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Abstract

Domain-invariant representations are key to addressing
the domain shift problem where the training and test exam-
ples follow different distributions. Existing techniques that
have attempted to match the distributions of the source and
target domains typically compare these distributions in the
original feature space. This space, however, may not be di-
rectly suitable for such a comparison, since some of the fea-
tures may have been distorted by the domain shift, or may
be domain specific. In this paper, we introduce a Domain
Invariant Projection approach: An unsupervised domain
adaptation method that overcomes this issue by extracting
the information that is invariant across the source and tar-
get domains. More specifically, we learn a projection of the
data to a low-dimensional latent space where the distance
between the empirical distributions of the source and target
examples is minimized. We demonstrate the effectiveness of
our approach on the task of visual object recognition and
show that it outperforms state-of-the-art methods on a stan-
dard domain adaptation benchmark dataset.

1. Introduction
Domain shift is a fundamental problem in visual recog-

nition tasks as evidenced by the recent surge of interest

in domain adaptation [22, 15, 16]. The problem typically

arises when the training (source) and test (target) exam-

ples follow different distributions. This is a common sce-

nario in modern visual recognition tasks, especially if im-

ages are acquired with different cameras, or in very different

conditions (e.g., commercial website versus home environ-

ment, images taken under different illuminations). Failing

to model the distribution shift in the hope that the image

features will be robust enough often yields poor recognition

accuracy [26, 16, 15, 14]. On the other hand, labeling suf-

ficiently many images from the target domain to train a dis-

criminative classifier specific to this domain is prohibitively

time-consuming and impractical in realistic scenarios.
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To relate the source and target domains, several state-of-

the-art methods have proposed to create intermediate repre-

sentations [15, 16]. However, these representations do not

explicitly try to match the probability distributions of the

source and target data, which may make them sub-optimal

for classification. Sample selection, or re-weighting, ap-

proaches [14, 21] explicitly attempt to match the source and

target distributions by finding the most appropriate source

examples for the target data. However, they fail to account

for the fact that the image features themselves may have

been distorted by the domain shift, and that some of the

image features may be specific to one domain and thus ir-

relevant for classification in the other one.

In light of the above discussion, we propose to tackle the

problem of domain shift by extracting the information that

is invariant across the source and target domains. To this

end, we introduce a Domain Invariant Projection (DIP) ap-

proach, which aims to learn a low-dimensional latent space

where the source and target distributions are similar. Learn-

ing such a projection allows us to account for the potential

distortions induced by the domain shift, as well as for the

presence of domain-specific image features. Furthermore,

since the distributions of the source and target data in the

latent space are similar, we expect a classifier trained on the

source examples to perform well on the target domain.

In this work, we make use of the Maximum Mean Dis-

crepancy (MMD) [17] to measure the dissimilarity between

the empirical distributions of the source and target exam-

ples. Learning the latent space that minimizes the MMD

between the source and target domains can then be formu-

lated as an optimization problem on a Grassmann manifold.

This lets us utilize Grassmannian geometry to effectively

obtain our domain invariant projection. Although designed

to be fully unsupervised, our formalism naturally allows us

to exploit label information from either domain during the

training process. While not strictly necessary, this informa-

tion can help boosting classification accuracy even further.

In short, we introduce the idea of finding a domain in-

variant representation of the data by matching the source

and target distributions in a low-dimensional latent space,

and propose an effective algorithm to learn our Domain In-
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variant Projection. We demonstrate the benefits of our ap-

proach on the task of visual object recognition and show

that it outperforms state-of-the-art methods on the standard

domain adaptation benchmark dataset [26].

2. Related Work
Existing domain adaptation methods can be divided into

two categories: Semi-supervised approaches [12, 3, 26] that

assume that a small number of labeled examples from the

target domain are available during training, and unsuper-

vised approaches [15, 14, 16, 21] that do not require any

labels from the target domain.

In the former category, modifications of Support Vector

Machines (SVM) [12, 3] and other statistical classifiers [10]

have been proposed to exploit the availability of labeled and

unlabeled data from the target domain. Co-regularization

of similar classifiers was also introduced to utilize unla-

beled target data during training [9]. For visual recognition,

metric learning [26] and transformation learning [23] were

shown to be effective at making use of the labeled target ex-

amples. Furthermore, semi-supervised methods have also

been proposed to tackle the case where multiple source do-

mains are available [11, 20]. While semi-supervised meth-

ods are often effective, in many applications, labeled target

examples are not available and cannot easily be acquired.

To address this issue, unsupervised domain adaptation

approaches that rely on purely unsupervised target data have

been proposed [28, 7, 8]. In particular, two types of meth-

ods have proven quite successful at the task of visual ob-

ject recognition: Subspace-based approaches and sample

re-weighting approaches.

Subspace-based approaches [4, 16, 15] model the do-

main shift by representing the data with multiple subspaces.

In particular, in [4], coupled subspaces are learned using

Canonical Correlation Analysis (CCA). Rather than limit-

ing the representation to one source and one target sub-

spaces, several techniques exploit intermediate subspaces,

which link the source data to the target data. This idea

was originally introduced in [16], where the subspaces were

modeled as points on a Grassmann manifold, and interme-

diate subspaces were obtained by sampling points along the

geodesic between the source and target subspaces. This

method was extended in [15], which showed that all inter-

mediate subspaces could be taken into account by integrat-

ing along the geodesic. While this formulation nicely char-

acterizes the change between the source and target data, it

is not clear why all the subspaces along this path should

yield meaningful representations. More importantly, these

subspace-based methods do not explicitly exploit the statis-

tical properties of the observed data.

In contrast, sample re-weighting, or selection, ap-

proaches, have focused more directly on comparing the

distributions of the source and target data. In particular,

in [21, 18], the source examples are re-weighted so as to

minimize the MMD between the source and target dis-

tributions. More recently, an approach to selecting land-

marks among the source examples based on MMD was in-

troduced [14]. This sample selection approach was shown

to be very effective, especially for the task of visual object

recognition, to the point that it outperforms state-of-the-art

semi-supervised approaches. Despite their success, it is im-

portant to note that sample re-weighting and selection meth-

ods compare the source and target distributions directly in

the original feature space. This space, however, may not

be appropriate for this task, since the image features may

have been distorted by the domain shift, and since some of

the features may only be relevant to one specific domain.

In contrast, in this work, we compare the source and tar-

get distributions in a low-dimensional latent space where

these effects are removed, or reduced. This, in turn, yields

a representation that significantly outperforms the recent

landmark-based approach [14], as well as other state-of-the-

art methods on the task of object recognition.

Transfer Component Analysis (TCA) [24] may be clos-

est in spirit to our work. However, although motivated by

MMD, in TCA, the distance between the sample means is

measured in a lower-dimensional space rather than in Re-

producing Kernel Hilbert Space (RKHS), which somewhat

contradicts the intuition behind the use of kernels. Here,

we follow the more intuitive idea of comparing the distribu-

tions of the transformed data using MMD. This, we believe

and as suggested by our experiments, makes better use of

the expressive power of the kernel in MMD.

3. Background
In this section, we review some concepts that will be

used in our algorithm. In particular, we briefly discuss the

idea of Maximum Mean Discrepancy and introduce some

notions of Grassmann manifolds.

3.1. Maximum Mean Discrepancy

In this work, we are interested in measuring the dissimi-

larity between two probability distributions s and t. Rather

than restricting these distributions to take a specific para-

metric form, we opt for a non-parametric approach to com-

pare s and t. Non-parametric representations are very well-

suited to visual data, which typically exhibits complex prob-

ability distributions in high-dimensional spaces.

We employ the maximum mean discrepancy [17] be-

tween two distributions s and t to measure their dissimi-

larity. The MMD is an effective non-parametric criterion

that compares the distributions of two sets of data by map-

ping the data to RKHS. Given two distributions s and t, the

MMD between s and t is defined as

D′(F, s, t) = sup
f∈F

(Ex̃s∼s[f(x̃s)]− Ex̃t∼t[f(x̃t)]) ,
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where Ex̃∼s[·] is the expectation under distribution s. By

defining F as the set of functions in the unit ball in a univer-

sal RKHS H, it was shown that D′(F, s, t) = 0 if and only

if s = t [17].

Let X̃s = {x̃1
s, · · · , x̃n

s } and X̃t = {x̃1
t , · · · , x̃m

t } be

two sets of observations drawn i.i.d. from s and t, respec-

tively. An empirical estimate of the MMD can be computed

as

D(X̃s, X̃t) =

∥∥∥∥∥ 1
n

n∑
i=1

φ(x̃i
s)− 1

m

m∑
j=1

φ(x̃j
t )

∥∥∥∥∥
H

=

(
n∑

i,j=1

k(x̃i
s, x̃

j
s)

n2
+

m∑
i,j=1

k(x̃i
t, x̃

j
t )

m2
− 2

n,m∑
i,j=1

k(x̃i
s, x̃

j
t )

nm

) 1
2

,

where φ(·) is the mapping to the RKHS H, and k(·, ·) =
〈φ(·), φ(·)〉 is the universal kernel associated with this map-

ping. In short, the MMD between the distributions of two

sets of observations is equivalent to the distance between

the sample means in a high-dimensional feature space.

3.2. Grassmann Manifolds

In our formulation, we model the projection of the source

and target data to a low-dimensional space as a point W on

a Grassmann manifold G(d,D). The Grassmann manifold

G(d,D) consists of the set of all linear d-dimensional sub-

spaces of RD. In particular, this lets us handle constraints

of the form W TW = Id. Learning the projection then

involves non-linear optimization on the Grassmann mani-

fold, which requires some notions of differential geometry

reviewed below.

In differential geometry, the shortest path between two

points on a manifold is a curve called a geodesic. The tan-
gent space at a point on a manifold is a vector space that

consists of the tangent vectors of all possible curves pass-

ing through this point. Parallel transport is the action of

transferring a tangent vector between two points on a man-

ifold. Unlike in flat spaces, this cannot be achieved by sim-

ple translation, but requires subtracting a normal component

at the end point [13].

On a Grassmann manifold, the above-mentioned opera-

tions have efficient numerical forms and can thus be used

to perform optimization on the manifold. In particular, we

make use of a conjugate gradient (CG) algorithm on the

Grassmann manifold [13]. CG techniques are popular non-

linear optimization methods with fast convergence rates.

These methods iteratively optimize the objective function

in linearly independent directions called conjugate direc-

tions [25]. CG on a Grassmann manifold can be summa-

rized by the following steps:

(i) Compute the gradient ∇fW of the objective function

f on the manifold at the current estimate W as

∇fW = ∂fW −WW T∂fW , (1)

with ∂fW the matrix of usual partial derivatives.

(ii) Determine the search direction H by parallel trans-

porting the previous search direction and combining

it with ∇fW .

(iii) Perform a line search along the geodesic at W in the

direction H .

These steps are repeated until convergence to a local mini-

mum, or until a maximum number of iterations is reached.

4. Domain Invariant Projection (DIP)
In this section, we introduce our approach to unsuper-

vised domain adaptation. We first derive the optimization

problem at the heart of our approach, and then discuss the

details of our Grassmann manifold optimization method.

4.1. Problem Formulation

Our goal is to find a representation of the data that is

invariant across different domains. Intuitively, with such

a representation, a classifier trained on the source domain

should perform equally well on the target domain. To

achieve invariance, we search for a projection to a low-

dimensional subspace where the source and target distribu-

tions are similar, or, in other words, a projection that mini-

mizes a distance measure between the two distributions.
More specifically, let Xs =

[
x1
s, · · · ,xn

s

]
be the D × n

matrix containing n samples from the source domain and
Xt =

[
x1
t , · · · ,xm

t

]
be the D × m matrix containing m

samples from the target domain. We search for a D×d pro-
jection matrix W , such that the distributions of the source
and target samples in the resulting d-dimensional subspace
are as similar as possible. In particular, we measure the
distance between these two distribution with the MMD dis-
cussed in Section 3.1. This distance can be expressed as

D(W TXs,W
TXt)=

∥∥∥∥∥
1

n

n∑

i=1

φ(W Txi
s)− 1

m

m∑

j=1

φ(W Txj
t)

∥∥∥∥∥
H

,

(2)

with φ(·) the mapping from R
D to the high-dimensional

RKHS H. Note that, here, W appears inside φ(·) in or-

der to measure the MMD of the projected samples. This

is in contrast with sample re-weighting, or selection meth-

ods [21, 18, 14, 24] that place weights outside φ(·). There-

fore, these methods ultimately still compare the distribu-

tions in the original image feature space and may suffer

from the presence of domain-specific features.

Using the MMD, learning W can be expressed as the

optimization problem

W ∗ = argmin
W

D2(W TXs,W
TXt)

s.t. W TW = Id , (3)
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where the constraints enforce W to be orthogonal. Such

constraints prevent our model from wrongly matching the

two distributions by distorting the data, and make it very

unlikely that the resulting subspace only contains the noise

of both domains. Orthogonality constraints have proven ef-

fective in many subspace methods, such as PCA or CCA.

As shown in Section 3.1, the MMD in the RKHS H can

be expressed in terms of a kernel function k(·, ·). In partic-

ular here, we exploit the Gaussian kernel function, which is

known to be universal [27]. This lets us rewrite our objec-

tive function as

D2(W TXs,W
TXt) = (4)

1

n2

n∑
i,j=1

exp

(
− (xi

s − xj
s)

TWW T (xi
s − xj

s)

σ

)

+
1

m2

m∑
i,j=1

exp

(
− (xi

t − xj
t )

TWW T (xi
t − xj

t )

σ

)

− 2

mn

n,m∑
i,j=1

exp

(
− (xi

s − xj
t )

TWW T (xi
s − xj

t )

σ

)
.

Since the Gaussian kernel satisfies the universality con-

dition of the MMD, it is a natural choice for our approach.

However, it was shown that, in practice, choices of non-

universal kernels may be more appropriate to measure the

MMD [6]. In particular, the more general class of character-

istic kernels can also be employed. This class incorporates

all strictly positive definite kernels, such as the well-known

polynomial kernel. Therefore, here, we also consider us-

ing the polynomial kernel of degree two. The fact that this

kernel yields a distribution distance that only compares the

first and second moment of the two distributions [17] will

be shown to have little impact on our experimental results,

thus showing the robustness of our approach to the choice of

kernel. Replacing the Gaussian kernel with this polynomial

kernel in our objective function yields

D2(W TXs,W
TXt) = (5)

1

n2

n∑
i=1

n∑
j=1

(1 + xi
s

T
WW Txj

s)
2

+
1

m2

m∑
i=1

m∑
j=1

(1 + xi
t

T
WW Txj

t )
2

− 2

mn

n∑
i=1

m∑
j=1

(1 + xi
s

T
WW Txj

t )
2.

The two definitions of MMD introduced in Eqs. 4 and 5

can be computed efficiently in matrix form as

D2(W TXs,W
TXt) = Tr(KWL) , (6)

where

KW =

[
Ks,s Ks,t

Kt,s Kt,t

]
∈ R

(n+m)×(n+m) , and

Lij =

⎧⎨
⎩

1/n2 i, j ∈ S
1/m2 i, j ∈ T

−1/(nm) otherwise
,

with S and T the sets of source and target indices, respec-

tively. Each element in KW is computed using the kernel

function (either Gaussian, or polynomial), and thus depends

on W . Note that, with both kernels, KW can be computed

efficiently in matrix form (i.e., without looping over its ele-

ments). This yields the optimization problem

W ∗ = argmin
W

Tr (KWL)

s.t. W TW = Id , (7)

which is a nonlinear constrained problem. In practice, we

represent W as a point on a Grassmann manifold, which

yields an unconstrained optimization problem on the mani-

fold. As mentioned in Section 3.2, we make use of a conju-

gate gradient method on the manifold to obtain W ∗.

4.1.1 Encouraging Class Clustering (DIP-CC)

In the DIP formulation described above, learning the projec-

tion W is done in a fully unsupervised manner. Note, how-

ever, that even in the so-called unsupervised setting, domain

adaptation methods have access to the labels of the source

examples. Here, we show that our formulation naturally al-

lows us to exploit these labels while learning the projection.
Intuitively, we are interested in finding a projection that

not only minimizes the distance between the distribution of
the projected source and target data, but also yields good
classification performance. To this end, we search for a
projection that encourages samples with the same labels to
form a more compact cluster. This can be achieved by min-
imizing the distance between the projected samples of each
class and their mean. This yields the optimization problem

W ∗ =argmin
W

Tr(KWL) + λ

C∑

c=1

nc∑

i=1

∥∥∥W T (xi,c
s − μc)

∥∥∥
2

s.t. W TW = I , (8)

where C is the number of classes, nc the number of exam-

ples in class c, xi,c
s denotes the ith example of class c, and

μc the mean of the examples in class c. Note that in our for-

mulation, the mean of the projected examples is equivalent

to the projection of the mean. Note also that the regularizer

in Eq. 8 is related to the intra-class scatter in the objective

function of Linear Discriminant Analysis (LDA). While we

also tried to incorporate the other LDA term, which encour-

ages the means of different classes to be spread apart, we

found no benefits in doing so in our results.
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4.1.2 Semi-Supervised DIP (SS-DIP)

The formulations of DIP given in Eqs. 7 and 8 fall into the

unsupervised domain adaptation category, since they do not

exploit any labeled target examples. However, our formula-

tion can very naturally be extended to the semi-supervised

settings. To this end, it must first be noted that, after learn-

ing W , we train a classifier in the resulting latent space

(i.e., on W ∗Tx). In the unsupervised setting, this classifier

is only trained using the source examples.

With Semi-Supervised DIP (SS-DIP), the labeled target

examples can be taken into account in two different man-

ners. In the unregularized formulation of Eq. 7, since no

labels are used when learning W , we only employ the la-

beled target examples along with the source ones to train

the final classifier. With the class-clustering regularizer of

Eq. 8, we utilize the target labels in the regularizer when

learning W , as well as when learning the final classifier.

4.2. Optimization on a Grassmann Manifold

All versions of our DIP formulation yield nonlinear, con-

strained optimization problems. To tackle this challenging

scenario, we first note that the constraints on W make it

a point on a Grassmann manifold. This lets us rewrite our

constrained optimization problem as an unconstrained prob-

lem on the manifold G(d,D). Optimization on Grassmann

manifolds has proven effective at avoiding bad local min-

ima [1]. More specifically, manifold optimization methods

often have better convergence behavior than iterative pro-

jection methods, which can be crucial with a nonlinear ob-

jective function [1].

While our optimization problem has become uncon-

strained, it remains nonlinear. To effectively address this,

we make use of a conjugate gradient method on the man-

ifold. Recall from Section 3.2 that CG on a Grassmann

manifold involves (i) computing the gradient on the man-

ifold∇fW , (ii) estimating the search direction H , and (iii)
performing a line search along a geodesic. Eq. 1 shows that

the gradient on the manifold depends on the partial deriva-

tives of the objective function w.r.t. W , i.e., ∂f/∂W . The

general form of ∂f/∂W in our formulation is

∂f

∂W
=

n∑
i,j=1

Gss(i, j)

n2
+

m∑
i,j=1

Gtt(i, j)

m2
−2

n,m∑
i,j=1

Gst(i, j)

mn
,

where Gss(·, ·), Gtt(·, ·) and Gst(·, ·) are matrices of size

D × d. With the definition of MMD in Eq. 4 based on the

Gaussian kernel kG(·, ·), the matrix, e.g., Gss(i, j) takes

the form

Gss(i, j) = −
2

σ
kG(x

i
s,x

j
s)(x

i
s − xj

s)(x
i
s − xj

s)
TW ,

and similarly for Gtt(·, ·) and Gst(·, ·). With the MMD

of Eq. 5 based on the degree 2 polynomial kernel kP (·, ·),

Figure 1. Comparison of our approach with TCA on the task of

indoor WiFi localization.

Gss(i, j) becomes

Gss(i, j) = 2kP (x
i
s,x

j
s)(x

i
sx

j
s

T
+ xj

sx
i
s

T
)W ,

and similarly for Gtt(·, ·) and Gst(·, ·). As f itself,

∂f/∂W can be efficiently computed in matrix form.

In our experiments, we first applied PCA to the concate-

nated source and target data, kept all the data variance, and

initialized W to the truncated identity matrix. We observed

that learning W typically converges in only a few iterations.

5. Experiments
We evaluated our approach on the tasks of indoor WiFi

localization and visual object recognition, and compare its

performance against the state-of-the art methods in each

task. In all our experiments, we set the variance σ of the

Gaussian kernel to the median squared distance between all

source examples, and the weight λ of the regularizer to 4/σ
when using the regularizer.

5.1. Cross-domain WiFi Localization

We first evaluated our approach on the task of indoor

WiFi localization using the public wifi data set published in

the 2007 IEEE ICDM Contest for domain adaptation [29].

The goal of indoor WiFi localization is to predict the lo-

cation (labels) of WiFi devices based on received signal

strength (RSS) values collected during different time peri-

ods (domains). The dataset contains 621 labeled examples

collected during time period A (i.e., source) and 3128 unla-

beled examples collected during time period B (i.e., target).

We followed the transductive evaluation setting intro-

duced in [24] to compare our DIP methods with TCA

and SSTCA, which are considered state-of-the-art on this

dataset. Nearest-neighbor was employed as the final classi-

fier for our algorithms and for the baselines. In our experi-

ments, we used all the source data and 400 randomly sam-

pled target examples. In Fig. 1, we report the mean Average
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Method A→ C A→ D A→W C → A C → D C →W W → A W → C W → D

NO ADAPT-1NN 26 25.5 29.8 23.7 25.5 25.8 23 20 59.2
NO ADAPT-SVM 41.7 41.4 34.2 51.8 54.1 46.8 31.1 31.5 70.7

TCA[24] 35.0 36.3 27.8 41.4 45.2 32.5 24.2 22.5 80.2
GFK[15] 42.2 42.7 40.7 44.5 43.3 44.7 31.8 30.8 75.6
SCL[5] 42.3 36.9 34.9 49.3 42.0 39.3 34.7 32.5 83.4
KMM[18] 42.2 42.7 42.4 48.3 53.5 45.8 31.9 29.0 72.0
LM[14] 45.5 47.1 46.1 56.7 57.3 49.5 40.2 35.4 75.2

DIP 47.4 50.3 47.5 55.7 60.5 58.3 42.6 34.2 88.5
DIP-CC 47.2 49.04 47.8 58.7 61.2 58 40.9 37.2 91.7
DIP(Poly) 47.3 49.1 45.1 56.1 58.6 57 42.8 36.5 89.8
DIP-CC(Poly) 47.4 48.4 46.1 56.4 58.6 58 42.7 36.5 89.8

Table 1. Recognition accuracies on 9 pairs of source/target domains using the evaluation protocol of [14]. C: Caltech, A: Amazon,
W : Webcam, D: DSLR.

Figure 2. Sample images from the monitor category. From left to
right: Amazon, Webcam, DSLR, and Caltech.

Error Distance (AED) over 10 different random samples for

different subspace dimensionalities. AED =
∑

i l(xi)−yi

N
where xi is a vector of RSS values, l(xi) is the predicted

location and yi is the corresponding ground truth location.

Note that our algorithms outperform TCA in both unsuper-

vised and supervised settings.

5.2. Visual Object Recognition

We then evaluated our approach on the task of visual

object recognition using the benchmark domain adaptation

dataset introduced in [26]. This dataset contains images

from four different domains: Amazon, DSLR, Webcam,

and Caltech. The Amazon domain consists of images ac-

quired in a highly-controlled environment with studio light-

ing conditions. These images capture the large intra-class

variations of 31 classes, but typically show the objects only

from one canonical viewpoint. The DSLR domain consists

of high resolution images of 31 categories that are taken

with a digital SLR camera in a home environment under

natural lighting. The Webcam images were acquired in

a similar environment as the DSLR ones, but have much

lower resolution and contain significant noise, as well as

color and white balance artifacts. The last domain, Cal-

tech [19], consists of images of 256 object classes down-

loaded from Google images. Following [15], we use the 10

object classes common to all four datasets. This yields 2533

images in total, with 8 to 151 images per category per do-

main. Fig. 2 depicts sample images from the four domains.

For our evaluation, we used the features provided

by [15], which were obtained using the protocol described

in [26]. More specifically, all images were converted to

grayscale and resized to have the same width. Local scale-

invariant interest points were detected by the SURF detec-

tor [2], and a 64-dimensional rotation invariant SURF de-

scriptor was extracted from the image patch around each

interest point. A codebook of size 800 was then generated

from a subset of the Amazon dataset using k-means clus-

tering on the SURF descriptors. The final feature vector

for each image is the normalized histogram of visual words

obtained from this codebook.

In all our experiments, we used the subspace disagree-

ment measure of [15] to automatically determine the dimen-

sionality of the projection matrix W . For recognition, we

trained an SVM classifier with a polynomial kernel of de-

gree 2 on the projected source examples. Our results are

presented as DIP for the original model and DIP-CC for the

class-clustering regularized one.

In a first experiment on this dataset, we used the evalua-

tion protocol introduced in [14]: For each source/target pair,

all the available examples in both domains are exploited at

once, rather than splitting the datasets into multiple train-

ing/testing partitions.1 This protocol was motivated by the

fact that, in [14], selecting landmarks requires a sufficient

number of source examples to be available. For the same

reason, the DSLR dataset is never used as source domain,

since it contains too few examples per class. We compare

our DIP and DIP-CC results, with Gaussian or polynomial

kernel in MMD, with those obtained by several state-of-

the-art methods: transfer component analysis (TCA) [24],

geodesic flow kernel (GFK) [15], geodesic flow sampling

(GFS) [16], structural correspondence learning (SCL) [5],

kernel mean matching (KMM) [18] and landmark selec-

tion (LM) [14]. Table 1 shows the recognition accuracies

on the target examples for the 9 pairs of source and target

domains. For this protocol, our method (with and without

class-clustering regularizer) outperforms the state-of-the-art

techniques in all cases. Note that, in this case, our class-

clustering regularizer is not crucial to achieve good accu-

1This evaluation protocol was explained to us by the authors of [14].
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Method A→ C A→ D A→W C → A C → D C →W

NO ADAPT-1NN 22.6± 0.3 22.2± 0.4 23.5± 0.6 20.8± 0.4 22± 0.6 19.4± 0.7
NO ADAPT-SVM 38.7± 1.6 36.7± 2.3 37.2± 2.8 44.3± 2.4 41.1± 3.9 39.9± 3.2

GFS[16] 35.6± 0.4 34.9± 0.9 34.4± 0.9 36.9± 0.5 35.2± 1 33.9± 1.2
GFK-1NN[15] 37.9± 0.4 35.2± 0.9 35.7± 0.9 40.4± 0.7 41.1± 1.3 35.8± 1
GFK-SVM[15] 39± 1.7 34.1± 2.6 40.7± 3.7 47.2± 2.3 38.5± 2.7 38.8± 3.2
TCA[24] 40± 1.3 39.1± 1.5 40.1± 1.2 46.7± 1.1 41.4± 1.2 36.2± 1.0

DIP 43.3± 1.4 42.8± 2.5 46.7± 2.7 50± 3.2 49± 2.9 47.6± 3.5
DIP-CC 43.2± 2.8 43.3± 3.3 47.8± 4.8 51.8± 2.6 51.4± 4.1 47.7± 4.4

Table 2. Recognition accuracies on 6 pairs of source/target domains using the evaluation protocol of [26]. C: Caltech, A: Amazon,
W : Webcam, D: DSLR.

Method D → A D → C D →W W → A W → C W → D

NO ADAPT-1NN 27.7± 0.4 24.8± 0.4 53.1± 0.6 20.7± 0.6 16.1± 0.4 37.3± 1.2
NO ADAPT-SVM 33.6± 1.7 31.1± 0.9 75.2± 2.6 36.9± 1.2 33.4± 1.1 80.2± 2.5

GFS[16] 32.6± 0.5 30± 0.2 74.9± 0.6 31.3± 0.7 27.3± 0.5 70.7± 0.9
GFK-1NN [15] 36.2± 0.4 32.7± 0.4 79.1± 0.7 35.5± 0.7 29.3± 0.4 71.2± 0.9
GFK-SVM [15] 39± 1.1 34.5± 0.8 76.2± 1.2 40.8± 1.2 36.1± 0.9 72.4± 2.2
TCA[24] 39.6± 1.2 34± 1.1 80.4± 2.6 40.2± 1.1 33.7± 1.1 77.5± 2.5

DIP 40.5± 1 39± 0.5 86.7± 1.2 42.5± 1.5 37± 0.9 86.4± 1.8
DIP-CC 41± 0.9 35.8± 0.6 84.02± 0.9 41.1± 1.1 37.1± 0.9 85.3± 2.5

Table 3. Recognition accuracies on the remaining 6 pairs of source/target domains using the evaluation protocol of [26]. C: Caltech,
A: Amazon, W : Webcam, D: DSLR.

racy. Note also that our approach is robust to the choice of

kernel used in MMD. Therefore, in the remaining experi-

ments, we only report results with the Gaussian kernel.

In a second experiment, we used the more conven-

tional evaluation protocol introduced in [26], which con-

sists of splitting the data into multiple partitions. For each

source/target pair, we report the average recognition accu-

racy and standard deviation over the 20 partitions provided

with GFK2. With this protocol, all possible combinations

of source and target domains were evaluated. In Tables 2

and 3, we compare our results with GFK and the baseline

results reported in [15]. As before, both our DIP and DIP-

CC approaches consistently outperform the baselines.

Finally, we evaluated our approach in the semi-

supervised setting. Following the evaluation protocol

of [26], we made use of 3 labeled samples per category

from the target domain. We compare our method against

the state-of-the-art semi-supervised GFK approach of [15]

and metric learning approach of [26]. Table 4 and 5 show

the results of all methods on all pairs of domains. Simi-

larly as in the unsupervised scenario, our semi-supervised

DIP-CC and DIP approaches achieve the highest accura-

cies. Here however, the class-clustering regularizer boosts

the accuracy more consistently, which suggests the impor-

tance of such a regularizer in the presence of small amounts

of labeled data.

2www-scf.usc.edu/˜boqinggo/domainadaptation.html

6. Conclusion and Future Work

In this paper, we have introduced an approach to

unsupervised domain adaptation that focuses on extracting

a domain-invariant representation of the source and target

data. To this end, we have proposed to match the source and

target distributions in a low-dimensional latent space, rather

than in the original feature space. Our experiments have ev-

idenced the importance of exploiting distribution invariance

for domain adaptation by revealing that our DIP approach

consistently outperformed the state-of-the-art methods in

the task of visual object recognition. A current limitation

of our approach is the non-convexity of the resulting

optimization problem. Although, in practice, optimization

on the Grassmann manifold has proven well-behaved, we

intend to study if the use of other characteristic kernels

in conjunction with different optimization strategies, such

as the convex-concave procedure, could yield theoretical

convergence guarantees within our formalism. The use

of a nonlinear mapping would intuitively also seem more

effective than our current linear transformation. However,

it is unclear how to regularize nonlinear transformations

to prevent them from deteriorating the data distribution to

the point of making two inherently dissimilar distributions

similar. Finally, we also plan to investigate how ideas from

the deep learning literature could be employed to obtain

domain invariant features.
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Method A→ C A→ D A→W C → A C → D C →W

NO ADAPT-1NN 24± 0.3 28.1± 0.6 31.6± 0.6 23.1± 0.4 26.6± 0.7 25.2± 0.8
NO ADAPT-SVM 43.5± 1.6 57.9± 3.2 55.6± 2.8 51.3± 2 61.2± 2.7 58.8± 2.4

Metric [26] 27.3± 0.7 33.7± 0.9 36± 1 33.7± 0.8 35± 1.1 34.7± 1
GFK-1NN[15] 39.6± 0.4 50.9± 0.9 56.9± 1 46.1± .06 55± 0.9 57± 0.9
GFK-SVM[15] 42.9± 1.8 55.1± 3.6 55.1± 2.9 51.4± 2.1 49.8± 3.6 54.6± 2.5
SSTCA[24] 40.4± 1.0 39.0± 1.2 41.1± 1.1 47.1± 1.1 41.7± 1.1 36.2± 1.0

SS-DIP 47.4± 1.5 60.8± 3.1 60.3± 3.9 57.1± 2.5 59.6± 4.1 66.1± 3.2
SS-DIP-CC 47.8± 1.5 67.5± 4 72.5± 3.1 61.8± 2.5 65.8± 3.5 69.9± 2.9

Table 4. Recognition accuracies on 6 pairs of source/target domains using the semi-supervised evaluation protocol of [26]. C: Caltech,
A: Amazon, W : Webcam, D: DSLR.

Method D → A D → C D →W W → A W → C W → D

NO ADAPT-1NN 30.8± 0.6 20.8± 0.5 44.3± 1 31.3± 0.7 22.4± 0.5 55.5± 0.7
NO ADAPT-SVM 46.6± 1.9 37.8± 1.2 82.8± 2.2 46.2± 1.6 38.6± 0.9 84.8± 2.3

Metric [26] 30.3± 0.8 22.5± 0.6 55.6± 0.7 32.3± 0.8 21.7± 0.5 51.3± 0.9
GFK-1NN [15] 46.2± 0.6 33.9± 0.6 80.2± 0.4 46.2± 0.7 32.8± 0.7 75± 0.7
GFK-SVM [15] 48.5± 1.9 39.2± 1.3 79.6± 1.1 46.6± 1.3 39.3± 1.5 75.4± 1.9
SSTCA[24] 40.1± 1.2 34.2± 1.0 80.5± 2.0 41.5± 1.3 33.5± 1.1 77.8± 3.1

SS-DIP 52.7± 2.2 42.8± 1.1 90.1± 1.3 50± 2.1 40.1± 1.1 90.1± 1.5
SS-DIP-CC 56.9± 1.6 44.2± 1.3 89.1± 1.6 53.4± 1.9 43.6± 1.2 92.6± 1.4

Table 5. Recognition accuracies on the remaining 6 pairs of source/target domains using the semi-supervised evaluation protocol of [26].

C: Caltech, A: Amazon, W : Webcam, D: DSLR.
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