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Abstract. The cardiothoracic ratio (CTR), a clinical metric of heart
size in chest X-rays (CXRs), is a key indicator of cardiomegaly. Man-
ual measurement of CTR is time-consuming and can be affected by hu-
man subjectivity, making it desirable to design computer-aided systems
that assist clinicians in the diagnosis process. Automatic CTR estima-
tion through chest organ segmentation, however, requires large amounts
of pixel-level annotated data, which is often unavailable. To alleviate
this problem, we propose an unsupervised domain adaptation framework
based on adversarial networks. The framework learns domain invariant
feature representations from openly available data sources to produce ac-
curate chest organ segmentation for unlabeled datasets. Specifically, we
propose a model that enforces our intuition that prediction masks should
be domain independent. Hence, we introduce a discriminator that dis-
tinguishes segmentation predictions from ground truth masks. We eval-
uate our system’s prediction based on the assessment of radiologists and
demonstrate the clinical practicability for the diagnosis of cardiomegaly.
We finally illustrate on the JSRT dataset that the semi-supervised per-
formance of our model is also very promising.
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1 Introduction

Cardiomegaly, also referred to as heart enlargement, is ranked as the most fre-
quent disease code among a public collection of radiology reports from the Na-
tional Library of Medicine (NLM) according to a National Institutes of Health
(NIH) study on medical information retrieval [4]. Cardiomegaly can result from
other diseases or medical conditions, such as coronary artery disease and hyper-
tension. It is suggested that cardiomegaly is associated with a high risk of sudden
cardiac death [13]. The prevention of cardiomegaly starts from early detection
and CTR measured from posterior-anterior (PA) CXR is an important indicator
for cardiomegaly [5]. CTR is calculated as the ratio of maximal horizontal cardiac
diameter to maximal horizontal thoracic diameter, and CTR greater than 0.5 is
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Fig. 1: Illustration of the architecture. In our proposed adversarial training pro-
cedure, the segmentor produces segmentations for the input images and the
discriminator attempts to distinguish these predictions from ground truth an-
notations. A post-processing step (bottom part of figure) is used to predict car-
diomegaly based on the predicted lung segmentation masks.

commonly considered as cardiomegaly [3, 5]. Manual measurement of CTR re-
quires domain knowledge in radiology and extensive human labor in annotating
CXRs, with results being error-prone due to observational error. This motivates
the automation of CTR calculation and cardiomegaly detection. One common
approach to estimating CTR is lung field segmentation [2].

Recent advances in Convolutional Neural Networks (CNNs) have brought
breakthroughs in the field of semantic segmentation, achieving state-of-the-art
performance [1, 9]. Compared to traditional semantic segmentation, the anno-
tated data for medical image segmentation is more difficult to be acquired, be-
cause of the limited available data and the tremendous cost of collecting and
labeling it. Transfer learning is a common approach to solve tasks with data
scarcity, utilizing the fact that CNNs generally learn feature representations that
are robust across a variety of tasks [14]. However, as segmentation predictions
based on these representations do not generalize very well to different datasets
because of the dataset shift phenomena [7], it is commonly required to fine-tune
the network based on a set of labels for the target domain. In particular, CXRs
from different hospitals are often taken with different imaging protocols and
commonly exhibit differences in noise levels, contrast and resolution. So it is im-
practical to directly use transfer learning techniques. See Figure 1 and Figure 3
for the differences between CXRs obtained at different hospitals.

In this paper, we propose an unsupervised domain adaptation (UDA) frame-
work based on adversarial networks, which allows us to learn domain invariant
feature representations from openly available data sources in order to produce
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accurate chest organ segmentation for unlabeled datasets. Domain adaptation
methods aim to reduce the problems of dataset shift, commonly, by aligning
the learned source and target representation in a joint embedding space [12,
14]. Adversarial networks have become a popular choice to achieve this align-
ment, by introducing a discriminator that is trained to distinguish between the
source and the target domain and by forcing the model to learn representa-
tions that can fool the discriminator. We propose an alternative training scheme
where we utilize a discriminator that enforces our intuition that prediction masks
should be domain independent by discriminating segmentation predictions from
ground truth masks. We evaluate our system’s performance based on the assess-
ment of radiologists on a CTR estimation dataset. Our approach outperforms
the state-of-the-art UDA and shows the clinical practicability for the diagnosis
of cardiomegaly. We finally illustrate that our approach can also be used for
semi-supervised chest organ segmentation of the JSRT benchmark dataset.

2 Methodology

The complete pipeline is shown in Figure 1. The adversarial neural network con-
sists of a discriminator and a segmentor. To demonstrate the generalization and
simplicity of the methodology, we use ResNet18 as a backbone architecture [8].
The discriminator is a standard ResNet classifier and the segmentor is inspired
by the Fully Convolutional Network (FCN) [9], but uses an output stride of 16,
following the example of [1]. Provided the predicted labels for the two lungs, the
CTR is calculated in a post-processing step.

2.1 Adversarial Training for Supervised Semantic Segmentation

Adversarial learning was first introduced in the Generative Adversarial Network
(GAN) [6] as a two-model zero-sum game, in which one model generates candi-
dates for the other network to evaluate. Inspired by [10], who used adversarial
learning to improve semantic segmentation results, we let S be the segmentor
and D be the discriminator. S is trained to produce realistic prediction masks
in order to fool D, which in turn is attempting to discriminate these predic-
tions from ground truth images in a binary classification. D is encouraged to
learn a complex loss between the higher-order label statistics, which in practice
cannot be explicitly formulated. Medical domain knowledge is being implicitly
incorporated into this formulation as part of the annotated ground truth data.

An alternative training scheme is applied to train the segmentor and discrim-
inator. Given D, the loss to be minimized for S is a multi-class cross-entropy
loss for semantic segmentation, in addition to the binary cross-entropy loss for
segmentation prediction S(x) being classified as ground truth by D [10].

Jseg(x,y) = −
1

BS

∑

s

1

HW

∑

i

∑

c

ys,i,c logS(xs,i,c) (1)
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JS(x,y) = Jseg(S(x),y)− λadv

1

BS

∑

s

logD(S(xs)) (2)

We use xs and ys to denote the input image and the ground truth, respectively,
where xs is of shape [H,W, 1] and ys is of shape [H,W,C] for C-class one-
hot encoded labels. BS denotes the batch size for the segmentor training and i

ranges over all the spatial positions. Given S, D is optimized to maximize the
probability of correctly distinguishing S(x) from y as

JD(x,y) = −
1

BD

∑

s

[log(D(ys)) + log(1−D(S(xs)))] , (3)

where BD is the batch size for the discriminator training.

2.2 Unsupervised Domain Adaptation

Our approach to unsupervised domain adaptation is illustrated in Figure 1 and
is based on the idea that prediction masks, unlike input images and intermediate
feature representations, can be considered domain independent. Unlike in [10],
we do not only make use of a discriminator to judge the quality of the segmen-
tation mask, but also use it to align both source and target segmentation results
with the domain-independent prediction mask. We propose an alternative train-
ing scheme, where we present the discriminator with real ground truth images
from our source domain, ys, and with segmentation mask predictions from both
the source and the target domain, xs and xt, respectively. In order to learn do-
main invariant feature representations, we exploit the fact that we can train the
segmentor using both the segmentation and the discriminator loss in the source
domain to produce accurate segmentation prediction masks. However, simulta-
neously we enforce the fact that the segmentation masks for the target domain
need to be of high quality. The updated losses are

JS−DA(xs,ys,xt) = JS(S(xs),ys)− λadv

1

BS

∑

t

logD(S(xt)), (4)

JD−DA(xs,ys,xt) = JD(S(xs),ys)−
1

BD

∑

t

log(1−D(S(xt))). (5)

2.3 Estimation of CTR

CTR is the ratio of maximal horizontal cardiac diameter to maximal horizontal
thoracic diameter, as formulated in the Danzer Method [3]. The diameters are the
horizontal distance between horizontal coordinates of corresponding key points
on the lung contours. As shown in Figure 2, the maximal horizontal cardiac
diameter and maximal horizontal thoracic diameter can only be achieved by
points above cardiodiaphragmatic angles and costophrenic angles, which can be
retrieved by the use of a convex hull algorithm. With a hypothetical central line,
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Fig. 2: Contour landmarks for lower
lungs: cardiodiaphragmatic angles (1)
and costophrenic angles (2).

Fig. 3: Example images of the two
datasets. The three images in the top
row correspond to examples of the
JSRT dataset, overlaid with the seg-
mentation annotation. The three im-
ages in the second row originate from
the Wingspan dataset overlaid with the
key points for the CTR calculation.

the Danzer Method could be reinterpreted as A+B
C+D

, while line segments A, B,
C, D are all maximized independently. The constraints of maximizing A + B

are that the points of intersection between lung contours and A and B must be
above cardiodiaphragmatic angles. The points of intersection between the lung
contours and the maximized A, B, C, and D are the key points. Provided the
estimated CTR, cardiomegaly can be predicted under different thresholds for
different age groups. Following [2], the threshold, T , is chosen to be 0.5.

2.4 Semi-Supervised Semantic Segmentation

We further illustrate our model’s ability for the task of semi-supervised learn-
ing. As the annotated data are limited, it is common in medical image seg-
mentation to have only a subset of training data labeled. Provided with a set
of labeled and unlabeled datapoints {{(x1, y1),...,(xl,yl)},{x̃1,...,x̃u}}, the task
of semi-supervised learning aims to exploit the underlying data properties of
the unlabeled data in addition to the labeled data. l and u correspond to the
number of labeled and unlabeled examples, respectively. Similar to our unsu-
pervised domain adaptation, we adopt an alternating training strategy, where
the model is presented with both labeled and unlabeled data. We optimize S

and D using Equation 4 and 5 and treat the labeled data as the source domain
and the unlabeled data as the target domain. This lets us leverage the unlabeled
data to align the distribution of segmentation predictions with the distribution
of ground truth labels, effectively regularizing the model and improving overall
performance.
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Method APE MAE RMSE

TL-SEG 16.0%± 16.1% 8.9%± 9.3% 0.13

TL-ADV 11.4%± 11.2% 5.9%± 5.9% 0.08

ADDA 9.2%± 9.9% 5.1%± 5.8 0.08

DA-ADV 5.8%± 8.5% 3.3%± 5.1% 0.06

Table 1: Results for the unsupervised domain adaptation of CTR estimation ex-
periments. APE denotes average percentage error, MAE denotes mean absolute
error, and RMSE denotes root mean square error.

3 Experimental Results

The JSRT dataset is released by the Japanese Society of Radiological Technol-
ogy (JSRT) [11] and is a benchmark dataset for lung and heart segmentation.
JSRT contains 247 grayscale CXRs with annotated lung and heart pixel-wise
labels, where 154 have lung nodules and 93 don’t have lung nodules. Each CXR
has a size of 2048×2048 and the pixel spacing is 0.175mm. In this paper, JSRT is
used as the source domain for the unsupervised domain adaptation. See Figure 3
for examples from the dataset overlaid with the ground truth annotation.

TheWingspan dataset is provided by a private research institute, Wingspan
Technology. The dataset contains 221 grayscale CXRs for adult patients with
annotated key points for calculation of CTR. Each image was annotated by two
licensed radiologists independently, and the annotations were accepted by both
annotators and an independent reviewer. The de-identified data were collected
from 6 hospitals, which have different imaging protocols. The image sizes, pixel
spacing and clinical setup vary for each CXR. See Figure 3 for examples from
the dataset with key point annotations and the differences to the JSRT dataset
and Figure 4 for the large variety in the data modalities, which is not present in
the available public benchmark datasets.

In our work, we use the Wingspan dataset as the target domain. We inves-
tigate the potential of our proposed approach for unsupervised domain adapta-
tion for the task of CTR estimation. For this, we utilize the segmentation masks
of the source domain (JSRT) to perform segmentation on our target domain
(Wingspan) and use the predicted segmentation result to compute the CTR. We
then show how our method can be easily adapted to semi-supervised semantic
segmentation. We evaluate our approach on JSRT and illustrate that we can use
the information encoded in our unlabeled data. The adversarial networks are
trained using the Adam optimizer with a learning rate of 10−3. λadv is 10−4.
We use BS = BD = 8. JSRT is randomly split into 80% for training and 20%
for testing. For all the experiments in this paper, no data augmentation is used,
which further shows the robustness of our approach.

Unsupervised Domain Adaptation: To assess our performance for unsuper-
vised domain adaptation, we compare our approach (DA-ADV) to three alterna-
tive approaches and present the quantitative results for the CTR estimation in
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Fig. 4: Visualization of the segmentation and key point results for the Wingspan
dataset for our proposed domain adaptation method.

Method IoU (Lungs) IoU (Heart)

Human Observer [15] 94.6%± 1.8% 87.8%± 5.4%

Supervised 95.5%± 0.3% 90.2%± 0.5%

Supervised (50%) 82.9%± 3.5% 71.2%± 7.6%

Supervised (25%) 75.4%± 5.7% 62.4%± 11.9%

Supervised (10%) 60.1%± 9.6% 39.4%± 14.7%

Semi-Supervised (50%) 90.4%± 3.1% 81.2%± 2.5%

Semi-Supervised (25%) 89.9%± 3.3% 75.5%± 5.4%

Semi-Supervised (10%) 81.7%± 4.6% 69.4%± 7.2%

Table 2: Results for the semi-supervised segmentation experiments. IoU denotes
the Intersection over Union.

Table 1. The baseline uses the segmentor trained on the source domain directly
on the target domain. This corresponds to transfer learning without fine-tuning
on the target domain (TL-SEG). The baseline segmentor can be improved by
adding a discriminator with an adversarial training scheme (TL-ADV). Finally,
we compare with one of the state-of-the-art approaches for domain adaptation,
ADDA [14], which trains a segmentation network and then utilizes an adver-
sarial loss to align the source and the target domain feature representations in
order to minimize data shift. However, ADDA’s performance is highly depen-
dent on the quality of the segmentation network, which is not robust. We observe
that our method outperforms the alternative approaches, providing considerable
improvements for CTR estimation. Qualitative results for the predicted segmen-
tation masks and the key points for images from the Wingspan dataset can be
seen in Figure 4. Based on the threshold of 0.5, we predict cardiomegaly with
our pipeline and achieve 87.78% in accuracy, 97.72% in precision, 84.21% in
sensitivity and 95.57% in specificity.

Semi-Supervised Semantic Segmentation: As a baseline we train the model
respectively on 10%, 25% and 50% of annotated data in a supervised manner.
As a comparison, we train the model on the whole dataset in a semi-supervised
manner, while only portions of the data used in the supervised setting are pro-
vided with the labels. Table 2 provides the results of our semi-supervised exper-
iments. Our approach clearly makes use of the unlabeled data, achieving large
performance gains. To put our results into perspective and to illustrate the per-
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formance that can be achieved when all training labels are available, we also
train the model on the fully labeled training dataset.

4 Conclusions

In this paper, we present an approach to unsupervised domain adaptation for
the task of CTR estimation that is based on the intuition that prediction masks
should be domain independent. Using an adversarial training approach, we show
that we can predict cardiomegaly from a dataset without segmentation annota-
tions. We further illustrate how our approach can be adapted for semi-supervised
learning.

Acknowledgements. We thank Wingspan Technology for collecting and anno-
tating the data for this study.
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1 Additional visualizations

In Figure 1 we provide some more and enlarged qualitative examples for the seg-
mentation results obtained on the Wingspan dataset as part of our unsupervised
domain adaptation approach.

Fig. 1: Segmentation results for our domain adaptation method on the Wingspan
target domain dataset.
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In Figure 2 we provide some qualitative examples for the semi-supervised
segmentation results obtained on the JSRT dataset.

Fig. 2: Segmentation results for the JSRT dataset when using semi-supervised
training with 75% of the labeled training data held-out.


