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Abstract

Top-performing deep architectures are trained on

massive amounts of labeled data. In the absence

of labeled data for a certain task, domain adap-

tation often provides an attractive option given

that labeled data of similar nature but from a dif-

ferent domain (e.g. synthetic images) are avail-

able. Here, we propose a new approach to do-

main adaptation in deep architectures that can

be trained on large amount of labeled data from

the source domain and large amount of unlabeled

data from the target domain (no labeled target-

domain data is necessary).

As the training progresses, the approach pro-

motes the emergence of “deep” features that are

(i) discriminative for the main learning task on

the source domain and (ii) invariant with respect

to the shift between the domains. We show that

this adaptation behaviour can be achieved in al-

most any feed-forward model by augmenting it

with few standard layers and a simple new gra-

dient reversal layer. The resulting augmented

architecture can be trained using standard back-

propagation.

Overall, the approach can be implemented with

little effort using any of the deep-learning pack-

ages. The method performs very well in a se-

ries of image classification experiments, achiev-

ing adaptation effect in the presence of big do-

main shifts and outperforming previous state-of-

the-art on Office datasets.

1. Introduction
Deep feed-forward architectures have brought impressive

advances to the state-of-the-art across a wide variety of

machine-learning tasks and applications. At the moment,

however, these leaps in performance come only when a
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large amount of labeled training data is available. At the

same time, for problems lacking labeled data, it may be

still possible to obtain training sets that are big enough for

training large-scale deep models, but that suffer from the

shift in data distribution from the actual data encountered

at “test time”. One particularly important example is syn-

thetic or semi-synthetic training data, which may come in

abundance and be fully labeled, but which inevitably have

a distribution that is different from real data (Liebelt &

Schmid, 2010; Stark et al., 2010; Vázquez et al., 2014; Sun

& Saenko, 2014).

Learning a discriminative classifier or other predictor in

the presence of a shift between training and test distribu-

tions is known as domain adaptation (DA). A number of

approaches to domain adaptation has been suggested in the

context of shallow learning, e.g. in the situation when data

representation/features are given and fixed. The proposed

approaches then build the mappings between the source

(training-time) and the target (test-time) domains, so that

the classifier learned for the source domain can also be ap-

plied to the target domain, when composed with the learned

mapping between domains. The appeal of the domain

adaptation approaches is the ability to learn a mapping be-

tween domains in the situation when the target domain data

are either fully unlabeled (unsupervised domain annota-

tion) or have few labeled samples (semi-supervised domain

adaptation). Below, we focus on the harder unsupervised

case, although the proposed approach can be generalized to

the semi-supervised case rather straightforwardly.

Unlike most previous papers on domain adaptation that

worked with fixed feature representations, we focus on

combining domain adaptation and deep feature learning

within one training process (deep domain adaptation). Our

goal is to embed domain adaptation into the process of

learning representation, so that the final classification de-

cisions are made based on features that are both discrim-

inative and invariant to the change of domains, i.e. have

the same or very similar distributions in the source and the

target domains. In this way, the obtained feed-forward net-

work can be applicable to the target domain without being

hindered by the shift between the two domains.

We thus focus on learning features that combine (i)
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discriminativeness and (ii) domain-invariance. This is

achieved by jointly optimizing the underlying features as

well as two discriminative classifiers operating on these

features: (i) the label predictor that predicts class labels

and is used both during training and at test time and (ii) the

domain classifier that discriminates between the source and

the target domains during training. While the parameters of

the classifiers are optimized in order to minimize their error

on the training set, the parameters of the underlying deep

feature mapping are optimized in order to minimize the loss

of the label classifier and to maximize the loss of the domain

classifier. The latter encourages domain-invariant features

to emerge in the course of the optimization.

Crucially, we show that all three training processes can

be embedded into an appropriately composed deep feed-

forward network (Figure 1) that uses standard layers and

loss functions, and can be trained using standard backprop-

agation algorithms based on stochastic gradient descent or

its modifications (e.g. SGD with momentum). Our ap-

proach is generic as it can be used to add domain adaptation

to any existing feed-forward architecture that is trainable by

backpropagation. In practice, the only non-standard com-

ponent of the proposed architecture is a rather trivial gra-

dient reversal layer that leaves the input unchanged during

forward propagation and reverses the gradient by multiply-

ing it by a negative scalar during the backpropagation.

Below, we detail the proposed approach to domain adap-

tation in deep architectures, and present results on tradi-

tional deep learning image datasets (such as MNIST (Le-

Cun et al., 1998) and SVHN (Netzer et al., 2011)) as well

as on OFFICE benchmarks (Saenko et al., 2010), where

the proposed method considerably improves over previous

state-of-the-art accuracy.

2. Related work
A large number of domain adaptation methods have been

proposed over the recent years, and here we focus on the

most related ones. Multiple methods perform unsuper-

vised domain adaptation by matching the feature distri-

butions in the source and the target domains. Some ap-

proaches perform this by reweighing or selecting samples

from the source domain (Borgwardt et al., 2006; Huang

et al., 2006; Gong et al., 2013), while others seek an ex-

plicit feature space transformation that would map source

distribution into the target ones (Pan et al., 2011; Gopalan

et al., 2011; Baktashmotlagh et al., 2013). An important

aspect of the distribution matching approach is the way the

(dis)similarity between distributions is measured. Here,

one popular choice is matching the distribution means in

the kernel-reproducing Hilbert space (Borgwardt et al.,

2006; Huang et al., 2006), whereas (Gong et al., 2012; Fer-

nando et al., 2013) map the principal axes associated with

each of the distributions. Our approach also attempts to

match feature space distributions, however this is accom-

plished by modifying the feature representation itself rather

than by reweighing or geometric transformation. Also, our

method uses (implicitly) a rather different way to measure

the disparity between distributions based on their separa-

bility by a deep discriminatively-trained classifier.

Several approaches perform gradual transition from the

source to the target domain (Gopalan et al., 2011; Gong

et al., 2012) by a gradual change of the training distribu-

tion. Among these methods, (S. Chopra & Gopalan, 2013)

does this in a “deep” way by the layerwise training of a

sequence of deep autoencoders, while gradually replacing

source-domain samples with target-domain samples. This

improves over a similar approach of (Glorot et al., 2011)

that simply trains a single deep autoencoder for both do-

mains. In both approaches, the actual classifier/predictor

is learned in a separate step using the feature representa-

tion learned by autoencoder(s). In contrast to (Glorot et al.,

2011; S. Chopra & Gopalan, 2013), our approach performs

feature learning, domain adaptation and classifier learning

jointly, in a unified architecture, and using a single learning

algorithm (backpropagation). We therefore argue that our

approach is simpler (both conceptually and in terms of its

implementation). Our method also achieves considerably

better results on the popular OFFICE benchmark.

While the above approaches perform unsupervised domain

adaptation, there are approaches that perform supervised

domain adaptation by exploiting labeled data from the tar-

get domain. In the context of deep feed-forward archi-

tectures, such data can be used to “fine-tune” the net-

work trained on the source domain (Zeiler & Fergus, 2013;

Oquab et al., 2014; Babenko et al., 2014). Our approach

does not require labeled target-domain data. At the same

time, it can easily incorporate such data when it is avail-

able.

An idea related to ours is described in (Goodfellow et al.,

2014). While their goal is quite different (building gener-

ative deep networks that can synthesize samples), the way

they measure and minimize the discrepancy between the

distribution of the training data and the distribution of the

synthesized data is very similar to the way our architecture

measures and minimizes the discrepancy between feature

distributions for the two domains.

In the recent year, domain adaptation for feed-forward neu-

ral networks has attracted a lot of interest. Thus, a very

similar idea to ours has been developed in parallel and in-

dependently for shallow architecture (with a single hidden

layer) in (Ajakan et al., 2014). Their system is evaluated

on a natural language task (sentiment analysis). Further-

more, recent and concurrent reports by (Tzeng et al., 2014;

Long & Wang, 2015) also focus on domain adaptation in

feed-forward networks. Their set of techniques measures

and minimizes the distance between the data distribution

means across domains (potentially, after embedding distri-

butions into RKHS). The approach of (Tzeng et al., 2014)
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Figure 1. The proposed architecture includes a deep feature extractor (green) and a deep label predictor (blue), which together form

a standard feed-forward architecture. Unsupervised domain adaptation is achieved by adding a domain classifier (red) connected to the

feature extractor via a gradient reversal layer that multiplies the gradient by a certain negative constant during the backpropagation-

based training. Otherwise, the training proceeds in a standard way and minimizes the label prediction loss (for source examples) and

the domain classification loss (for all samples). Gradient reversal ensures that the feature distributions over the two domains are made

similar (as indistinguishable as possible for the domain classifier), thus resulting in the domain-invariant features.

and (Long & Wang, 2015) is thus different from our idea

of matching distribution by making them indistinguishable

for a discriminative classifier. Below, we compare our ap-

proach to (Tzeng et al., 2014; Long & Wang, 2015) on the

Office benchmark. Another approach to deep domain adap-

tation, which is arguably more different from ours, has been

developed in parallel in (Chen et al., 2015).

3. Deep Domain Adaptation
3.1. The model

We now detail the proposed model for the domain adap-

tation. We assume that the model works with input sam-

ples x ∈ X , where X is some input space and cer-

tain labels (output) y from the label space Y . Below,

we assume classification problems where Y is a finite set

(Y = {1, 2, . . . L}), however our approach is generic and

can handle any output label space that other deep feed-

forward models can handle. We further assume that there

exist two distributions S(x, y) and T (x, y) on X ⊗ Y ,

which will be referred to as the source distribution and

the target distribution (or the source domain and the tar-

get domain). Both distributions are assumed complex and

unknown, and furthermore similar but different (in other

words, S is “shifted” from T by some domain shift).

Our ultimate goal is to be able to predict labels y given

the input x for the target distribution. At training time,

we have an access to a large set of training samples

{x1,x2, . . . ,xN} from both the source and the target do-

mains distributed according to the marginal distributions

S(x) and T (x). We denote with di the binary variable (do-

main label) for the i-th example, which indicates whether

xi come from the source distribution (xi∼S(x) if di=0) or

from the target distribution (xi∼T (x) if di=1). For the ex-

amples from the source distribution (di=0) the correspond-

ing labels yi ∈ Y are known at training time. For the ex-

amples from the target domains, we do not know the labels

at training time, and we want to predict such labels at test

time.

We now define a deep feed-forward architecture that for

each input x predicts its label y ∈ Y and its domain label

d ∈ {0, 1}. We decompose such mapping into three parts.

We assume that the input x is first mapped by a mapping

Gf (a feature extractor) to a D-dimensional feature vector

f ∈ RD. The feature mapping may also include several

feed-forward layers and we denote the vector of parame-

ters of all layers in this mapping as θf , i.e. f = Gf (x; θf ).
Then, the feature vector f is mapped by a mapping Gy (la-

bel predictor) to the label y, and we denote the parameters

of this mapping with θy . Finally, the same feature vector f

is mapped to the domain label d by a mapping Gd (domain

classifier) with the parameters θd (Figure 1).

During the learning stage, we aim to minimize the label

prediction loss on the annotated part (i.e. the source part)

of the training set, and the parameters of both the feature

extractor and the label predictor are thus optimized in or-

der to minimize the empirical loss for the source domain

samples. This ensures the discriminativeness of the fea-

tures f and the overall good prediction performance of the

combination of the feature extractor and the label predictor

on the source domain.

At the same time, we want to make the features f

domain-invariant. That is, we want to make the dis-

tributions S(f) = {Gf (x; θf ) |x∼S(x)} and T (f) =
{Gf (x; θf ) |x∼T (x)} to be similar. Under the covariate

shift assumption, this would make the label prediction ac-

curacy on the target domain to be the same as on the source

domain (Shimodaira, 2000). Measuring the dissimilarity

of the distributions S(f) and T (f) is however non-trivial,

given that f is high-dimensional, and that the distributions
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themselves are constantly changing as learning progresses.

One way to estimate the dissimilarity is to look at the loss

of the domain classifier Gd, provided that the parameters

θd of the domain classifier have been trained to discrim-

inate between the two feature distributions in an optimal

way.

This observation leads to our idea. At training time, in or-

der to obtain domain-invariant features, we seek the param-

eters θf of the feature mapping that maximize the loss of

the domain classifier (by making the two feature distribu-

tions as similar as possible), while simultaneously seeking

the parameters θd of the domain classifier that minimize the

loss of the domain classifier. In addition, we seek to mini-

mize the loss of the label predictor.

More formally, we consider the functional:

E(θf , θy, θd) =
∑

i=1..N
di=0

Ly

(

Gy(Gf (xi; θf ); θy), yi
)

−

λ
∑

i=1..N

Ld

(

Gd(Gf (xi; θf ); θd), yi
)

=

=
∑

i=1..N
di=0

Li
y(θf , θy)− λ

∑

i=1..N

Li
d(θf , θd) (1)

Here, Ly(·, ·) is the loss for label prediction (e.g. multino-

mial), Ld(·, ·) is the loss for the domain classification (e.g.

logistic), while Li
y and Li

d denote the corresponding loss

functions evaluated at the i-th training example.

Based on our idea, we are seeking the parameters θ̂f , θ̂y, θ̂d
that deliver a saddle point of the functional (1):

(θ̂f , θ̂y) = arg min
θf ,θy

E(θf , θy, θ̂d) (2)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd) . (3)

At the saddle point, the parameters θd of the domain classi-

fier θd minimize the domain classification loss (since it en-

ters into (1) with the minus sign) while the parameters θy of

the label predictor minimize the label prediction loss. The

feature mapping parameters θf minimize the label predic-

tion loss (i.e. the features are discriminative), while maxi-

mizing the domain classification loss (i.e. the features are

domain-invariant). The parameter λ controls the trade-off

between the two objectives that shape the features during

learning.

Below, we demonstrate that standard stochastic gradient

solvers (SGD) can be adapted for the search of the saddle

point (2)-(3).

3.2. Optimization with backpropagation

A saddle point (2)-(3) can be found as a stationary point of

the following stochastic updates:

θf ←− θf − µ

(

∂Li
y

∂θf
− λ

∂Li
d

∂θf

)

(4)

θy ←− θy − µ
∂Li

y

∂θy
(5)

θd ←− θd − µ
∂Li

d

∂θd
(6)

where µ is the learning rate (which can vary over time).

The updates (4)-(6) are very similar to stochastic gradient

descent (SGD) updates for a feed-forward deep model that

comprises feature extractor fed into the label predictor and

into the domain classifier. The difference is the −λ factor

in (4) (the difference is important, as without such factor,

stochastic gradient descent would try to make features dis-

similar across domains in order to minimize the domain

classification loss). Although direct implementation of (4)-

(6) as SGD is not possible, it is highly desirable to reduce

the updates (4)-(6) to some form of SGD, since SGD (and

its variants) is the main learning algorithm implemented in

most packages for deep learning.

Fortunately, such reduction can be accomplished by intro-

ducing a special gradient reversal layer (GRL) defined as

follows. The gradient reversal layer has no parameters as-

sociated with it (apart from the meta-parameter λ, which

is not updated by backpropagation). During the forward

propagation, GRL acts as an identity transform. During

the backpropagation though, GRL takes the gradient from

the subsequent level, multiplies it by −λ and passes it to

the preceding layer. Implementing such layer using exist-

ing object-oriented packages for deep learning is simple, as

defining procedures for forwardprop (identity transform),

backprop (multiplying by a constant), and parameter up-

date (nothing) is trivial.

The GRL as defined above is inserted between the feature

extractor and the domain classifier, resulting in the archi-

tecture depicted in Figure 1. As the backpropagation pro-

cess passes through the GRL, the partial derivatives of the

loss that is downstream the GRL (i.e. Ld) w.r.t. the layer

parameters that are upstream the GRL (i.e. θf ) get multi-

plied by −λ, i.e. ∂Ld

∂θf
is effectively replaced with −λ∂Ld

∂θf
.

Therefore, running SGD in the resulting model implements

the updates (4)-(6) and converges to a saddle point of (1).

Mathematically, we can formally treat the gradient reversal

layer as a “pseudo-function” Rλ(x) defined by two (incom-

patible) equations describing its forward- and backpropa-

gation behaviour:

Rλ(x) = x (7)

dRλ

dx
= −λI (8)

where I is an identity matrix. We can then define the

objective “pseudo-function” of (θf , θy, θd) that is being
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optimized by the stochastic gradient descent within our

method:

Ẽ(θf , θy, θd) =
∑

i=1..N
di=0

Ly

(

Gy(Gf (xi; θf ); θy), yi
)

+

∑

i=1..N

Ld

(

Gd(Rλ(Gf (xi; θf )); θd), yi
)

(9)

Running updates (4)-(6) can then be implemented as do-

ing SGD for (9) and leads to the emergence of features

that are domain-invariant and discriminative at the same

time. After the learning, the label predictor y(x) =
Gy(Gf (x; θf ); θy) can be used to predict labels for sam-

ples from the target domain (as well as from the source

domain).

The simple learning procedure outlined above can be re-

derived/generalized along the lines suggested in (Goodfel-

low et al., 2014) (see the supplementary material (Ganin &

Lempitsky, 2015)).

3.3. Relation toH∆H-distance

In this section we give a brief analysis of our method in

terms ofH∆H-distance (Ben-David et al., 2010; Cortes &

Mohri, 2011) which is widely used in the theory of non-

conservative domain adaptation. Formally,

dH∆H(S, T ) = 2 sup
h1,h2∈H

|Pf∼S [h1(f) 6= h2(f)]−

−Pf∼T [h1(f) 6= h2(f)]| (10)

defines a discrepancy distance between two distributions S
and T w.r.t. a hypothesis set H. Using this notion one can

obtain a probabilistic bound (Ben-David et al., 2010) on the

performance εT (h) of some classifier h from T evaluated

on the target domain given its performance εS(h) on the

source domain:

εT (h) ≤ εS(h) +
1

2
dH∆H(S, T ) + C , (11)

where S and T are source and target distributions respec-

tively, and C does not depend on particular h.

Consider fixed S and T over the representation space pro-

duced by the feature extractor Gf and a family of label

predictorsHp. We assume that the family of domain classi-

fiersHd is rich enough to contain the symmetric difference

hypothesis set ofHp:

Hp∆Hp = {h |h = h1 ⊕ h2 , h1, h2 ∈ Hp} . (12)

It is not an unrealistic assumption as we have a freedom to

pick Hd whichever we want. For example, we can set the

architecture of the domain discriminator to be the layer-

by-layer concatenation of two replicas of the label predic-

tor followed by a two layer non-linear perceptron aimed to

learn the XOR-function. Given the assumption holds, one

MNIST SYN NUM SVHN SYN SIGNS

MNIST-M SVHN MNIST GTSRB

Figure 2. Examples of domain pairs (top – source domain, bot-

tom – target domain) used in the small image experiments. See

Section 4.1 for details.

METHOD
SOURCE AMAZON DSLR WEBCAM

TARGET WEBCAM WEBCAM DSLR

GFK(PLS, PCA) (GONG ET AL., 2012) .214 .691 .650

SA* (FERNANDO ET AL., 2013) .450 .648 .699

DLID (S. CHOPRA & GOPALAN, 2013) .519 .782 .899

DDC (TZENG ET AL., 2014) .605 .948 .985

DAN (LONG & WANG, 2015) .645 .952 .986

SOURCE ONLY .642 .961 .978

PROPOSED APPROACH .730 .964 .992

Table 2. Accuracy evaluation of different DA approaches on the

standard OFFICE (Saenko et al., 2010) dataset. All methods (ex-

cept SA) are evaluated in the “fully-transductive” protocol (some

results are reproduced from (Long & Wang, 2015)). Our method

(last row) outperforms competitors setting the new state-of-the-

art.

can easily show that training the Gd is closely related to

the estimation of dHp∆Hp
(S, T ). Indeed,

dHp∆Hp
(S, T ) =

= 2 sup
h∈Hp∆Hp

|Pf∼S [h(f) = 1]− Pf∼T [h(f) = 1]| ≤

≤ 2 sup
h∈Hd

|Pf∼S [h(f) = 1]− Pf∼T [h(f) = 1]| =

= 2 sup
h∈Hd

|1− α(h)| = 2 sup
h∈Hd

[α(h)− 1]

(13)

where α(h) = Pf∼S [h(f) = 0] + Pf∼T [h(f) = 1] is max-

imized by the optimal Gd.

Thus, optimal discriminator gives the upper bound for

dHp∆Hp
(S, T ). At the same time, backpropagation of

the reversed gradient changes the representation space

so that α(Gd) becomes smaller effectively reducing

dHp∆Hp
(S, T ) and leading to the better approximation of

εT (Gy) by εS(Gy).

4. Experiments
We perform extensive evaluation of the proposed approach

on a number of popular image datasets and their modifi-

cations. These include large-scale datasets of small im-
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METHOD
SOURCE MNIST SYN NUMBERS SVHN SYN SIGNS

TARGET MNIST-M SVHN MNIST GTSRB

SOURCE ONLY .5225 .8674 .5490 .7900

SA (FERNANDO ET AL., 2013) .5690 (4.1%) .8644 (−5.5%) .5932 (9.9%) .8165 (12.7%)

PROPOSED APPROACH .7666 (52.9%) .9109 (79.7%) .7385 (42.6%) .8865 (46.4%)

TRAIN ON TARGET .9596 .9220 .9942 .9980

Table 1. Classification accuracies for digit image classifications for different source and target domains. MNIST-M corresponds to

difference-blended digits over non-uniform background. The first row corresponds to the lower performance bound (i.e. if no adaptation

is performed). The last row corresponds to training on the target domain data with known class labels (upper bound on the DA perfor-

mance). For each of the two DA methods (ours and (Fernando et al., 2013)) we show how much of the gap between the lower and the

upper bounds was covered (in brackets). For all five cases, our approach outperforms (Fernando et al., 2013) considerably, and covers a

big portion of the gap.

ages popular with deep learning methods, and the OFFICE

datasets (Saenko et al., 2010), which are a de facto standard

for domain adaptation in computer vision, but have much

fewer images.

Baselines. For the bulk of experiments the following base-

lines are evaluated. The source-only model is trained with-

out consideration for target-domain data (no domain clas-

sifier branch included into the network). The train-on-

target model is trained on the target domain with class

labels revealed. This model serves as an upper bound on

DA methods, assuming that target data are abundant and

the shift between the domains is considerable.

In addition, we compare our approach against the recently

proposed unsupervised DA method based on subspace

alignment (SA) (Fernando et al., 2013), which is simple

to setup and test on new datasets, but has also been shown

to perform very well in experimental comparisons with

other “shallow” DA methods. To boost the performance

of this baseline, we pick its most important free parame-

ter (the number of principal components) from the range

{2, . . . , 60}, so that the test performance on the target do-

main is maximized. To apply SA in our setting, we train

a source-only model and then consider the activations of

the last hidden layer in the label predictor (before the final

linear classifier) as descriptors/features, and learn the map-

ping between the source and the target domains (Fernando

et al., 2013).

Since the SA baseline requires to train a new classifier after

adapting the features, and in order to put all the compared

settings on an equal footing, we retrain the last layer of

the label predictor using a standard linear SVM (Fan et al.,

2008) for all four considered methods (including ours; the

performance on the target domain remains approximately

the same after the retraining).

For the OFFICE dataset (Saenko et al., 2010), we directly

compare the performance of our full network (feature ex-

tractor and label predictor) against recent DA approaches

using previously published results.

CNN architectures. In general, we compose feature ex-

tractor from two or three convolutional layers, picking their

exact configurations from previous works. We give the ex-

act architectures in the supplementary material (Ganin &

Lempitsky, 2015).

For the domain adaptator we stick to the three fully con-

nected layers (x → 1024 → 1024 → 2), except for

MNIST where we used a simpler (x → 100 → 2) ar-

chitecture to speed up the experiments.

For loss functions, we set Ly and Ld to be the logistic re-

gression loss and the binomial cross-entropy respectively.

CNN training procedure. The model is trained on 128-

sized batches. Images are preprocessed by the mean sub-

traction. A half of each batch is populated by the sam-

ples from the source domain (with known labels), the rest

is comprised of the target domain (with unknown labels).

In order to suppress noisy signal from the domain classifier

at the early stages of the training procedure instead of fixing

the adaptation factor λ, we gradually change it from 0 to 1
using the following schedule:

λp =
2

1 + exp(−γ · p)
− 1, (14)

where γ was set to 10 in all experiments (the schedule was

not optimized/tweaked). Further details on the CNN train-

ing can be found in the supplementary material (Ganin &

Lempitsky, 2015).

Visualizations. We use t-SNE (van der Maaten, 2013) pro-

jection to visualize feature distributions at different points

of the network, while color-coding the domains (Figure 3).

We observe strong correspondence between the success of

the adaptation in terms of the classification accuracy for the

target domain, and the overlap between the domain distri-

butions in such visualizations.

Choosing meta-parameters. Good unsupervised DA
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methods should provide ways to set meta-parameters (such

as λ, the learning rate, the momentum rate, the network

architecture for our method) in an unsupervised way, i.e.

without referring to labeled data in the target domain. In

our method, one can assess the performance of the whole

system (and the effect of changing hyper-parameters) by

observing the test error on the source domain and the do-

main classifier error. In general, we observed a good cor-

respondence between the success of adaptation and these

errors (adaptation is more successful when the source do-

main test error is low, while the domain classifier error is

high). In addition, the layer, where the the domain discrim-

inator is attached can be picked by computing difference

between means as suggested in (Tzeng et al., 2014).

4.1. Results

We now discuss the experimental settings and the results.

In each case, we train on the source dataset and test on

a different target domain dataset, with considerable shifts

between domains (see Figure 2).When MNIST and SVHN

datasets are used as target, standard training-test splits are

considered, and all training images are used for unsuper-

vised adaptation. The results are summarized in Table 1

and Table 2.

MNIST → MNIST-M. Our first experiment deals with

the MNIST dataset (LeCun et al., 1998) (source). In or-

der to obtain the target domain (MNIST-M) we blend dig-

its from the original set over patches randomly extracted

from color photos from BSDS500 (Arbelaez et al., 2011).

This operation is formally defined for two images I1, I2 as

Ioutijk = |I1ijk − I2ijk|, where i, j are the coordinates of a

pixel and k is a channel index. In other words, an output

sample is produced by taking a patch from a photo and in-

verting its pixels at positions corresponding to the pixels of

a digit. For a human the classification task becomes only

slightly harder compared to the original dataset (the digits

are still clearly distinguishable) whereas for a CNN trained

on MNIST this domain is quite distinct, as the background

and the strokes are no longer constant. Consequently, the

source-only model performs poorly. Our approach suc-

ceeded at aligning feature distributions (Figure 3), which

led to successful adaptation results (considering that the

adaptation is unsupervised). At the same time, the im-

provement over source-only model achieved by subspace

alignment (SA) (Fernando et al., 2013) is quite modest,

thus highlighting the difficulty of the adaptation task.

Synthetic numbers→ SVHN. To address a common sce-

nario of training on synthetic data and testing on real data,

we use Street-View House Number dataset SVHN (Netzer

et al., 2011) as the target domain and synthetic digits as the

source. The latter (SYN NUMBERS) consists of≈ 500,000
images generated by ourselves from WindowsTM fonts by

varying the text (that includes different one-, two-, and

three-digit numbers), positioning, orientation, background

and stroke colors, and the amount of blur. The degrees of

variation were chosen manually to simulate SVHN, how-

ever the two datasets are still rather distinct, the biggest

difference being the structured clutter in the background of

SVHN images.

The proposed backpropagation-based technique works well

covering almost 80% of the gap between training with

source data only and training on target domain data with

known target labels. In contrast, SA (Fernando et al., 2013)

results in a slight classification accuracy drop (probably

due to the information loss during the dimensionality re-

duction), thus indicating that the adaptation task is even

more challenging than in the case of the MNIST experi-

ment.

MNIST↔ SVHN. In this experiment, we further increase

the gap between distributions, and test on MNIST and

SVHN, which are significantly different in appearance.

Training on SVHN even without adaptation is challeng-

ing — classification error stays high during the first 150

epochs. In order to avoid ending up in a poor local min-

imum we, therefore, do not use learning rate annealing

here. Obviously, the two directions (MNIST → SVHN

and SVHN → MNIST) are not equally difficult. As

SVHN is more diverse, a model trained on SVHN is ex-

pected to be more generic and to perform reasonably on

the MNIST dataset. This, indeed, turns out to be the case

and is supported by the appearance of the feature distribu-

tions. We observe a quite strong separation between the

domains when we feed them into the CNN trained solely

on MNIST, whereas for the SVHN-trained network the

features are much more intermixed. This difference prob-

ably explains why our method succeeded in improving the

performance by adaptation in the SVHN → MNIST sce-

nario (see Table 1) but not in the opposite direction (SA is

not able to perform adaptation in this case either). Unsu-

pervised adaptation from MNIST to SVHN gives a failure

example for our approach (we are unaware of any unsuper-

vised DA methods capable of performing such adaptation).

Synthetic Signs→GTSRB. Overall, this setting is similar

to the SYN NUMBERS → SVHN experiment, except the

distribution of the features is more complex due to the sig-

nificantly larger number of classes (43 instead of 10). For

the source domain we obtained 100,000 synthetic images

(which we call SYN SIGNS) simulating various imaging

conditions. In the target domain, we use 31,367 random

training samples for unsupervised adaptation and the rest

for evaluation. Once again, our method achieves a sensi-

ble increase in performance proving its suitability for the

synthetic-to-real data adaptation.

As an additional experiment, we also evaluate the proposed

algorithm for semi-supervised domain adaptation. Here,

we reveal 430 labeled examples (10 samples per class) and
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MNIST → MNIST-M: top feature extractor layer

(a) Non-adapted (b) Adapted

SYN NUMBERS → SVHN: last hidden layer of the label predictor

(a) Non-adapted (b) Adapted

Figure 3. The effect of adaptation on the distribution of the extracted features (best viewed in color). The figure shows t-SNE (van der

Maaten, 2013) visualizations of the CNN’s activations (a) in case when no adaptation was performed and (b) in case when our adaptation

procedure was incorporated into training. Blue points correspond to the source domain examples, while red ones correspond to the target

domain. In all cases, the adaptation in our method makes the two distributions of features much closer.
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Figure 4. Results for the traffic signs classification in the semi-

supervised setting. Syn and Real denote available labeled data

(100,000 synthetic and 430 real images respectively); Adapted

means that ≈ 31,000 unlabeled target domain images were used

for adaptation. The best performance is achieved by employing

both the labeled samples and the large unlabeled corpus in the

target domain.

add them to the training set for the label predictor. Fig-

ure 4 shows the change of the validation error through-

out the training. While the graph clearly suggests that our

method can be beneficial in the semi-supervised setting,

thorough verification of semi-supervised setting is left for

future work.

Office dataset. We finally evaluate our method on OF-

FICE dataset, which is a collection of three distinct do-

mains: AMAZON, DSLR, and WEBCAM. Unlike previ-

ously discussed datasets, OFFICE is rather small-scale with

only 2817 labeled images spread across 31 different cate-

gories in the largest domain. The amount of available data

is crucial for a successful training of a deep model, hence

we opted for the fine-tuning of the CNN pre-trained on the

ImageNet (AlexNet from the Caffe package (Jia et al.,

2014)) as it is done in some recent DA works (Donahue

et al., 2014; Tzeng et al., 2014; Hoffman et al., 2013; Long

& Wang, 2015). We make our approach more compara-

ble with (Tzeng et al., 2014) by using exactly the same

network architecture replacing domain mean-based regu-

larization with the domain classifier.

Following previous works, we assess the performance of

our method across three transfer tasks most commonly

used for evaluation. Our training protocol is adopted from

(Gong et al., 2013; S. Chopra & Gopalan, 2013; Long &

Wang, 2015) as during adaptation we use all available la-

beled source examples and unlabeled target examples (the

premise of our method is the abundance of unlabeled data

in the target domain). Also, all source domain is used

for training. Under this “fully-transductive” setting, our

method is able to improve previously-reported state-of-the-

art accuracy for unsupervised adaptation very considerably

(Table 2), especially in the most challenging AMAZON →
WEBCAM scenario (the two domains with the largest do-

main shift).

Interestingly, in all three experiments we observe a slight

over-fitting as training progresses, however, it doesn’t ruin

the validation accuracy. Moreover, switching off the do-

main classifier branch makes this effect far more apparent,

from which we conclude that our technique serves as a reg-

ularizer.

5. Discussion
We have proposed a new approach to unsupervised do-

main adaptation of deep feed-forward architectures, which

allows large-scale training based on large amount of an-

notated data in the source domain and large amount of

unannotated data in the target domain. Similarly to many

previous shallow and deep DA techniques, the adaptation

is achieved through aligning the distributions of features

across the two domains. However, unlike previous ap-

proaches, the alignment is accomplished through standard

backpropagation training. The approach is therefore rather

scalable, and can be implemented using any deep learn-

ing package. To this end we release the source code for

the Gradient Reversal layer along with the usage examples

as an extension to Caffe (Jia et al., 2014) (see (Ganin &

Lempitsky, 2015)). Further evaluation on larger-scale tasks

and in semi-supervised settings constitutes future work.
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