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Abstract

Domain adaptation aims to alleviate the problem
of retraining a pre-trained model when applying it
to a different domain, which requires large amount
of additional training data of the target domain.
Such an objective is usually achieved by establish-
ing connections between the source domain labels
and target domain data. However, this imbalanced
source-to-target one way pass may not eliminate
the domain gap, which limits the performance of
the pre-trained model. In this paper, we propose an
innovative Dual-Scheme Fusion Network (DSFN)
for unsupervised domain adaptation. By building
both source-to-target and target-to-source connec-
tions, this balanced joint information flow helps re-
duce the domain gap to further improve the net-
work performance. The mechanism is further ap-
plied to the inference stage, where both the orig-
inal input target image and the generated source
images are segmented with the proposed joint net-
work. The results are fused to obtain more robust
segmentation. Extensive experiments of unsuper-
vised cross-modality medical image segmentation
are conducted on two tasks – brain tumor segmen-
tation and cardiac structures segmentation. The ex-
perimental results show that our method achieved
significant performance improvement over other
state-of-the-art domain adaptation methods.

1 Introduction

Deep learning has achieved state-of-the-art results in many
fields. However, the model trained on one dataset cannot be
directly applied to other datasets with similar contents and
various distribution. Since the different distribution brings
a domain shift problem and further leads to identification
failure. Solving the identification failure caused by domain
shift is an important issue, which can improve the gener-
alization as well as portability and further solve the prob-
lem of lacking of labeled data and expensive cost of man-
ual annotation. Unsupervised domain adaptation methods
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are an effective method to solve those problems, which en-
ables one labeled dataset to serve multiple other unlabeled
ones and greatly improve the practical value of deep learn-
ing network. The unsupervised domain adaptation methods
can be categorized into two types: image adaptation and fea-
ture adaptation. [Chen et al., 2018; Bousmalis et al., 2017;
Hoffman et al., 2017; Chen et al., 2019] are the represen-
tative articles of image adaptation. In [Chen et al., 2018;
Bousmalis et al., 2017], segmentation network is first trained
using source domain dataset, and then target data are trans-
lated into source domain for segmentation using the trained
segmentation network. In [Hoffman et al., 2017; Chen et al.,
2019], the source domain data are first translated into target
domain, and then the segmentation network are trained by the
generated target-like data with corresponding source domain
annotation. The representative articles of feature adaptation
are [Tsai et al., 2018; Dou et al., 2018]. Those methods di-
rectly perform feature adaptation without cross-domain trans-
lation of the image.

However, current works based on image adaptation only
conduct the two-direction translation separately. This imbal-
anced source-to-target or target-to-source one way connec-
tion may not eliminate the domain gap, which limits the per-
formance of the pre-trained model. To overcome this prob-
lem, we propose to combine these two complementary direc-
tions into one unified framework for acquiring a better result.
Our proposed model, named Dual-Scheme Fusion Network
(DSFN), adopts CycleGAN[Zhu et al., 2017]’s architecture
as base structure. To make the network can simultaneously
conduct the tasks of image translation and segmentation, we
modified the generator to a joint translation-segmentation net-
work. The translation and segmentation parts share a same
encoder. This setting can not only reduce network’s param-
eters, but also enable the two tasks to enhance each other.
Moreover, the segmentation network also can help reserve
content of the generated image. During training, the first joint
cross-domain translation and segmentation network is trained
by source domain images. The task of translation branch
is generating target-like images and the segmentation branch
aims to segment the source domain image. The first trained
segmentation network can be used to segment the source-like
image generated by the target domain image. Then, the gen-
erated target-like image is used to train the joint network for
converting target-like image to source domain and segmen-
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Figure 1: Overall structure of our proposed network. Es + Ts→t is the source-to-target image translation branch while Et + Tt→s conduct
target-to-source translation. Es + Ss and Et + St are the two segmentation network that we aim to get. We add two other discriminators Ds

f ,

D
t
f and auxiliary tasks for Dt, Ds to perform feature adaptation. The red arrows represent different losses, the yellow arrows show the data

flows from source or source-like images, the green arrows show the data flows from target or target-like images, and the black arrows mean
the data flows for feature adaptation.

tation. The second obtained segmentation branch can be di-
rectly used to segment the target domain data. Finally, we
merge the two segmentation outputs of target image to obtain
a more accurate result. Moreover, we also introduce feature
adaptation loss referring[Chen et al., 2019] to further narrow
the feature-level gap between target and target-like data, as
well as source and source-like data. The whole network is
designed subtly, the backward process of our network is also
the test procedure. The main contributions of our paper are
as follows:

1) We propose an end-to-end unsupervised parallel dual-
scheme fusion network for solving the problem of un-
supervised domain adaptation from two perspectives by
building both source-to-target and target-to-source con-
nections, this balanced joint information flow helps bridge
the domain gap to further improve the network perfor-
mance.

2) We train our network in a cycle manner and the backward
process is also the testing process. The structure of our
network is effective and elegant.

3) We validate our method on the BRATS[Menze et al.,
2014] and MM-WHS[Zhuang and Shen, 2016] dataset.
Experimental results show that our proposed approach ex-
ceed current state-of-the-art domain adaptation methods,
effectively alleviating the expensive cost of manual label-

ing cross-domain medical data, which has great clinical
practical value.

2 Related Work

Typically, domain adaptation methods generalize to other
tasks by minimizing the distance of feature space between
the source and the target domain. For example, Tzeng et
al. [Tzeng et al., 2014] tries to learn a domain-invariant fea-
ture representation between source and target by proposing
an adaptation layer and a domain confusing loss. Long et
al. [Long et al., 2015] matches source and target distribution
by embedding their hidden features in a reproducing kernel
Hilbert space.

Inspired by the advanced of generative adversarial network
[Goodfellow et al., 2014], adversarial learning becomes the
main training strategy for domain adaptation methods. Some
of them directly map feature representations between source
and target domain, for example, Tsai et al .[Tsai et al., 2018]

conducted different feature levels’ domain adaptation by in-
troducing multi-level discriminators to the segmentation net-
work and Dou et al. [Dou et al., 2018] shared a similar idea
with an innovative network structure. Some conduct pixel-
level domain transfer, which has two directions as mentioned
above. One is to perform target-to-sourced translation, such
as [Chen et al., 2018], and the other is to perform source-to-
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Method
Dice Score [%] Hausdorff Distance [mm]

T1 FLAIR T1CE Average T1 FLAIR T1CE Average

Without domain adaptaion 6.8 54.4 6.7 22.6 58.7 21.5 60.2 46.8

CycleGAN[Zhu et al., 2017] 38.1 63.3 42.1 47.8 25.4 17.2 23.2 21.9

CyCADA [Hoffman et al., 2017] 49.6 72 51.7 57.8 20.2 14.9 18.4 17.8

AdaptSegNet[Tsai et al., 2018] 42.6 67.8 33.1 47.8 23.4 16.6 28.8 22.9

SIFA[Chen et al., 2019] 51.7 68 58.2 59.3 19.6 16.9 15.01 17.1

DSFN(our proposed) 57.3 78.9 62.2 66.1 17.5 13.8 15.5 15.6

Table 1: Comparison of Dice score and Hausdorff distance between our proposed method and other state-of-the-art methods on whole tumor
segmentation in the BRATS dataset.

target translation, such as [Hoffman et al., 2017] and [Zhu et
al., 2020].

Due to the expensive cost of manual annotation, there
is a lot of research on domain adaptation in the medical
field. For example, Nie et al. [Nie et al., 2017] proposed
a context-aware GAN to generate PET images from MRI
images. Wolterink et al. [Wolterink et al., 2017] used Cy-
cleGAN to convert between unpaired CT and MRI images.
Similarly, Chen et al. [Chen et al., 2019] conducted the MRI
to CT translation and CT splenomegalia segmentation at the
same time. Zhao et al. [Zhao et al., 2018] proposed a R-
sGAN technique to synthesize fundus image data set and gen-
eralize its segmentation network to other data sets. Chen et
al. [Chen et al., 2018] adopted target-to-source translation to
segment left/right lung using chest X-ray datasets. Kamnitsas
et al. [Kamnitsas et al., 2017] proposed a multi-connected do-
main discriminator to segment unannotated MR images with
traumatic brain injuries. [Dou et al., 2018] transfers a car-
diac segmentation network trained with MRI to unannotated
CT images. Fang and Yan [Fang and Yan, 2020] propose a
new multi-scale paramid network and loss function to seg-
ment multiple partially labeled datasets.

3 Methods

The overall framework of our proposed Dual-Scheme Fu-
sion Network for unsupervised domain adaptation is shown
in Fig.1, which contains two joint translation-segmentation
modules. Each joint network has an encoder-decoder struc-
ture. The decoder is divided into two branches–translation
branch and segmentation branch, which share one same en-
coder. Each translation branch corresponds to a discrimina-
tor to distinguish the generated image from the real image.
The design of our network structure is a transformation based
on CycleGAN[Zhu et al., 2017]. The difference is that we
replace the generator with a joint translation-segmentation
module.

The background setting is that we have a source domain
dataset {xs} with corresponding annotation {ys} and want to
annotate the unlabeled target domain dataset {xt}. We solve
this problem from two perspectives: (a) Target-to-Source: We
train a segmentation network Es + Ss using source domain
dataset {xs, ys}, then translate target image xt into the source
domain through Et + Tt→s and segment it through the seg-
mentation network Es + Ss; (b) Source-to-Target: we first
translate the source domain image xs into the target domain

through Es + Ts→t, then a segmentation network Et + St is
trained using the generated xs→t with corresponding anno-
tation ys, so the real xt can be directly segmented by Et +
St. We integrate these two streams into a unified network and
fuse their results to form a new prediction as final output.

The flow of data through our network is described as fol-
lows. In the training process of forward, xs is inputed into the
joint network G1 to obtain the cross-domain generated image
xs→t and the segmentation prediction ŷs. Discriminator Dt

will distinguish between xt and xs→t. The generated image
xs→t is then putted into the joint network G2 to obtain re-
constructed image xs→t→s and the segmentation prediction
ŷs→t.

And in the training process of backward (test process fol-
lows the same data flow of backward process), the target do-
main image xt is inputted into joint network G2, and we can
get the xs-like cross-modality image xt→s and segmentation
prediction ŷt. Discriminator Ds distinguish between xs and
xt→s. Then, the generated xt→s is putted into the joint net-
work G1 which outputs the reconstructed image xt→s→t and
the segmentation prediction ŷt→s. As for feature adaptation,
Discriminator Ds

f distinguishes between ŷs and ŷt→s while

Dt
f will distinguish between ŷs→t and ŷt. Dt and Ds also

have an auxiliary task to respectively distinguish between
xs→t and xt→s→t, xs→t→s and xt→s. In the test process,
ŷt and ŷt→s are two segmentation predictions for the target
domain image xt from different perspective. We fuse the two
predictions to get a higher-accuracy result fusion(ŷt, ŷt→s) as
our final result for target image xt. For the selection of the
fusion strategy, we find that averaging the prediction proba-
bilities of these two results can obtain better performance.

3.1 Adversarial Loss

We train our unified network in a cycle manner, which means
that we have a source to target translation and a target to
source translation as well. To generate more realistic images,
we adopt the adversarial loss as loss function. The adversarial
learning consists of two modules: a generator and a discrim-
inator. Our problem is an image-to-image domain transla-
tion problem. So in source to target translation, we forward
a source image xs to generator Es+Ts→t and it’s responsi-
ble for generating an image xs→t that looks like target image
and can fool the discriminator Dt, while the discriminator Dt

aims to distinguish whether the image is actually derived from
target domain or synthesized by the generator. This forms a
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Figure 2: Visual display of the results for comparing different methods on BRATS dataset. From left to right are the target domain input
images, results without domain adaptation (as the baseline), CycleGAN, CYCADA, Adapt Segnet, SIFA and our proposed method. The last
column is ground truth. The first row is T1 images with segmentation in green, the second row is FLAIR images with segmentation in blue,
and the last row is T1CE images with segmentation in red.

process of adversarial learning, which can be described as
minEs+Ts→t

maxDt
Ladv(Es, Ts→t, Dt) and:

Ladv(Es, Ts→t, Dt) =Ext∼Xt
[logDt (xt)] +

Exs∼Xs
[log (1−Dt (Ts→t (Es (xs))))]

(1)
The target to source translation is likewise. The objective

function is minEt+Tt→s
maxDs

Ladv(Et, Tt→s, Ds) and:

Ladv(Et, Tt→s, Ds) =Exs∼Xs
[logDs (xs)] +

Ext∼Xt
[log (1−Ds (Tt→s (Et (xt))))]

(2)

3.2 Reconstruction Loss

In order to make the generated image preserve structure,
shape and other content information of the original image,
we introduce reconstruction loss in our model to constraint
the training process.

Taking the forward process as example, reconstruction
means that xs→t translated by xs can be reconstructed back to
source domain by generator Et+Tt→s and will be consistent
with the original xs, ie Tt→s (Et (xs→t)) ∼ xs. Its objective
function is:

Lrec (Es, Ts→t, Et, Tt→s) =

Exs∼XS
[‖Tt→s (Et ((Ts→t (Es (xs)))))− xs‖1]

(3)

Similarly, in the backward process, it is
Ts→t (Es (xt→s)) ∼ xt:

Lrec (Es, Ts→t, Et, Tt→s) =

Ext∼XT
[‖Ts→t (Es ((Tt→s (Et (xt)))))− xt‖1]

(4)

3.3 Segmentation Loss

As mentioned above, our network contains two segmentation
networks to solve the unsupervised domain adaptation prob-
lem. As shown in Fig. 1, in the forward process, Es + Ss is
our first segmentation network by training the source domain
image xs, Et + St is the second segmentation network ob-
tained by training the generated image xs→t. The loss func-
tion of two segmentation network is:

Lseg (Es, Ss, Et, St) =Exs∼Xs
[−ys log (Ss (Es (xs)))]

+Exs→t∼Xs→t
[−ys log (St (Et (xs→t)))]

(5)
As for backward process, segmentation network is em-

ployed in the test procedure to get the final segmentation re-
sult of the target domain image xt. First, feeding target do-
main data xt into the joint network G2 through the segmen-
tation branch Et + St in the joint network for getting the first
segmentation prediction ŷt. At the same time, xt→s is gen-
erated by the translation branch Et+Tt→s. Then xt→s will
be fed into the joint network G1, so the segmentation branch
Es+Ss of G1 can output the second segmentation prediction
for xt, denoted as ŷt→s. Finally, we fuse ŷt and ŷt→s to get
the final segmentation result fusion {ŷt, ŷt→s}.

3.4 Feature-adaptation Loss

In order to further improve the segmentation results, we intro-
duce feature adaptation loss referring to [Chen et al., 2019].
As mentioned above, the segmentation network Es + Ss is
trained on xs and used to induce xt→s. But there is still do-
main gap between them that makes the segmentation result of
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Method
Dice Score [%] Hausdorff Distance [mm]

AA LAC LVC MYO Average AA LAC LVC MYO Average

without domain adaptation 28.4 27.7 4.0 8.7 17.2 32.6 35.1 54.2 57.4 44.8

CycleGAN[Zhu et al., 2017] 73.8 75.7 52.3 28.7 57.6 16.2 15.4 20.8 27.7 20.0

CyCADA [Hoffman et al., 2017] 72.9 77.0 62.4 45.3 64.4 14.9 12.8 18.3 22.9 17.2

AdaptSegNet[Tsai et al., 2018] 69.4 73.3 54.9 36.7 58.6 17.1 17.6 22.8 25.4 20.7

SIFA[Chen et al., 2019] 81.1 76.4 75.7 58.7 73.0 8.2 10.5 12.2 17.9 12.2

DSFN(our proposed) 84.7 76.9 79.1 62.4 75.8 7.4 11.9 10.6 15.7 11.4

Table 2: Comparison of Dice score and Hausdorff distance between our proposed method and other state-of-the-art methods for cardiac
structures segmentation on MM-WHS dataset.

xt→s inaccurate. To reduce their differences in feature level,
we introduce a discriminator Ds

f and an auxiliary task for

Dt, when Ds
f cannot distinguish between segmentation pre-

dictions from xs or xt→s, and Dt can’t differentiate between
xs→t and xt→s→t, the features of xs and xt→s are consistent.
The corresponding loss function is:

L
fs
adv

(

Es, Ss, D
s
f

)

=Exs∼Xs

[

logDs
f (Ss (Es (xs)))

]

+Ext→s∼Xt→s

[

log
(

1−Ds
f (Ss (Es (xt→s)))

)]
(6)

and

Ltaux

adv (Es, Dt) =Exs∼Xs
[logDt (Ts→t (Es (xs)))]

+Ext→s∼Xt→s
[log (1−Dt (Ts→t (Es (xt→s))))]

(7)

Similarly, to reduce the domain gap between xt and xs→t,
we also introduce a discriminator Dt

f and an auxiliary task

for Ds. And the loss function is:

L
ft
adv

(

Et, St, D
t
f

)

=Exs→t∼Xs→t

[

logDt
f (St (Et (xs→t)))

]

+Ext∼Xt

[

log
(

1−Dt
f (St (Et (xt)))

)]
(8)

and

Lsaux

adv (Et, Ds) =Exs→t∼Xs→t
[logDs (Tt→s (Et (xs→t)))]

+Ext∼Xt
[log (1−Ds (Tt→s (Et (xt))))]

(9)

In summary, the overall objective function is:

L =Ladv(Es, Ts→t, Dt) + Ladv(Et, Tt→s, Ds)

+λrecLrec (Es, Ts→t, Et, Tt→s)

+λrecLrec (Es, Ts→t, Et, Tt→s)

+λfL
fs
adv

(

Es, Ss, D
s
f

)

+ λfL
ft
adv

(

Et, St, D
t
f

)

+λauxL
taux

adv (Es, Dt) + λauxL
saux

adv (Et, Ds)

+λsegLseg (Es, Ss, Et, St)

(10)

where we set λrec = 10, λf = 0.1, λaux = 0.1 and λseg = 1
to balance different losses.

3.5 Network Structure and Training Details

Our translation-segmentation joint network follows the struc-
ture settings from [Chen et al., 2019]. Overall, our joint
network contains an encoder connecting to two decoder
branches. The encoder contains three residual blocks[He
et al., 2016] and down-sampling layers in sequence, then 8
residual blocks are followed and two dilated residual blocks
continue to enlarge the receptive field, and two convolutional
layers are connected at the end. For the translation branch,

decoder contains a convolutional layer, 4 residual blocks and
3 deconvolutional layers to restore the resolution, then a con-
volutional layer and tanh activation function is followed. As
for the segmentation branch, it contains a convolutional layer
and an upsampling layer.

For the discriminator, we follow the setting of
patchGAN[Isola et al., 2017] and use five convolutional
layers to convolve in turn, with the first three stride being 2
and the last two being 1. Their kernel size is 4×4 and the
channel number is 64, 128, 256, 512 and 1, respectively.

During the training process, we substitute the least-squares
loss for the log likelihood objective in the adversarial loss
referring to CycleGAN[Zhu et al., 2017], which can make
the training process more stable[Mao et al., 2017]. We use
the Adam solver[Kingma and Ba, 2014] with a batch size of
8 and initialize the learning rate to 0.0002 for translation task
and 0.001 for segmentation task. The various parts of the
network are trained in the following order: Es+Ss → Ts→t

→ Dt → Ds
f → Et+St → Tt→s → Ds → Dt

f .

4 Experiments

We validate our proposed method on two datasets – Multi-
Modality Brain Tumor Segmentation Challenge 2018[Menze
et al., 2014] and the Multi-Modality Whole Heart Segmen-
tation Challenge 2017[Zhuang and Shen, 2016]. The first
dataset contains four modalities of MRI imaging: T1, T1CE,
T2, and FLAIR. There are a total of 75 patient data. Be-
cause experts always annotate whole tumor on T2 modality,
we take T2 as the source domain with whole tumor annotation
and aims to segment three target domain – T1, T1CE, FLAIR.
Our experiments are conducted in an unpaired manner.

The second dataset is composed of 20 unpaired MR and
CT imaging data, and their ground truth contains the annota-
tion of four heart structures – the ascending aorta (AA), the
left atrium blood cavity (LAC), the left ventricle blood cavity
(LVC), and the myocardium of the left ventricle (MYO). We
use MR images and their corresponding labels as the source
domain dataset to segment the target domain CT images.

For both datasets, we randomly select 80% patient data for
each modality as the training set and 20% as the testing set.
All data subtract their mean and are divided by their standard
deviation for normalization, then we switch them to [-1,1] be-
fore feeding to the network. We augment the data by rotation,
cropping, etc., and each slice is resized to 256×256. The tar-
get labels of these two datasets are only used for evaluation.
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Figure 3: Visual display of the cross-domain cardiac structures segmentation results for comparing different methods on MM-WHS dataset.

Method
Dice Score [%]

Result1 Result2 Fusion

Without feature adaptation 60.6 61.8 64.2

With feature adaptation 62.5 63.4 66.1

Table 3: Ablation study of fusion strategy and feature adaptation on
BRATS dataset. Result1 and Result2 represent the results of these
two schemes, respectively.

Method
Dice Score [%]

Result1 Result2 Fusion

Without feature adaptation 58.3 60.1 64.7

With feature adaptation 70.9 73.7 75.8

Table 4: Ablation study of fusion strategy and feature adaptation
on MM-WHS dataset. Result1 and Result2 represent the results of
these two schemes, respectively.

Our experiments are conducted from two aspects: compar-
ison with other state-of-the-art unsupervised domain adapta-
tion methods and ablation experiments. For evaluation, we
select two metrics commonly used in medical image seg-
mentation tasks: Dice coefficient[%] and Hausdorff Distance.
Dice coefficient measures the overlapping part of our predic-
tion results and the groundtruth. Hausdorff distance is a dis-
tance defined between two sets in the metric space.

4.1 Comparison Experiments

The methods we compare with are: CycleGAN[Zhu et al.,
2017], CyCADA [Hoffman et al., 2017], AdaptSegNet[Tsai
et al., 2018], SIFA[Chen et al., 2019]. In addition, we also
compare the results without domain adaptation (directly input
the target image into the trained source domain segmentation
network).

Table 1 and Table 2 respectively show the comparison re-
sult between our method and others on the brain tumor seg-

mentation dataset and cardiac segmentation dataset. It can be
seen that our method has a significant improvement compared
to no domain adaptation result by improving Dice Score from
22.6% to 66.1% on tumor segmentation task and from 17.2%
to 75.8% on cardiac structures segmentation task, and re-
ducing the Hausdorff Distance from 46.8mm to 15.6mm and
from 44.8mm to 11.4mm respectively, which shows that our
method is very effective in solving domain degradation prob-
lem. More importantly, our proposed method achieves bet-
ter results than the current state-of-the-art methods on these
two datasets. Especially when compared with SIFA[Chen
et al., 2019], which only consider the source-to-target di-
rection, we can increase the Dice by 6.8% on the BRATS
dataset and by 2.8% on the MM-WHS datasetet after adopt-
ing both source-to-target and target-to-source direction and
fusing their results, demonstrating the effectiveness of our
proposed method.

Fig.2 and Fig.3 present the visual results compared with
other methods. We can note that our outputs are not only
closer to the ground truth, but also the wrong semantic predic-
tion results are far less than others, indicating that our fusion
strategy can indeed make the results more robust.

4.2 Ablation Experiments

We perform ablation experiments on feature adaptation and
fusion to verify the influence of each component for our pro-
posed Dual-Scheme Fusion Network.

The ablation experiments are set as follows, we conduct ex-
periments respectively with or without feature adaptation, in
each case, we compare the results of three schemes: source-
to-target scheme, target-to-source scheme, and their fusion
solution. Table 3 and Table 4 present the ablation study re-
sults, Result1 represents the target-to-source method, Result2
represents the source-to-target method and Fusion represents
our Dual-Scheme Fusion method.

It can be seen that, in both datasets, the results of adding
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Figure 4: Ablation studies on (a) BRATS dataset and (b) MM-WHS dataset. The first and second rows present the results without and with
feature adaptation, respectively. The second and third columns are the segmentation prediction results of two schemes, and the fourth column
is their fusion result, respectively.

feature adaptation are improved in all three cases compared
with no feature adaptation. Among them, the improvement
on the MM-WHS dataset is particularly obvious, and the Dice
score can increase over 10% compared to no feature adapta-
tion, demonstrating the effectiveness of feature adaptation.

And regardless of whether feature adaptation is added or
not, compared with experiments conducted from source-to-
target or target-to-source perspective alone, the experimental
results are more accurate after using our dual-scheme fusion
strategy on both datasets. And Dice score can improve about
3% on BRATS dataset and 4% on MM-WHS dataset without
feature adaptation. If feature adaptation is added, our method
can further improve the Dice score by about 3% on BRATS
and 2% on MM-WHS, which reflects the effectiveness of fu-
sion strategy.

Fig.4(a) and Fig.4(b) present the visual results on BRATS
dataset and MM-WHS dataset respectively. The first row
shows the results without feature adaptation while the sec-
ond row shows them with feature adaptation. It can be seen
that overall the results of adding feature adaptation are more
accurate than not adding. The first column is the input im-
ages, prediction1 is the results from target-to-source scheme,
prediction2 is from source-to-target scheme and fusion result
means adopting our fusion strategy. We can see that the edges
of fusion images are smoother than the two separate predic-
tion results and are closer to the ground truth. Moreover, from
Fig.4(b) we can see that the misprediction outside the cardiac
structures from the two prediction results also disappear af-
ter fusion strategy, which means through our fusion strategy,
the results from target-to-source and source-to-target perspec-
tives can complement each other and a smoother and more
robust result can be obtained.

5 Conclusion

In this paper, we address the problem of domain adaptation
from two complementary perspectives and unify these two
approaches into an end-to-end network in an elegant and ef-
ficient way. Through the cycle structure, not only can the
unpaird data training problem be solved, but also a clever
combination of these two perspectives is obtained. Finally,
we choose an effective fusion method to acquire the final re-
sult. For further improvement, we also add feature adapta-

tion loss. The experimental results show that our proposed
method greatly surpasses the baseline and is superior to other
state-of-the-art methods.
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