ative process: (1) Pick a path c through the tree; (2) Sam-

ple an L-vector θ of mixing weights from a Dirichlet distri-

bution p(θ|α); (3) Sample words in a document using the

topics lying along the path c in the tree. This generative pro-

cess corresponds to the graphical model shown in figure 2(b).

Each document has an associated hidden variable c indicat-

ing which path of the tree it was generated from. Given a

particular path c, the hidden variable zi, associated with each

word wi in the document, indicates which level of the tree wi

was sampled from.

For a particular document w, the joint distribution of
observed and hidden variables, conditioned on (hyper)-
parameters α and η factors as

p(w, z, c, θ, β|α, η, T ) =

N
Y

i=1

p(wi|zi, c, β)p(zi|θ)p(θ|α)p(β|η)p(c|T ). (2)

Here we also conditioned p(c) on T to indicate that the tree

structure is fixed and known. In practice however, it is often

difficult to specify a suitable tree structure a-priori. Recently

however, Blei et al. [5] developed a hierarchical LDA model,

which automatically infers the structure of the tree from the

data. This is achieved by placing a nested Chinese restaurant

process (nCRP) prior on tree structures.

nCRP prior: The nested Chinese restaurant process [5]

specifies a distribution on partitions of documents into paths

in a (fixed depth) L-level tree. To generate a tree structure

from nCRP, assignments of documents to paths are sampled

sequentially. The first document forms an initial L-level

path, i.e. a tree with a single branch. Each subsequent doc-

ument is either assigned to one of the existing paths (where

paths with more documents are more probable), or to a novel

path branching off at any existing (non-leaf) node of the tree.

The probability of creating novel branches is controlled by

parameter γ, where smaller values of γ result in trees with

fewer branches. Note that the number of branches at each

node can vary.

Using the hierarchical LDA model described above com-

bined with the nested CRP prior on trees we can sample

words in a document by the following generative process [5]:

(1) Pick a L-level path c from the nCRP prior. (2) Sam-

ple L-vector θ of mixing weights from Dirichlet distribution

p(θ|α); (3) Sample words in a document using the topics ly-

ing along the path c in the tree. The corresponding graphical

model is shown in figure 2(c).

Model learning: The hierarchical LDA (hLDA) model is

fitted using a Gibbs sampler as described in [5]. The goal

is to obtain samples from the posterior distribution of the

latent tree structure T , the level assignments z of all words

and the path assignments c for all documents conditioned on

the observed collection of documents w. For each document

the Gibbs sampler is divided into two steps. In the first step,

the level allocations zm are re-sampled while keeping the

current path assignment cm fixed. In the second step, the

path assignment cm is re-sampled while keeping the level

allocations zm fixed, which can result in a deletion/creation

of a branch in the tree.

Example: To illustrate the hLDA model consider a three

level bar hierarchy shown in figure 3(a). Similar ‘bar’ topic

examples were shown in [5, 12]. The structure of the tree

was sampled from the nCRP prior with γ = 0.3. Figure 3(b)

shows a topic hierarchy automatically recovered using the

Gibbs sampler of [5] from the collection of 100 documents,

each containing 250 words, sampled from the topic hierarchy

shown in figure 3(a), with topic proportions sampled from

Dirichlet prior with α = [50, 30, 10]. Note that α parameters

are set to values ≫ 1 to encourage high mixing of topics

along the path.

We have observed empirically on similar simulated

datasets, where the true values of z, c and T known, that, the

Gibbs sampler converges very slowly requiring thousands of

iterations. If however, we treat the tree level assignment z of

each word in each document as observed and fix them to their

true values, the Gibbs sampler finds the correct tree structure

(the assignments c of documents to paths in the tree) within a

few iterations. On the other hand, when the path assignments

c are treated as observed and fixed to the correct values, re-

covering the level assignments z is still difficult and requires

thousands of iterations.

In other words, knowing from which level of the hierar-

chy each word comes, which is the information carried in z,

greatly simplifies the analysis of the data and makes finding

the underlying topic tree structure significantly easier. Moti-

vated by this observation we design an image representation

which will allow us to make a reasonable guess of z, which

we can use then to initialize the Gibbs sampler.

3. Image representation using visual words

The goal is to obtain an image representation tolerant

to intra-class variations and a certain degree of lighting

changes. We achieve this by representing images using a

visual vocabulary of quantized SIFT [19] descriptors. In ad-

dition, we want to obtain a ‘coarse-to-fine’ description of the

image with varying degrees of appearance and spatial local-

ization granularity, suitable for hierarchical object represen-
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Figure 3. Illustration of the hierarchical LDA model.(a) Top: A

three level bar topic hierarchy. Each node represents a topic con-

taining 5 distinct terms from a 25 term vocabulary. Each topic is

shown as a 5×5 pixel image. (a) Bottom: Five 250 word docu-

ments sampled from the 5 distinct paths in the hierarchy. The pixel

intensity indicates the relative counts of a word in the document.

A particular document is a superposition of topics along the path.

Note that internal topics in the tree are shared between two or more

paths. (b) A bar hierarchy automatically recovered from a collec-

tion of 100 documents sampled from the model (a).

tation. This is achieved by changing the vocabulary size and

spatial specificity. Details are given below.

Circular regions are placed on a regular rectangular grid

over the image, as illustrated in figure 4. Similar ‘dense’ rep-

resentation has been successfully used in the context of su-

pervised object [16] and scene [7, 17] category recognition

and texture recognition [18, 30]. We found the ‘dense’ rep-

resentation to perform better than representations based on

‘sparsely’ detected interest points [21, 22, 25] (experiments

not shown) on the data used in this paper. Note that, similarly

to [7], regions are extracted at three different scales.

A SIFT descriptor is computed from each region and

assigned to the nearest visual word from a visual vocab-

ulary learned on a separate dataset, using the k-means al-

gorithm. We build two visual vocabularies with different

granularity by quantizing training descriptors into 10 and

100 visual words. Before applying k-means we remove all

‘empty’ patches by thresholding the sum of gradient magni-

tudes within the patch. All empty patches are assigned to a

single empty visual word resulting in a vocabulary of 11 and

101 visual words respectively. The image representation us-

ing visual vocabularies of the two different appearance gran-

ularities is illustrated in figure 4(b,c).

To represent spatial position of visual words within the

image we quantize image locations into Mx × My grid of

cells [9] and form a separate vocabulary for visual words

falling into each cell. This results in a vocabulary of size

Mx×My×V . We use grids of size 1×1 (bag of words), 3×3
and 5×5. Finally, we concatenate the 11 word vocabulary on

1× 1 grid (bag of words) with 101 visual word vocabularies

of varying spatial granularity into one vocabulary of a total

of 11(1 × 1) + 101(1 × 1) + 909(3 × 3) + 2525(5 × 5) =
3546 words. Similar ‘coarse-to-fine’ image representation

has been successfully used for object and scene classifica-

tion [17].

In some of our experiments we need to represent image

(a) (b) (c)

(d) (e) (f)

Figure 4. Image representation using visual words. (a) The orig-

inal image. (d)-(f) Original image with circular regions on a reg-

ular grid overlaid. Regions are extracted at three different scales

shown in (d)-(f) respectively. (b)-(c) Visualization of image (a) rep-

resented by visual words. Each circular region on the finest scale

(d) is shown as a rectangular patch computed by averaging image

patches assigned to the the same visual word. (b) and (c) use visual

vocabulary of size 100 and 10 visual words respectively.

segments, which are either generated automatically or ob-

tained manually. Each image segment is described by all

visual words with centroids within the segment, where re-

gions are extracted from the entire image and the segment

acts only as a selection mask. The position and size of the

Mx×My spatial grid is determined from the position and ex-

tent of the image segment so that the outer boundary of the

grid forms a tight bounding box around the segment. This

effectively results in a translation and scale invariant image

segment description.

4. Learning visual object hierarchies

In this section we apply the hLDA model to two image

sets using the visual word representation described above.

The goal is to discover visual object class hierarchies.

4.1. Example I: 5 object classes

Here we consider a dataset of 125 images of only 5 object

classes: ‘cars side’, ‘cars rear’, ‘computer screens’, ‘light

switches’ and ‘traffic lights’. Images were obtained from

the LabelMe dataset [23] and cropped manually to contain

mostly the object of interest. Each image is represented us-

ing the general-to-specific vocabulary of 3546 visual words

described in section 3. We learn a 4-level hLDA topic hier-

archy using the Gibbs sampler described in section 2. As-

signments z of visual words to levels of the tree are initial-

ized according to generality (both appearance and spatial)

as follows: visual words from the 11 bag-of-words (BOW)

vocabulary are assigned to level 1 (root), visual words from

the 101 BOW vocabulary are assigned to level 2, and visual

words from the 909 (3 × 3 grid) and 2525 (5 × 5 grid) vo-

cabularies are assigned to levels 3 and 4 respectively. Note

that these assignments are treated only as initialization and

can change during the model fitting. The structure of the tree



is initialized by sampling a random tree from the nCRP prior

with γ = 1. We run the Gibbs sampler 10 times (initial-

ized with a different random tree) for 50 iterations. At each

iteration, the current sample of z and c is used to compute

MAP estimates [12] of the mixing weights, θMAP , and topic

distributions, βMAP , which are in turn used to evaluate the

log-likelihood of the observed data w. This log-likelihood

is used to assess the convergence and compare different runs

of the Gibbs sampler (here we show models with the high-

est log-likelihood). One iteration of the Gibbs sampler takes

about 10 seconds on a 2GHz machine.

In terms of parameter variation, we found that the hLDA

model is most sensitive to choosing the hyperparameter η
controlling the smoothing/sparsity of topic specific visual

word distributions, where smaller values (η = 0.1) produce

large trees with sparse topics, and larger values (η = 1)

produce smaller trees with non-sparse ‘shared’ topics (here

η = 1). Similar sensitivity to the choice of η was found

in the text domain [5]. To encourage high mixing of topics

along paths in the tree hyperparameter α is set to value ≫ 1,

typically 300-500. As in [5] the nCRP prior hyperparameter

is fixed to γ = 1. The hLDA model requires choosing the

depth of the hierarchy manually and we demonstrate learn-

ing trees with up to 5-levels.

We found that the initialization of level assignments z de-

scribed above is important. When initialized with random

level assignments, the sampler converges to an inferior solu-

tion both in terms of log-likelihood and classification perfor-

mance (described in section 5), even after 10,000 iterations.

Note that initialization of level assignments z is based solely

on spatial and appearance granularity of the visual vocabu-

lary and does not require any knowledge of object labels, i.e.

is unsupervised.

The learnt 4-level object hierarchy is shown in figure 1.

Distinct paths in the tree correspond fairly accurately to ob-

ject classes. In addition, screens and traffic lights share a

common third-level topic (node 6); traffic lights, screens and

switches share a common second level topic (node 10); and

cars side and cars rear share a common second level topic

(node 15).

4.2. Example II: MSRC dataset

Here we consider the more challenging MSRC-B1

dataset [33] of 240 images of 9 object classes: faces, cows,

grass, trees, buildings, cars, airplanes, bicycles and sky. We

use the manual segmentations provided with the data, a total

of 553 segments, and treat each image segment as a sepa-

rate ‘document’. We learn a 5-level hLDA model. As above,

we initialized the level assignments z using the appearance

and spatial granularity of the vocabulary, this time starting at

level 2 of the tree, leaving the root topic empty. The discov-

ered object hierarchy is shown in figure 5. Some nodes of the

hierarchy are further illustrated by example image segments

in figure 6. The classification accuracy is discussed next.

5. Assessing hierarchies using classification

So far we examined the learnt hierarchies visually. In this

section we assess their quality by using them for classifica-

tion of object categories.

Note that the assignment of images to paths in the tree

implies a hierarchical partition of the data and we can use

this partition for image classification. For accurate classifi-

cation, we would like all images of a particular object class

to be ‘assigned’1 to a single node (internal or leaf) of the tree

(high recall). In addition, we would like no other images

(of other object classes) to be assigned to the same node of

the tree (high precision). To reflect the above requirements

we define a ‘classification overlap score’ for an object class

i and node t in the tree as ρ(i, t) = GTi∩Nt

GTi∪Nt

, where GTi is

the (manually obtained) ground truth set of images of class

i and Nt is the set of images which are assigned to a path

passing through node t. This score ranges between 0 and

1 with higher scores indicating better ‘overlap’ between the

object class i and node t. To obtain a single number perfor-

mance measure, ρ, we take the node with maximum over-

lap for each class and then average scores over all classes,

ρ = 1/Nc

∑
i maxt ρ(i, t), where Nc is the total number of

ground truth object classes.

For example, the object hierarchy shown in figure 1 has

classification overlap score 0.95. The perfect score of 1.00 is

not achieved due to ‘computer screens’ being split into three

bottom level nodes (3, 4 and 5 with 20, 3 and 1 image re-

spectively). In this case the score is measured for node 3.

This splitting seems to be due to different visual word repre-

sentations of the inside of the screen (depending on whether

the screen is empty or not).

5.1. Comparison with LDA

Here we use the classification overlap score to compare

the object hierarchy learned from the MSRC-B1 dataset,

shown in figure 5, with partitions of the data obtained by

the standard LDA model [6, 22, 25] with varying number of

topics. The same representation of image segments using vi-

sual words is used for both LDA and hLDA. In the case of

LDA, we estimate mixing weights θ for each segment and

assign each segment to the topic with the maximum mixing

weight. Results are summarized in table 1. Empirically we

observed that if the number of topics is small (K = 4, 5, 10)

LDA tends to group some object classes (such as airplanes

and cars, trees and grass, or faces and cows) together in a sin-

gle topic. For a higher number of learned topics (K ≥ 20),

some object classes such as ‘buildings’, ‘grass’ and ‘trees’

tend to split between several, usually fairly pure, topics. In

some cases mixed topics also occur. In contrast to LDA,

which learns a flat topic structure, hLDA learns a topic hier-

1Although in the hLDA model each image is assigned to a complete

(root to a leaf) path in the tree, in the following we call all images assigned

to paths sharing a particular internal node as ‘assigned’ to that node.



Figure 5. A 5-level hLDA hierarchy learned on the MSRC-B1 dataset of 553 (manually segmented) image segments of 9 object classes. The

node with the highest classification score for each class is labelled with the name of the class (shown in red). Branches with less than 3 image

segments are not shown. Each non-leaf node in the tree is visualized by an average of all image segments assigned to paths passing through

the node. Each leaf node is visualized by the top ranked image segment. The size of the image at each node is proportional to the number of

image segments assigned to the node. Nodes with more than 10 image segments are labelled by the node number and the number of image

segments ‘assigned’ to the node, e.g. the root node has label 1 and 553 assigned image segments. Some nodes are shown in more detail in

figure 6. Note that all 9 object classes are discovered in a plausible visual hierarchy. For example, airplanes and cars or grass and trees share

a common parent node. Buildings are divided into three sub-classes (shown in figure 6(d-f)), which share a common parent ‘building’ node.

(a) Node 2 (airplanes) (b) Node 3 (cars) (c) Node 15 (cows) (d) Node 20 (bldngs I) (e) Node 23 (bldngs II)

(f) Node 25 (bldngs III) (g) Node 27 (faces) (h) Node 36 (grass) (i) Node 39 (trees) (j) Node 47 (bicycles)

Figure 6. Selected nodes of the hierarchy, shown in figure 5, illustrated by the top three image segments ranked by similarity of the individual

segment’s visual word distribution to the topic distribution at the node (measured by the KL divergence).

LDA hLDA

topics 2 4 5 10 15 20 30 40 —

Score 0.37 0.46 0.50 0.46 0.57 0.61 0.57 0.55 0.72

Table 1. Image classification accuracy on the MSRC-B1 data (with

manual segmentations). Comparison between hLDA and flat LDA

with varying number of learned topics. The image classification

accuracy is measured by the ‘classification overlap score’ defined

in section 5.

archy and has some notion of how lower level topics/nodes

are ‘grouped’ by sharing higher level nodes. For example,

when LDA learns several fairly pure sub-classes of ‘build-

ings’ as separate topics, hLDA might find these sub-classes

as separate topics at the bottom level of the hierarchy and

then group them in a single higher level node.

6. Using object hierarchies with multiple seg-

mentations

So far we have discovered object hierarchies from images

containing mostly a single object or manually outlined seg-

ments. In this section, we apply the hLDA model to unseg-

mented images containing multiple objects. This is achieved

by using hLDA (instead of LDA) in the multiple segmenta-

tion framework of Russell et al. [22]. First, multiple over-

lapping segmentations of each image are obtained by vary-

ing parameters of a bottom-up segmenter based on Normal-

ized Cuts [24]. Second, object categories (and their rough

segmentations) are learnt, in an unsupervised way, by find-

ing image segments consistently segmented throughout the

dataset using the hLDA topic discovery model, where each

image segment is treated as a separate ‘document’.

We test the approach on the MSRC-B1 dataset (240 im-

ages, 9 object classes), where manually obtained ground

truth segmentations are available. To produce multiple seg-

mentations, we use the Normalized Cut [24] code available

at [14] and vary the number of segments Ks(= 3, 5), obtain-

ing 8 overlapping segments per image, i.e. a total of 1920

segments. Each segment is represented using the coarse-to-

fine vocabulary of 3,546 visual words, described in section 3.

As in section 4.2, we learn a 5-level hLDA hierarchy.

The multiple segmentation framework [22] is motivated

by an observation that ‘bad’ segments covering multiple ob-

jects, say a part of a face and a part of a bookshelf, tend not

to be segmented consistently throughout the dataset. As a

result, such inconsistent segments have different visual word

representations and do not form large consistent clusters. In

order to encourage this effect we had to bias the hLDA model

towards finding sparse (‘pure’) topics by setting the topic



Object hLDA LDA10 LDA15 LDA20 LDA25

airplanes 0.43 0.11 0.08 0.10 0.14

bicycles 0.50 0.06 0.56 0.50 0.52

buildings 0.16 0.09 0.06 0.40 0.21

cars 0.45 0.14 0.14 0.15 0.17

cows 0.52 0.11 0.14 0.58 0.48

faces 0.44 0.40 0.43 0.45 0.44

grass 0.60 0.41 0.57 0.54 0.45

trees 0.71 0.69 0.62 0.46 0.59

sky 0.74 0.41 0.41 0.50 0.50

Average 0.51 0.27 0.33 0.40 0.39

Table 2. The segmentation overlap score for hLDA and LDA [22]

on several objects from the MSRC-B1 dataset. The segmentation

accuracy is evaluated on the top 5 segments discovered by each

method.

specific word distribution smoothing hyper-parameter η to

0.2, as opposed to 1.0 used in experiments with manual seg-

mentations where mixed segments do not occur (section 4.2).

The resulting object hierarchy is shown in figure 7. Simi-

larly to [22] we sort all image segments assigned to a path

passing through a particular node based on the Kullback-

Leibler divergence between the observed distribution of vi-

sual words in the segment and the topic distribution at the

particular node. The top 5 segments for selected nodes in the

tree are shown in figure 8.

We evaluate the segmentation accuracy of the proposed

method by comparing the discovered object segments to

manually obtained ground truth segmentations provided with

the MSRC-B1 dataset. Let R and GT be respectively the

set of pixels in the retrieved object segment and the ground

truth segmentation of the object. The segmentation perfor-

mance score ρS measures the area correctly segmented by

the retrieved object segment. It is the ratio of the intersec-

tion of GT and R to the union of GT and R, i.e. ρ = GT∩R
GT∪R

.

The score is averaged over the top 5 segments for each

topic/node. Although biased towards high precision, the goal

is to evaluate whether the topic discovery model finds at least

some good segments from the pool of multiple segmenta-

tions. For each object class we then report the score of the

best performing topic/node. We compare the segmentation

performance of the object hierarchy learned by the hLDA

model, shown in figure 7, with our implementation of the

LDA object discovery method of Russell et al. [22] with

varying number of topics. Both methods use the same set of

multiple segmentations. Results are summarized in table 2.

On average, over all 9 object classes, hLDA scores better

than LDA with varying number of topics. This is mainly due

to the fact that LDA fails to discover airplanes and cars.

7. Conclusion

In this paper, we investigated ways to automatically dis-

cover a hierarchical structure for the visual world from a col-

lection of unlabeled images. Previous approaches for unsu-

pervised object and scene discovery focused on partitioning

the visual data into a set of non-overlapping classes of equal

granularity. Here we demonstrate that meaningful object hi-

erarchies can be automatically learned from unlabeled image

collections without supervision. Indeed, our performance in

both learning segmentation and object classification is supe-

rior to the state-of-the-art method [22].
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