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Abstract

Domain adaptation is becoming more and more impor-

tant with the advancing development of machine learning

and the ever-increasing diversity of available data. The ad-

vancement of autonomous driving depends very much on

progress in machine learning, which relies heavily on vast

amounts of training data. It is well known that the per-

formance of such models drops, as soon as the data used

during inference stems from a different domain as the train-

ing data. To avoid the need to label a separate dataset for

each new domain, e.g., each new camera sensor, methods

for domain adaptation are necessary. Most interesting are

unsupervised domain adaptation approaches since they do

not require costly labels for the target domain. In this paper

we adapt a known domain adaptation approach to work in

an unsupervised fashion for semantic segmentation on high

resolution data and provide some analysis of the learned

representations. With our domain-adapted semantic seg-

mentation we were able to achieve a significant 15 % abso-

lute increase in mean intersection over union (mIoU), se-

curing a surprisingly good 5th rank on the target domain

KITTI test set without having used any KITTI labels during

training. In addition to that, we even improved quality on

the source domain data.

1. Introduction

Machine learning is used in more and more applications,

e.g., in autonomous vehicles, and typically requires vast

amounts of annotated data for training. However, the pro-

cess of labeling a sufficient amount of data for the desired

task is often tedious and costly. For many tasks there are

datasets openly available that can be used for training, but in

many cases the domain of the training data does not match

the domain of the target data on which the model will be
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Figure 1. High-level overview of the segmentation framework

with the segmentation head. The feature extractor is illustrated

in detail in Figure 2. The domain discriminator and the gradi-

ent reversal layer (GRL) are illustrated in Figure 4, both only be-

ing necessary in training. Input data xDS
,xDT

and feature data

yDS
,yDT

are shown as used in training. During inference, input

and feature data is from the target domain, in this work, however,

not necessarily so.

evaluated during inference. This may be due to the fact that

the used sensors are different or the data was recorded un-

der different conditions, e.g., different illumination, season,

country, and many more. Domain adaptation aims at ad-

justing either the model to perform its tasks independently

of the target domain or at adjusting the data from the new

domain to match the distribution from the source domain,

on which the model was trained on. With both approaches

it is possible to train a model on existing datasets, leverag-

ing on the already available labels. Domain adaptation has

therefore become one very important research field in ma-

chine learning. Formally spoken, domain adaptation trans-

fers the knowledge about the source domain DS to the target

domain DT , between which there is a domain shift.

Following the classification of [40] we investigate an ap-

proach for homogeneous domain adaptation in this work,

as the feature spaces between the source and the target do-

main are identical with the same feature dimension. Do-

main adaptation can further be classified either as super-

vised, semi-supervised or unsupervised. In contrast to

(semi-)supervised approaches, where there are still (small)



amounts of labeled images of the target domain needed, un-

supervised domain adaptation only uses the labels of the

source domain and can therefore be used with no further

labeling costs on any new domain. This makes unsuper-

vised approaches especially interesting for tasks, where the

labeling is very time-consuming and therefore costly, e.g.,

semantic image segmentation, where manual labeling can

take up to 90 minutes per image [9].

Unsupervised domain adaptation is also of great inter-

est in the field of automated driving, as it allows the sim-

ple transferability of models to new sensor setups, e.g., new

camera sensors. This is especially important for machine

learning models in the perception layer of automated ve-

hicles, as these models directly extract information about

the car’s surroundings. A typical application here is again

semantic segmentation, which outputs the semantic infor-

mation for each pixel in an image, such as the location of

other traffic participants or the location of the road itself. As

exemplary datasets we will use Cityscapes [9], KITTI [15]

and Berkeley DeepDrive [44], which are all well-known in

the research field of automated driving. As the task used in

this work we select semantic segmentation, which aims to

assign each pixel in an image to one predefined object class.

As already mentioned, it is as well a task which needs time-

consuming and costly labeling as it is important for the per-

ception in automated vehicles, which makes it an interesting

subject of unsupervised domain adaptation research.

Our contribution with this work is threefold. Firstly, we

adapt a known technique for unsupervised domain adapta-

tion [13] to the task of semantic segmentation. Secondly, we

show that this approach significantly improves the accuracy

in the target domain, but surprisingly also in the source do-

main. Thirdly, we provide an analysis indicating that the

used approach does indeed perform a domain adaptation

and forces our model to learn domain-invariant features.

The paper is structured as follows. In Section 2 we pro-

vide related work in the field of domain adaptation for vi-

sual tasks. In Section 3 we present the methods and mea-

sures used for semantic segmentation and domain adapta-

tion. Section 4 introduces the employed datasets and de-

scribes the training of our model. Finally we will present

results and some further analysis in Section 5, before pro-

viding conclusions in Section 6.

2. Related Work

As already mentioned, domain adaptation can be

achieved with different approaches. Typically, the ap-

proaches can be arranged into (semi-)supervised and un-

supervised approaches. Recently, several publications pro-

vided good overviews on the entire topic of domain adap-

tation for vision tasks regarding both shallow methods and

deep methods for deep neural networks [39, 10, 40]. In the

following section, the related work for visual domain adap-

tation in neural networks will be presented.

(Semi-)Supervised Domain Adaptation aims at adapt-

ing a machine learning system to a new domain for which

there are (some) labels given. Due to the ever improv-

ing techniques for unsupervised domain adaptation and

the above-mentioned advantages, supervised approaches

[29, 35, 43] are becoming less popular. Aiming at domain

adaptation generalization [27], supervised approaches have

been used lately. However, we decide to employ an unsu-

pervised approach, since we see greater potential in using

vast amounts of (cheap) unlabeled data.

Unsupervised Domain Adaptation only relies on the

labels of the source domain and unlabeled data for the tar-

get domain. The tasks performed by such a model can be

diverse. There are typically two approaches that are used

for unsupervised domain adapation. The first approach uses

a style-transfer of the input images. The authors of [2] per-

formed a domain adaptation by using an image style transfer

to learn a depth estimation network on video game images

that can afterwards be used for real world data. Many meth-

ods use generative adversarial networks (GANs) for such a

transfer [5], e.g., for person re-identification under diverse

lighting conditions [3, 11]. Also autoencoder networks can

be used for this kind of domain adaptation [25]. So-called

domain separation networks to perform an unsupervised do-

main adaptation have been proposed in [6] on low resolution

images.

A second approach would be to learn domain-invariant

features from the data. Ganin et al. introduced this approach

with their additional domain discriminator network and the

gradient reversal layer (GRL) that forces the feature extrac-

tor to produce domain-invariant representations on low res-

olution images [13]. They showed later that this approach

also works for person re-identification [14]. These methods

that try to learn domain-invariant features or feature projec-

tions [23, 24, 30, 31, 37, 42] belong to the second approach.

A hybrid method was introduced with the DupGAN that

forces domain-invariant representation and performs a style

transfer, using an encoder, a generator, and two discrimi-

nators [20]. Another method tries to detect “landmarks” in

the source dataset that are distributed most similar to the

target dataset [16]. Although most approaches only use do-

main adaptation for two domains, it is possible to employ

multiple domains for domain adaptation [46]. Rozantsev et

al. introduced an approach that can be used semi- and un-

supervised, employing auxiliary residual networks predict-

ing parameters for the target domain network [32]. Another

combination of methods combines a discriminative model

and weight sharing with a GAN loss [38].

All of the above-mentioned approaches are used for vi-

sual domain adaptation, but only on toy examples and low-

resolution datasets and mostly for classification tasks. In the

field of automated driving datasets a much higher resolu-



tion is used and the tasks, e.g., object detection and domain

adaptation, are much more complex. Chen et al. [8] built

upon the well-known Faster R-CNN with adaptation on

image and instance level, but also upon the work of Ganin

et al. [13]. Another approach that learns feature transforma-

tions using a conditional generator network was introduced

by Hong et al. [19], while the authors of [21] use a sim-

ple activation matching. A hybrid approach that uses an

image space and feature space alignment by using a GAN

approach was presented in [17], one that employs a single

network for each of the two tasks in [45]. Domain adversar-

ial training in combination with weight sharing was used by

Hoffmann et al. [18]. GAN approaches are employed either

for style transfer [22], or to bring the feature representations

close to the source domain [34]. Murez et al. [28] also use

a network for style transfer but add extra losses to be able

to reconstruct both source and target images from the fea-

ture representations and enforce the extracted features to be

indistinguishable. An approach to improve domain adap-

tation is to utilize task-specific decision boundaries of the

used network and align the distributions of the source and

target domain [33].

We decide to build upon the approach by Ganin et al. [13]

for two reasons. Firstly, it is a simple approach that can be

used to extend any network that extracts features, regard-

less of the intended application, e.g., semantic segmentation

or object detection. Secondly, it is an approach that does

not use style transfer and does therefore not alter the input

images, but forces the network to learn domain-invariant,

better generalizing features. It seems much safer to have a

model trained directly on unaltered images, than to perform

style transfer first and then use a network that has never seen

the unaltered images.

3. Method and Measures

In this section, the methods for semantic segmentation,

domain adaptation, and the network architectures are pre-

sented. Furthermore, a measure for the domain shift is in-

troduced that is later used for further analysis of our results

in Section 5.2.

3.1. Semantic Segmentation

Semantic image segmentation is the task of finding

a transformation of an input image into an image of

semantically-related parts, known as a segmentation mask.

To accomplish this, a neural network assigns each pixel to a

specific predefined class. In our work we adopt a segmenta-

tion network based on the DeepLabv3 [7] with some im-

provements by using the WideResNet38 [41] as a feature

extractor, which is pre-trained on the ImageNet corpus. The

architecture can be thought of as a two-part network with a

feature extractor (Figure 2), which extracts meaningful fea-

tures from the images, and a segmentation head, which per-
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Figure 2. Architecture of the WideResNet-38 feature extrac-

tor used in our semantic segmentation framework. The feature

extractor is provided with the images x from either domain and

extracts corresponding feature maps y. The three types of Res-

Blocks are illustrated in Figure 3.

forms the transformation of these features into a segmenta-

tion map corresponding to the input image [4]. The dataflow

is depicted in the upper path of Figure 1. We control the out-

put stride (ratio between input resolution and output resolu-

tion) by decreasing the stride of several convolutions from

two to one in a bottom-up fashion and increasing the dila-

tion rate instead. Contrary to what was proposed by [41],

we do not incorporate dropout in our network, since it led

to slightly worse segmentation results.

The image x ∈ G
H×W×C with image pixel x(i) ∈ G,
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Figure 3. Structure on the ResBlocks used in the feature extrac-

tor. On the left, the ResBlock-A and -B are depicted. The only

difference between these blocks is that the first BatchNorm and

ReLU (dashed) are omitted for ResBlock-A. On the right side,

the ResBlock-BN is depicted which uses an additional convolu-

tion layer and other kernel sizes for the first and last convolution.

The parameters m and n denote the number of feature maps pro-

duced by the two convolutional layers in the ResBlock-A and -B

and ℓ denotes the number of feature maps for the additional convo-

lutional layer in the ResBlock-BN. The first number in the paren-

theses of each convolutional layer denotes the used kernel size.

where G is the set of gray values, i is the pixel index, H and

W are the image height and width in pixels, and C = 3 is

the number of color channels from set C = {1, 2, 3}, is used

as the input to the neural network. The feature extractor

extracts 4096 feature maps y with a resolution dependent

on the resolution of the input image. During the training the

network is provided with random crops of the input image

that all have the same resolution. In the standard approach a

crop size of 700×700 is used, but due to the lower resolution

of the KITTI and BDD100K dataset we adapted the crop

size to 250×500. Naturally, this leads to a drop in absolute

performance, which, for the purpose of this work, is not a

considered problem. With the fixed crop size during the

training the extracted feature maps have a resolution of 16×
32 pixels.

The segmentation head then transforms these feature

maps into output scores P ∈ I
H×W×|S|, where S =

{1, 2, ..., 19} denotes the set of classes with cardinality

|S| = 19 and I = [0, 1]. These output scores can be thought

of as a posterior probability (score) P (i, s) for each class

s ∈ S at pixel index i. After searching for the maximum,

the segmentation mask m = argmaxs∈S P ∈ SH×W is

provided. To measure the accuracy of this map with respect

to the ground truth labels, the intersection over union (IoU)

is computed [12] as follows:

IoU =
TP

TP + FP + FN
, (1)

where TP, FP, and FN are the numbers of true positive,

false positive, and false negative pixels for one correspond-

ing label and segmentation mask pair. The mean IoU

(mIoU) is then computed as the average IoU over a given

set of images.

3.2. Domain Adaptation

Unsupervised domain adaptation in the context of se-

mantic segmentation aims at keeping the mIoU at a high

level independently from the used data set. As already

mentioned, there are mainly two different approaches for

domain adaptation for visual tasks. Either the images are

adjusted to fit the distribution of the source domain before

being entered into the network, or the network is trained

to learn domain-invariant feature maps y that produce ac-

curate segmentations on both datasets. Our system for do-

main adaptation is built upon the idea published by Ganin

et al. [13] where they trained a neural network in a multi-

task fashion. Similar to their work we use the feature ex-

tractor jointly for both tasks. After the feature extractor,

the feature maps are split into two branches as seen in Fig-

ure 1. The segmentation head (upper part of the network)

only receives the feature maps of the source domain DS

for which the labels are available. The domain discrimi-

nator (lower part of the network) receives both the source

and target domain feature maps. After bringing the num-

ber of feature maps gradually down from 4096 to 2 by 1×1
convolutions, the domain discriminator tries to predict the

domain from which the given feature maps came from, pro-

viding an output class map s(D) ∈ I
hD×wD×|D|, with hD and

wD being the height and width of the feature maps that are

fed into the domain discriminator and |D| being the num-

ber of datasets used during training. The resolution of the

feature maps is not reduced during the reduction of feature

maps such that a patch-wise classification error can be used,

which was proposed by [36] as a local adversarial loss in

their GAN network. Just ahead of the domain discriminator

there is the gradient reversal layer (GRL) [13]. During the

forward-pass of the training this layer behaves as the iden-

tity function just passing the data through, while during the

backward-pass the gradient gets reversed. Following Ganin

et al. [13], this can be formalized as follows:

Forward-pass: Rλ(y) = y

Backward-pass:
dRλ

dy
= −λ(τ)I,

(2)



where I is the identity matrix and λ is a weighting factor

that is used in order to limit the influence of the domain dis-

criminator. Here, y denotes the feature map that is passed

through the layer Rλ(y) during the forward pass. The gra-

dients calculated by the backpropagation algorithm are de-

noted as dRλ

dy
. The weighting factor λ is computed by

λ(τ) =
2

1 + exp (−10 α(τ))
− 1 (3)

and changes for each epoch τ , with α(τ) being defined as

α(τ) =

{

τ
τmax

τ < τmax

1 τ ≥ τmax,
(4)

with τmax being the iteration number, from which on the

influence of the domain discriminator should not be limited

anymore. One iteration equals one processed minibatch.

3.3. Measures for the Domain Shift

With the employed approach, it is initially not unambigu-

ous that the increase in accuracy in the source and target

domain is actually due to the fact that domain-invariant fea-

tures were learned. It would also be plausible that each ad-

ditional branch after the feature extractor, which is trained

on a different task, increases the magnitude of gradients in

the feature extractor and thus enables more efficient learn-

ing, e.g., by preventing a vanishing gradient.

To analyze the hypothesis of domain-invariant features,

we examined the feature maps of the feature extractor for

the source and target dataset of both the network trained

without the domain discriminator and the network trained

with the domain discriminator. The feature map tensor after

each activation layer has the size (hL×wL×fL), with hL

and wL being the height and width of the feature maps in

layer L, which itself is dependent on the input resolution

that is different for all datasets used during inference. The

term fL denotes the number of feature maps in layer L. For

the analysis we average the feature maps over hL and wL

during inference, leaving us with a vector φφφL of length fL,

that holds the mean activation value for each feature map

in that layer. We can then compute the mean-squared error

(MSE) distance between two of those vectors as follows:

DMSE(φφφ
a
L,φφφ

b
L) = ||φφφa

L − φφφb
L||

2, (5)

where a and b denote the different datasets the activation

vector was produced by. We assume that the MSE DMSE

is related to the domain shift (higher DMSE means higher

domain shift), if dataset a comprises the training data and

dataset b comprises the inference data.

4. Databases and Training

In this section, the databases used for training and eval-

uation are introduced. In the field of domain adaptation,
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Figure 4. Architecture of the gradient reversal layer (GRL) with

the domain discriminator used for domain adaptation in Figure 1.

The network is provided with feature maps from both domains and

tries to predict an output class map s
(D) that simply discriminates

between both domains.

there are several known databases for different applications.

In the context of this work we limit ourselves to real-world

(not simulated) automotive datasets. Subsequently, we de-

scribe the training method and parameters used for training

of the segmentation network with and without domain adap-

tation.

4.1. Databases

In this work we conducted experiments with three dif-

ferent automotive datasets, all providing labels for semantic

segmentation and all being recorded under diverse condi-

tions with a different sensor. For our experiments different

subsets of the three datasets are used. Table 1 provides a

description and composition of the individual subsets.

Cityscapes is used as the source dataset in all experi-

ments. It consists of 2975 training images Dtrain
CS and 500



Table 1. The names and number of files for the subsets we used in

our experiments. The KITTI train subsets are randomly sampled

from the raw dataset.

Dataset Data Subset # Files Labels Used

Cityscapes

Dtrain
CS 2975 X

Dval
CS 500 X

Dtest
CS 1525 X

KITTI

Dtrain,2975,c
KITTI 2975

Dtrain,2975
KITTI 2975

Dtrain,5000
KITTI 5000

Dtrain,10000
KITTI 10000

Dval
KITTI 200 X

Dtest
KITTI 200 X

BDD100K

Dtrain
BDD 7000

Dval
BDD 1000 X

validation images Dval
CS, for each of which there are finely

annotated labels. The 1525 test images Dtest
CS can only be

evaluated on the Cityscapes benchmark server. The dataset

was recorded in 50 different cities in Germany and cities

close to Germany using an automotive-grade camera with

an OnSemi AR0331 sensor. The recordings were made un-

der moderate to good weather conditions throughout spring,

summer and autumn, so there are no recordings during bad

weather or winter. All recordings were made during the day.

The provided color images have a resolution of 1024×2048
pixels. The dataset is labeled with 19 classes that are used

during training and inference [9].

KITTI is used as the first target dataset in all experi-

ments. Originally, the KITTI dataset did not provide se-

mantically segmented labels, but only labels for the object

detection. However, a subset for which semantic labels have

been available exists since 2015, which is called KITTI-15

[1]. There are 200 training images, which we use for vali-

dation Dval
KITTI, and 200 test images Dtest

KITTI, but similar to

the Cityscapes dataset there are only labels for the test im-

ages on the KITTI benchmark server. The labeling followed

the same policy as in Cityscapes. The raw dataset consists

of 48893 unlabeled images from which we randomly sam-

pled images used for the unsupervised domain adaptation.

For our initial experiments with two domains we sampled

the same amount of images Dtrain,2975,c
KITTI as there are in the

Cityscapes training set. For the subsequent experiments

we sampled 10000 images Dtrain,10000
KITTI , as well as 5000

images Dtrain,5000
KITTI and 2975 images Dtrain,2975

KITTI , with the

smaller sets being a subset of the bigger sets Dtrain,10000
KITTI ⊃

Dtrain,5000
KITTI ⊃ Dtrain,2975

KITTI . The dataset was recorded in and

around the German city Karlsruhe using a Point Grey FL2-

14S3C-C camera with a Sony ICX267 sensor. The provided

color images have a resolution of 375×1250 pixels [15].

Berkeley DeepDrive (BDD100K) is used as an addi-

tional target dataset in experiments with more than two do-

mains. The dataset consists of 100000 videos each with

a length of 40 seconds. The videos were gathered via

crowd sourcing, which means that volunteers contributed

the videos recorded by their dashcam. Therefore, no single

sensor can be specified for this dataset. The videos were

recorded on the entire territory of the U.S.A. Cities, high-

ways and rural regions were captured under various weather

conditions and times of the day. The BDD100K also offers

a subset with pixel labels, as with the KITTI dataset. 8000

images were annotated, 7000 of them as training images

Dtrain
BDD and 1000 validation images Dval

BDD. Although there

is a test set with 2000 images, no labels are provided and

there is currently no evaluation server available. The label-

ing also followed the same policy as in Cityscapes. The

images have a resolution of 720×1280 pixels [44].

4.2. Training and Domain Adaptation Stages 1 & 2

The training of the segmentation network follows a two-

stage training based on [7], which is also described in [4]

and [26]. Due to the different resolutions of the used

datasets the random scaling is performed in a range of

100 % to 200 % and the crop size is set to 250×500. The

images from all data sets were cropped to an aspect ratio

of 2:1 before training. The domain discriminator is initial-

ized with random weights. In the discriminator network

(index “D”) we use a dropout value pD = 0.7 for stages

1 and 2. For stage 1 the weighting factor λ follows (4) with

τmax = 18000. During stage 2 we use a weighting factor

λ = 1. The initial learning rate for the domain discrimi-

nator used for stage 1 is ηD,0 = 0.01, which is halved in

the 2nd stage to ηD,0 = 0.005. The learning rate schedule

follows a power scheduling:

ηD(τ) =
ηD,0

(1 + 10 γ(τ)0.75)
, (6)

where τ is the iteration index and γ = τ
τend

with τend be-

ing the maximum number of iterations. The initial learning

rate for the feature extractor (index “F”) used for stage 1 is

ηF,0 = 0.001, which is halved in stage 2 to ηF,0 = 0.0005.

The learning rate follows a polynomial scheduling:

ηF(τ) = ηF,0(1− γ)c, (7)

with c = 0.9. The learning rate for the weights of the seg-

mentation head follows the same schedule, but is multiplied

by a factor of 10 and the learning rate for the bias weights in

the segmentation head is multiplied by 20. Both the feature

extractor and segmentation head also use L2 regularization

with a weighting value of 1 · 10−4. For stage 1 we chose

τend = 90000 and for stage 2 we chose τend = 120000. We

use a momentum of β = 0.9. The segmentation head and

the domain discriminator both employ a cross entropy loss

during training.



Table 3. Validation set mIoU for multiple datasets without and with unsupervised domain adaptation. The results are obtained by networks

trained for stages 1 and 2. Only Dtrain
CS is used as the source domain DS and all other training subsets are used as the unlabeled target

domain DT .

Training Stage Trained on
Evaluation Results (mIoU)

Dval
CS Dval

KITTI Dval
BDD

1

Dtrain
CS 51.2 % 40.1 % 25.2 %

Dtrain
CS ∪ Dtrain,2975

KITTI ∪ Dtrain
BDD 54.7 % 46.4 % 48.1 %

Dtrain
CS ∪ Dtrain,5000

KITTI ∪ Dtrain
BDD 55.3 % 49.0 % 48.9 %

Dtrain
CS ∪ Dtrain,10000

KITTI ∪ Dtrain
BDD 54.1 % 47.5 % 47.3 %

2
Dtrain

CS 51.5 % 40.5 % 26.1 %

Dtrain
all = Dtrain

CS ∪ Dtrain,5000
KITTI ∪ Dtrain

BDD 57.2 % 56.7 % 49.9 %

Table 2. mIoU for Cityscapes and KITTI validation sets without

(1st row) and with (2nd row) unsupervised domain adaptation. The

results for networks trained only for stage 1:

Trained on Evaluation Results (mIoU)

Dval
CS Dval

KITTI

Dtrain
CS 51.2 % 40.1 %

Dtrain
CS ∪ Dtrain,2975,c

KITTI 53.6 % 46.3 %

5. Experiments and Results

In this section we will evaluate the experiments on do-

main adaptation. We will start with experiments on two do-

mains, using Cityscapes as our source and KITTI as our un-

labeled target domain. In the subsequent experiments we

will use BDD100K as an additional unlabeled target do-

main. Finally, an analysis of the learned domain-invariant

feature maps will follow.

5.1. Discussion of Domain Adaptation

Our initial experiments were conducted using Cityscapes

as our source Domain DS and KITTI as out target domain

DT . The results are shown in Table 2. The effect of the

unsupervised domain adaptation can be clearly seen by the

mIoU increase of 6.2 % absolute on KITTI. A surprising re-

sult is that not only in the target domain, but even in the

source domain we obtain an increase in mIoU (2.4 % abso-

lute)1. We cast both improvements on the mere fact of ad-

ditional data for training. The important facts are: Firstly,

this additional training material does not require labels and

secondly, it may even stem from a different domain.

Intuitively one would use the same amount of images

from each dataset per minibatch (1:1:1), but preliminary ex-

periments have shown that a ratio of (1:2:1), i.e., two images

from the KITTI data set with one image from Cityscapes

1It has to be noted that the KITTI subset Dtrain,2975,c
KITTI used for this

experiment included images from the calibration and person categories of

the KITTI dataset. However, for the following experiments we use KITTI

subsets, which exclude these categories as they are originally not intended

for training.

and one from BDD100K, yields better results on the KITTI

and BDD100K validation sets. We also observed that it is

advantageous for the performance on the target domains if

the domain discriminator has to distinguish between all do-

mains and not only between source and target domain.

The results for multiple datasets are presented in Ta-

ble 3, showing the mIoU for different validation sets. The

first row serves as our baseline, as these results are ob-

tained with a segmentation network that was solely trained

on the Cityscapes training set Dtrain
CS and has not seen im-

ages from any other domain. It can be seen that the mIoU

for the network with the domain adaptation increases for

the source domain (Cityscapes) as well as for the target do-

mains (KITTI and BDD100K), implying that a multi-task

gain exists and the feature extractor network is forced to

extract domain-invariant, better generalizing features.

It can also be seen that the usage of more unlabeled data

further improves performance but has a sweet spot and de-

creases again for too much unlabeled data. The sweet spot

is reached for 5000 images on KITTI, while both 2975 and

10000 images yield a somewhat lower performance. With

the best approach from stage 1 a stage 2 training was per-

formed, which further increased the mIoU on all validation

sets. The final network yields a performance on Dval
KITTI,

which is nearly en par with results on Dval
CS. We obtain a

gain of by 16.2 % mIoU absolute on the KITTI validation

set by unsupervised domain adaptation and moreover we

obtain a gain of 5.7 % mIoU on the Cityscapes validation

set. We also see a large gain on the BDD100K subset Dval
BDD

where we obtain an increase of 23.8 % mIoU absolute. For

the sake of clarity, the dataset that is used for training with

unsupervised domain adaptation in stage 2 is referred to as

Dtrain
all .

For our final evaluation we tested the final stage 2 net-

work against the stage 2 baseline on the two test sets Dtest
CS

and Dtest
KITTI. The results are presented in Table 4. We ob-

tain a gain of 15.4 % mIoU absolute on Dtest
KITTI after un-

supervised domain adaptation, and in addition we also ob-

tain a gain of 3.8 % mIoU absolute on the in-domain data
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Figure 5. Results of the feature map activation analysis for a) in-domain data and b) data with a domain shift. Results are shown for

the non-adapted network (no markers) and the adpated network (markers ◦◦◦). Please note that the scaling of the left y-axis is two orders of

magnitude smaller to visualize the effect also for the in-domain data.

Table 4. Test set mIoU for Cityscapes and KITTI without and

with unsupervised domain adaptation. The results are for networks

trained for stages 1 and 2.

Trained on Evaluation Results (mIoU)

Dtest
CS Dtest

KITTI

Dtrain
CS (w/o adaptation) 56.0 % 44.1 %

Dtrain
all (with adaptation) 59.8 % 59.5 %

Dtest
CS . On the KITTI test set our domain-adapted semantic

segmentation achieved a surprisingly good 5th rank with an

mIoU of 59.5 % and without having used any KITTI labels

during training 2.

5.2. Further Analysis

The results presented above allow for two hypotheses.

The increase in accuracy could either be due to the fact

that the gradients of deeper layers in the feature extractor

are larger by the multi-task approach, or we actually learn

domain-invariant features. We used the settings with two

domains to analyze the features that are extracted by both a

network trained without and a network trained with domain

adaptation. We extracted activation vectors as described in

Section 3.3 for the Cityscapes subsets Dtrain
CS and Dval

CS and

for the KITTI subset Dval
KITTI for both network variants. Af-

terwards, we computed the DMSE (5) for all vectors from

the validation sets with their corresponding vector from the

Cityscapes train set. The results are depicted in Figure 5. It

can be seen that the difference for the network trained with-

out domain adaptation is higher than for the network trained

with domain adaptation. This holds even true for data from

the same domain as can be seen in subfigure a), even so this

2We could not test on Dtest
BDD, since an evaluation server does not seem

to be set up yet and no test labels are provided.

effect is only noticeable on a scale which is smaller by two

orders of magnitude.

What is immediately noticeable is that the differences

in activations are particularly large for the layers L ∈
{0, 6, 12, 24, 36}. If one compares these layers with Fig-

ure 2, then we realize that these are exactly the layers which,

in contrast to the residual units, are not extended by a resid-

ual path. It seems that these layers contain domain-specific

knowledge in particular.

6. Conclusions

In this work we presented an unsupervised domain adap-

tation technique to semantic segmentation, which has ad-

vantages over style transfer approaches with generative

models, as it does not modify the input data to the network.

This is particularly important from a safety point of view, as

it cannot be said with certainty how a segmentation network

reacts to possible artifacts in generated images. We have

shown that this approach is also very convenient, as existing

networks can easily be extended by a domain discrimina-

tor and in fact domain-invariant, better generalizing features

are learned. In consequence we were able to show that with

our technique both the source and the target domain take

profit from additional unlabeled data of the target domain.

On the target domain KITTI test set, performance increases

by an impressive 15 % mIoU absolute. In consequence, our

domain-adapted semantic segmentation achieved a surpris-

ingly good 5th rank on the KITTI test set, without having

used any KITTI labels during training.
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