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Abstract

This paper studies the unsupervised embedding learn-

ing problem, which requires an effective similarity mea-

surement between samples in low-dimensional embedding

space. Motivated by the positive concentrated and nega-

tive separated properties observed from category-wise su-

pervised learning, we propose to utilize the instance-wise

supervision to approximate these properties, which aims at

learning data augmentation invariant and instance spread-

out features. To achieve this goal, we propose a novel in-

stance based softmax embedding method, which directly op-

timizes the ‘real’ instance features on top of the softmax

function. It achieves significantly faster learning speed and

higher accuracy than all existing methods. The proposed

method performs well for both seen and unseen testing cat-

egories with cosine similarity. It also achieves competitive

performance even without pre-trained network over sam-

ples from fine-grained categories.

1. Introduction

Deep embedding learning is a fundamental task in com-

puter vision [14], which aims at learning a feature embed-

ding that has the following properties: 1) positive concen-

trated, the embedding features of samples belonging to the

same category are close to each other [32]; 2) negative sep-

arated, the embedding features of samples belonging to d-

ifferent categories are separated as much as possible [52].

Supervised embedding learning methods have been studied

to achieve such objectives and demonstrate impressive ca-

pabilities in various vision tasks [28, 30, 53]. However,

annotated data needed for supervised methods might be dif-

ficult to obtain. Collecting enough annotated data for differ-

ent tasks requires costly human efforts and special domain

expertise. To address this issue, this paper tackles the unsu-

pervised embedding learning problem (a.k.a. unsupervised

metric learning in [21]), which aims at learning discrimina-

tive embedding features without human annotated labels.
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Figure 1: Illustration of our basic idea. The features of the same

instance under different data augmentations should be invariant,

while features of different image instances should be separated.

Unsupervised embedding learning usually requires that

the similarity between learned embedding features is con-

sistent with the visual similarity or category relations of in-

put images. In comparison, general unsupervised feature

learning usually aims at learning a good “intermediate” fea-

ture representation from unlabelled data [6, 26, 31, 34]. The

learned feature is then generalized to different tasks by us-

ing a small set of labelled training data from the target task

to fine-tune models (e.g., linear classifier, object detector,

etc.) for the target task [3]. However, the learned feature

representation may not preserve visual similarity and its

performance drops dramatically for similarity based tasks,

e.g. nearest neighbor search [46, 48, 50].

The main challenge of unsupervised embedding learning

is to discover visual similarity or weak category information

from unlabelled samples. Iscen et al. [21] proposed to mine

hard positive and negative samples on manifolds. However,

its performance heavily relies on the quality of the initial-

ized feature representation for label mining, which limits

the applicability for general tasks. In this paper, we pro-

pose to utilize the instance-wise supervision to approximate

the positive concentrated and negative separated proper-

ties mentioned earlier. The learning process only relies on

instance-wise relationship and does not rely on relations be-

tween pre-defined categories, so it can be well generalized

to samples of arbitrary categories that have not been seen

before (unseen testing categories) [12].
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For positive concentration: it is usually infeasible to

mine reliable positive information with randomly initialized

network. Therefore, we apply a random data augmentation

(e.g., transformation, scaling) to each image instance and

use the augmented image as a positive sample. In other

words, features of each image instance under different data

augmentations should be invariant. For negative separa-

tion: since unlabelled data are usually highly imbalanced

[27, 49], the number of negative samples for each image in-

stance is much larger than that of positive samples. There-

fore, a small batch of randomly selected instances can be ap-

proximately treated as negative samples for each instance.

With such assumption, we try to separate each instance from

all the other sampled instances within the batch, resulting

in a spread-out property [52]. It is clear that such assump-

tion may not always hold, and each batch may contain a

few false negatives. However, through our extensive exper-

iments, we observe that the spread-out property effectively

improves the discriminability. In summary, our main idea is

to learn a discriminative instance feature, which preserves

data augmentation invariant and spread-out properties for

unsupervised embedding learning, as shown in Fig. 1.

To achieve these goals, we introduce a novel instance

feature-based softmax embedding method. Existing soft-

max embedding is usually built on classifier weights [8] or

memorized features [46], which has limited efficiency and

discriminability. We propose to explicitly optimize the fea-

ture embedding by directly using the inner products of in-

stance features on top of softmax function, leading to signif-

icant performance and efficiency gains. The softmax func-

tion mines hard negative samples and takes full advantage

of relationships among all sampled instances to improve the

performance. The number of instance is significantly larger

than the number of categories, so we introduce a Siamese

network training strategy. We transform the multi-class

classification problem to a binary classification problem and

use maximum likelihood estimation for optimization.

The main contributions can be summarized as follows:

• We propose a novel instance feature-based softmax

embedding method to learn data augmentation invari-

ant and instance spread-out features. It achieves signif-

icantly faster learning speed and higher accuracy than

all the competing methods.

• We show that both the data augmentation invariant

and instance spread-out properties are important for

instance-wise unsupervised embedding learning. They

help capture apparent visual similarity between sam-

ples and generalizes well on unseen testing categories.

• The proposed method achieves the state-of-the-art per-

formances over other unsupervised learning methods

on comprehensive image classification and embedding

learning experiments.

2. Related Work

General Unsupervised Feature Learning. Unsuper-

vised feature learning has been widely studied in litera-

ture. Existing works can be roughly categorized into three

categories [3]: 1) generative models, this approach aims

at learning a parameterized mapping between images and

predefined noise signals, which constrains the distribution

between raw data and noises [46]. Bolztmann Machines

(RBMs) [24, 40], Auto-encoders [20, 42] and generative

adversarial network (GAN) [7, 10, 11] are widely stud-

ied. 2) Estimating Between-image Labels, it usually esti-

mates between-image labels using the clustering technique

[3, 9, 26] or kNN-based methods [41], which provide label

information. Then label information and feature learning

process are iteratively updated. 3) Self-supervised Learn-

ing, this approach designs pretext tasks/signals to generate

“pseudo-labels” and then formulate it as a prediction task to

learn the feature representations. The pretext task could be

the context information of local patches [6], the position of

randomly rearranged patches [31], the missing pixels of an

image [34] or the color information from gray-scale images

[51]. Some attempts also use video information to provide

weak supervision to learn feature representations [1, 44].

As we discussed in Section 1, general unsupervised fea-

ture learning usually aims at learning a good “intermediate”

feature representation that can be well generalized to oth-

er tasks. The intermediate feature representation may not

preserve visual similar property. In comparison, unsuper-

vised embedding learning requires additional visual simi-

larity property of the learned features.

Deep Embedding Learning. Deep embedding learning

usually learns an embedding function by minimizing the

intra-class variation and maximizing the inter-class varia-

tion [32, 37, 45, 47]. Most of them are designed on top of

pairwise [12, 30] or triplet relationships [13, 29]. In partic-

ular, several sampling strategies are widely investigated to

improve the performance, such as hard mining [16], semi-

hard mining [35], smart mining [13] and so on. In compari-

son, softmax embedding achieves competitive performance

without sampling requirement [18]. Supervised learning

has achieved superior performance on various tasks, but

they still rely on enough annotated data.

Unsupervised Embedding Learning. According to the

evaluation protocol, it can be categorized into two cases,

1) the testing categories are the same with the training cat-

egories (seen testing categories), and 2) the testing cate-

gories are not overlapped with the training categories (un-

seen testing categories). The latter setting is more challeng-

ing. Without category-wise labels, Iscen et al. [21] pro-

posed to mine hard positive and negative samples on mani-

folds, and then train the feature embedding with triplet loss.

However, it heavily relies on the initialized representation

for label mining.

6211



3. Proposed Method

Our goal is to learn a feature embedding network fθ(·)
from a set of unlabelled images X = {x1,x2, · · · ,xn}.

fθ(·) maps the input image xi into a low-dimensional em-

bedding feature fθ(xi) ∈ R
d, where d is the feature dimen-

sion. For simplicity, the feature representation fθ(xi) of an

image instance is represented by fi, and we assume that all

the features are ℓ2 normalized, i.e. ‖fi‖2 = 1. A good fea-

ture embedding should satisfy: 1) the embedding features of

visual similar images are close to each other; 2) the embed-

ding features of dissimilar image instances are separated.

Without category-wise labels, we utilize the instance-

wise supervision to approximate the positive concentrated

and negative seperated properties. In particular, the em-

bedding features of the same instance under different data

augmentations should be invariant, while the features of d-

ifferent instances should be spread-out. In the rest of this

section, we first review two existing instance-wise feature

learning methods, and then propose a much more efficient

and discriminative instance feature-based softmax embed-

ding. Finally, we will give a detailed rationale analysis and

introduce our training strategy with Siamese network.

3.1. Instancewise Softmax Embedding

Softmax Embedding with Classifier Weights. Exemplar

CNN [8] treats each image as a distinct class. Follow-

ing the conventional classifier training, it defines a matrix

W = [w1,w2, · · · ,wn]
T ∈ R

n×d, where the j-th column

wj is called the corresponding classifier weight for the j-th

instance. Exemplar CNN ensures that image instance under

different image transformations can be correctly classified

into its original instance with the learned weight. Based on

Softmax function, the probability of sample xj being rec-

ognized as the i-th instance can be represented as

P (i|xj) =
exp(wT

i fj)∑n

k=1
exp(wT

k fj)
. (1)

At each step, the network pulls sample feature fi towards

its corresponding weight wi, and pushes it away from the

classifier weights wk of other instances. However, classifier

weights prevent explicitly comparison over features, which

results in limited efficiency and discriminability.

Softmax Embedding with Memory Bank. To improve the

inferior efficiency, Wu et al. [46] propose to set up a mem-

ory bank to store the instance features fi calculated in the

previous step. The feature stored in the memory bank is de-

noted as vi, which serves as the classifier weight for the

corresponding instance in the following step. Therefore,

the probability of sample xj being recognized as the i-th
instance can be written as

P (i|xj) =
exp(vT

i fj/τ)∑n

k=1
exp(vT

k fj/τ)
, (2)

where τ is the temperature parameter controlling the con-

centration level of the sample distribution [17]. vT
i fj mea-

sures the cosine similarity between the feature fj and the

i-th memorized feature vi. For instance xi at each step,

the network pulls its feature fi towards its corresponding

memorized vector vi, and pushes it away from the memo-

rized vectors of other instances. Due to efficiency issue, the

memorized feature vi corresponding to instance xi is only

updated in the iteration which takes xi as input. In other

words, the memorized feature vi is only updated once per

epoch. However, the network itself is updated in each iter-

ation. Comparing the real-time instance feature fi with the

outdated memorized feature vi would cumber the training

process. Thus, the memory bank scheme is still inefficient.

A straightforward idea to improve the efficiency is di-

rectly optimizing over feature itself, i.e. replacing the

weight {wi} or memory {vi} with fi. However, it is im-

plausible due to two reasons: 1) Considering the probability

P (i|xi) of recognizing xi to itself, since fTi fi=1, i.e. the fea-

ture and “pseudo classifier weight” (the feature itself) are al-

ways perfectly aligned, optimizing the network will not pro-

vide any positive concentrated property; 2) It’s impractical

to calculate the feature of all the samples (fk, k = 1, . . . , n)

on-the-fly in order to calculate the denominator in Eq. (2),

especially for large-scale instance number dataset.

3.2. Softmax Embedding on ‘Real’ Instance Feature

To address above issues, we propose a softmax embed-

ding variant for unsupervised embedding learning, which

directly optimizes the real instance feature rather than clas-

sifier weights [8] or memory bank [46]. To achieve the goal

that features of the same instance under different data aug-

mentations are invariant, while the features of different in-

stances are spread-out, we propose to consider 1) both the

original image and its augmented image, 2) a small batch of

randomly selected samples instead of the full dataset.

For each iteration, we randomly sample m instances

from the dataset. To simplify the notation, without

loss of generality, the selected samples are denoted by

{x1,x2, · · · ,xm}. For each instance, a random data aug-

mentation operation T (·) is applied to slightly modify the

original image. The augmented sample T (xi) is denoted by

x̂i, and its embedding feature fθ(x̂i) is denoted by f̂i. In-

stead of considering the instance feature learning as a multi-

class classification problem, we solve it as binary classifica-

tion problem via maximum likelihood estimation (MLE). In

particular, for instance xi, the augmented sample x̂i should

be classified into instance i, and other instances xj , j 6= i
shouldn’t be classified into instance i. The probability of x̂i

being recognized as instance i is defined by

P (i|x̂i) =
exp(fTi f̂i/τ)∑m

k=1
exp(fTk f̂i/τ)

. (3)
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Figure 2: The framework of the proposed unsupervised learning method with Siamese network. The input images are projected into

low-dimensional normalized embedding features with the CNN backbone. Image features of the same image instance with different data

augmentations are invariant, while embedding features of different image instances are spread-out.

On the other hand, the probability of xj being recognized

as instance i is defined by

P (i|xj) =
exp(fTi fj/τ)∑m

k=1
exp(fTk fj/τ)

, j 6= i (4)

Correspondingly, the probability of xj not being recognized

as instance i is 1− P (i|xj).
Assuming different instances being recognized as in-

stance i are independent, the joint probability of x̂i being

recognized as instance i and xj , j 6= i not being classified

into instance i is

Pi = P (i|x̂i)
∏

j 6=i

(1− P (i|xj)) (5)

The negative log likelihood is given by

Ji = − logP (i|x̂i)−
∑

j 6=i

log(1− P (i|xj)) (6)

We solve this problem by minimizing the sum of the neg-

ative log likelihood over all the instances within the batch,

which is denoted by

J = −
∑

i

logP (i|x̂i)−
∑

i

∑

j 6=i

log(1− P (i|xj)). (7)

3.3. Rationale Analysis

This section gives a detailed rationale analysis about why

minimizing Eq. (6) could achieve the augmentation invari-

ant and instance spread-out feature. Minimizing Eq. (6) can

be viewed as maximizing Eq. (3) and minimizing Eq. (4).

Considering Eq. (3), it can be rewritten as

P (i|x̂i) =
exp(fTi f̂i/τ)

exp(fTi f̂i/τ) +
∑

k 6=i exp(f
T
k f̂i/τ)

, (8)

Maximizing Eq. (3) requires maximizing exp(fTi f̂i/τ) and

minimizing exp(fTk f̂i/τ), k 6= i. Since all the features are

ℓ2 normalized, maximizing exp(fTi f̂i/τ) requires increas-

ing the inner product (cosine similarity) between fi and f̂i,

resulting in a feature that is invariant to data augmentation.

On the other hand, minimizing exp(fTk f̂i/τ) ensures f̂i and

other instances {fk} are separated. Considering all the in-

stances within the batch, the instances are forced to be sep-

arated from each other, resulting in the spread-out property.

Similarly, Eq. (4) can be rewritten as,

P (i|xj) =
exp(fTi fj/τ)

exp(fTj fj/τ) +
∑

k 6=j exp(f
T
k fj/τ)

, (9)

Note that the inner product fTj fj is 1 and the value of τ
is generally small (say 0.1 in the experiment). Therefore,

exp(fTj fj/τ) generally determines the value of the whole

denominator. Minimizing Eq. (4) means that exp(fTi fj/τ)
should be minimized, which aims at separating fj from fi.

Thus, it further enhances the spread-out property.

3.4. Training with Siamese Network

We proposed a Siamese network to implement the pro-

posed algorithm as shown in Fig. 2. At each iteration, m
randomly selected image instances are fed into in the first

branch, and the corresponding augmented samples are fed

into the second branch. Note that data augmentation is al-

so be used in the first branch to enrich the training sam-

ples. For implementation, each sample has one randomly

augmented positive sample and 2N − 2 negative samples

to compute Eq. (7), where N is the batch size. The pro-

posed training strategy greatly reduces the computational

cost. Meanwhile, this training strategy also takes full ad-

vantage of relationships among all instances sampled in a

mini-batch [32]. Theoretically, we could also use a multi-

branch network by considering multiple augmented images

for each instance in the batch.
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Methods kNN

RandomCNN 32.1

DeepCluster (10) [3] 44.4

DeepCluster (1000) [3] 67.6

Exemplar [8] 74.5

NPSoftmax [46] 80.8

NCE [46] 80.4

Triplet 57.5

Triplet (Hard) 78.4

Ours 83.6

Table 1: kNN accuracy (%) on CIFAR-10 dataset.

4. Experimental Results

We have conducted the experiments with two different

settings to evaluate the proposed method1. The first setting

is that the training and testing sets share the same categories

(seen testing category). This protocol is widely adopted for

general unsupervised feature learning. The second setting

is that the training and testing sets do not share any com-

mon categories (unseen testing category). This setting is

usually used for supervised embedding learning [32]. Fol-

lowing [21], we don’t use any semantic label in the training

set. The latter setting is more challenging than the former

setting and it could apparently demonstrate the quality of

learned features on unseen categories.

4.1. Experiments on Seen Testing Categories

We follow the experimental settings in [46] to conduct

the experiments on CIFAR-10 [23] and STL-10 [4] dataset-

s, where training and testing set share the same categories.

Specifically, ResNet18 network [15] is adopted as the back-

bone and the output embedding feature dimension is set to

128. The initial learning rate is set to 0.03, and it is de-

cayed by 0.1 and 0.01 at 120 and 160 epoch. The network is

trained for 200 epochs. The temperature parameter τ is set

to 0.1. The algorithm is implemented on PyTorch with SGD

optimizer with momentum. The weight decay parameter is

5×10−4 and momentum is 0.9. The training batch size is

set to 128 for all competing methods on both datasets. Four

kinds of data augmentation methods (RandomResizedCrop,

RandomGrayscale, ColorJitter, RandomHorizontalFlip) in

PyTorch with default parameters are adopted.

Following [46], we adopt weighted kNN classifier to e-

valuate the performance. Given a test sample, we retrieve

its top-k (k = 200) nearest neighbors based on cosine simi-

larity, then apply weighted voting to predict its label [46].

4.1.1 CIFAR-10 Dataset

CIFAR-10 datset [23] contains 50K training images and

10K testing images from the same ten classes. The image

size are 32 × 32. Five methods are included for compari-

son: DeepCluster [3] with different cluster numbers, Exem-

1Code is available at https://github.com/mangye16/
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Figure 3: Evaluation of the training efficiency on CIFAR-10

dataset. kNN accuracy (%) at each epoch is reported, demonstrat-

ing the learning speed of different methods.

plar CNN [8], NPSoftmax [46], NCE [46] and Triplet loss

with and without hard mining. Triplet (hard) is the online

hard negative sample within each batch for training [16],

and the margin parameter is set to 0.5. DeepCluster [3] and

NCE [46] represent the state-of-the-art unsupervised feature

learning methods. The results are shown in Table 1.

Classification Accuracy. Table 1 demonstrates that our

proposed method achieves the best performance (83.6%)

with kNN classifier. DeepCluster [3] performs well in

learning good “intermediate” features with large-scale un-

labelled data, but the performance with kNN classification

drops dramatically. Meanwhile, it is also quite sensitive

to cluster numbers, which is unsuitable for different tasks.

Compared to Exemplar CNN [8] which uses the classifi-

er weights for training, the proposed method outperforms

it by 9.1%. Compared to NPSoftmax [46] and NCE [46],

which use memorized feature for optimizing, the proposed

method outperform by 2.8% and 3.2% respectively. The

performance improvement is clear due to the idea of direct-

ly performing optimization over feature itself. Compared

to triplet loss, the proposed method also outperforms it by

a clear margin. The superiority is due to the hard mining

nature in Softmax function.

Efficiency. We plot the learning curves of the compet-

ing methods at different epochs in Fig. 3. The proposed

method takes only 2 epochs to get a kNN accuracy of 60%

while [46] takes 25 epochs and [8] takes 45 epochs to reach

the same accuracy. It is obvious that our learning speed is

much faster than the competitors. The efficiency is guar-

anteed by directly optimization on instance features rather

than classifier weights [8] or memory bank [46].

4.1.2 STL-10 Dataset

STL-10 dataset [4] is an image recognition dataset with col-

ored images of size 96× 96, which is widely used in unsu-

pervised learning. Specifically, this dataset is originally de-

signed with three splits: 1) train, 5K labelled images in ten
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Methods Training Linear kNN

RandomCNN None - 22.4

k-MeansNet∗ [5] 105K 60.1 -

HMP∗ [2] 105K 64.5 -

Satck∗ [54] 105K 74.3 -

Exemplar∗ [8] 105K 75.4 -

NPSoftmax [46] 5K 62.3 66.8

NCE [46] 5K 61.9 66.2

DeepCluster(100) [3] 5K 56.5 61.2

Ours 5K 69.5 74.1

Ours 105K 77.9 81.6

Table 2: Classification accuracy (%) with linear classifier and

kNN classifier on STL-10 dataset. ∗Results are taken from [33],

the baseline network is different.

classes for training, 2) test, 8K images from the same ten

classes for testing, 3) unlabelled, 100K unlabelled images

which share similar distribution with labelled data for un-

supervised learning. We follow the same experimental set-

ting as CIFAR-10 dataset and report classification accuracy

(%) with both Linear Classifier (Linear) and kNN classier

(kNN) in Table 2. Linear classifier means training a SVM

classifier on the learned features and the labels of training

samples. The classifier is used to predict the label of test

samples. We implement NPSoftmax [46], NCE [46] and

DeepCluster [3] (cluster number 100) under the same set-

tings with their released code. By default, we only use 5K

training images without using labels for training. The per-

formances of some state-of-the-art unsupervised methods

(k-MeansNet [5], HMP [2], Satck [54] and Exemplar [8])

are also reported. Those results are taken from [33].

As shown in Table 2 , when only using 5K training im-

ages for learning, the proposed method achieves the best ac-

curacy with both classifiers (kNN: 74.1%, Linear: 69.5%),

which are much better than NCE [46] and DeepCluster [3]

under the same evaluation protocol. Note that kNN mea-

sures the similarity directly with the learned features and

Linear requires additional classifier learning with the la-

belled training data. When 105K images are used for train-

ing, the proposed method also achieves the best perfor-

mance for both kNN classifier and linear classifier. In par-

ticular, the kNN accuracy is 74.1% for 5K training images,

and it increases to 81.6% for full 105K training images. The

classification accuracy with linear classifier also increases

from 69.5% to 77.9%. This experiment verifies that the pro-

posed method can benefit from more training samples.

4.2. Experiments on Unseen Testing Categories

This section evaluates the discriminability of the learned

feature embedding when the semantic categories of training

samples and testing samples are not overlapped. We follow

the experimental settings described in [32] to conduct ex-

periments on CUB200-2011(CUB200) [43], Stanford On-

line Product (Product) [32] and Car196 [22] datasets. No

semantic label is used for training. Caltech-UCSD Birds

Methods R@1 R@2 R@4 R@8 NMI

Initial (FC) 39.2 52.1 66.1 78.2 51.4

Supervised Learning

Lifted [32] 43.6 56.6 68.6 79.6 56.5

Clustering[38] 48.2 61.4 71.8 81.9 59.2

Triplet+ [13] 45.9 57.7 69.6 79.8 58.1

Smart+ [13] 49.8 62.3 74.1 83.3 59.9

Unsupervised Learning

Cyclic [25] 40.8 52.8 65.1 76.0 52.6

Exemplar [8] 38.2 50.3 62.8 75.0 45.0

NCE [46] 39.2 51.4 63.7 75.8 45.1

DeepCluster[3] 42.9 54.1 65.6 76.2 53.0

MOM [21] 45.3 57.8 68.6 78.4 55.0

Ours 46.2 59.0 70.1 80.2 55.4

Table 3: Results (%) on CUB200 dataset.

Methods R@1 R@10 R@100 NMI

Initial (FC) 40.8 56.7 72.1 84.0

Exemplar [8] 45.0 60.3 75.2 85.0

NCE [46] 46.6 62.3 76.8 85.8

DeepCluster[3] 34.6 52.6 66.8 82.8

MOM [21] 43.3 57.2 73.2 84.4

Ours 48.9 64.0 78.0 86.0

Table 4: Results (%) on Product dataset.

200 (CUB200) [43] is a fine-grained bird dataset. Follow-

ing [32], the first 100 categories with 5,864 images are used

for training, while the other 100 categories with 5,924 im-

ages are used for testing. Stanford Online Product (Product)

[32] is a large-scale fine-grained product dataset. Similar-

ly, 11,318 categories with totally 59,551 images are used

for training, while the other 11,316 categories with 60,502

images are used for testing. Cars (Car196) dataset [22] is

a fine-grained car category dataset. The first 98 categories

with 8,054 images are used for training, while the other 98

categories with 8,131 images are used for testing.

Implementation Details. We implement the proposed

method on PyTorch. The pre-trained Inception-V1 [39] on

ImageNet is used as the backbone network following exist-

ing methods [30, 32, 37]. A 128-dim fully connected layer

with ℓ2 normalization is added after the pool5 layer as the

feature embedding layer. All the input images are firstly re-

sized to 256 × 256. For data augmentation, the images are

randomly cropped at size 227×227 with random horizontal

flipping following [21, 30]. Since the pre-trained network

performs well on CUB200 dataset, we randomly select the

augmented instance and its corresponding nearest instance

as positive. In testing phase, a single center-cropped im-

age is adopted for fine-grained recognition as in [30]. We

adopt the SGD optimizer with 0.9 momentum. The initial

learning rate is set to 0.001 without decay. The temperature

parameter τ is set to 0.1. The training batch size is set to 64.

Evaluation Metrics. Following existing works on su-

pervised deep embedding learning [13, 32], the retrieval

performance and clustering quality of the testing set are e-

valuated. Cosine similarity is adopted for similarity mea-
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Methods R@1 R@2 R@4 R@8 NMI

Initial (FC) 35.1 47.4 60.0 72.0 38.3

Exemplar [8] 36.5 48.1 59.2 71.0 35.4

NCE [46] 37.5 48.7 59.8 71.5 35.6

DeepCluster[3] 32.6 43.8 57.0 69.5 38.5

MOM [21] 35.5 48.2 60.6 72.4 38.6

Ours 41.3 52.3 63.6 74.9 35.8

Table 5: Results (%) on Car196 dataset.

surement. Given a query image from the testing set, R@K
measures the probability of any correct matching (with

same category label) occurs in the top-k retrieved ranking

list [32]. The average score is reported for all testings sam-

ples. Normalized Mutual Information (NMI) [36] is utilized

to measure the clustering performance of the testing set.

Comparison to State-of-the-arts. The results of all the

competing methods on three datasets are listed in Table 3,

4 and 5, respectively. MOM [21] is the only method that

claims for unsupervised metric learning. We implement the

other three state-of-the-art unsupervised methods (Exem-

plar [8], NCE [46] and DeepCluster [3]) on three dataset-

s with their released code under the same setting for fair

comparison. Note that these methods are originally eval-

uated for general unsupervised feature learning, where the

training and testing set share the same categories. We al-

so list some results of supervised learning (originate from

[21]) on CUB200 dataset as shown in Table 3.

Generally, the instance-wise feature learning methods

(NCE [46], Examplar [8], Ours) outperform non-instance-

wise feature learning methods (DeepCluster [3], MOM

[21]), especially on Car196 and Product datasets, which in-

dicates instance-wise feature learning methods have good

generalization ability on unseen testing categories. Among

all the instance-wise feature learning methods, the proposed

method is the clear winner, which also verifies the effective-

ness of directly optimizing over feature itself. Moreover, the

proposed unsupervised learning method is even competitive

to some supervised learning methods on CUB200 dataset.

Qualitative Result. Some retrieved examples with co-

sine similarity on CUB200 dataset at different training e-

pochs are shown in Fig. 4. The proposed algorithm can

iteratively improve the quality of the learned feature and

retrieve more correct images. Although there are some

wrongly retrieved samples from other categories, most of

the top retrieved samples are visually similar to the query.

Training from Scratch. We also evaluate the perfor-

mance using a network (ResNet18) without pre-training.

The results on the large-scale Product dataset are shown in

Table 6. The proposed method is also a clear winner. In-

terestingly, MOM [21] fails in this experiment. The main

reason is that the feature from randomly initialized network

provides limited information for label mining. Therefore,

MOM cannot estimate reliable labels for training.

Methods R@1 R@10 R@100 NMI

Random 18.4 29.4 46.0 79.8

Exemplar [8] 31.5 46.7 64.2 82.9

NCE [46] 34.4 49.0 65.2 84.1

MOM [21] 16.3 27.6 44.5 80.6

Ours 39.7 54.9 71.0 84.7

Table 6: Results (%) on Product dataset using network without

pre-trained parameters.

4.3. Ablation Study

The proposed method imposes two important properties

for instance feature learning: data augmentation invariant

and instance spread-out. We conduct ablation study to show

the effectiveness of each property on CIFAR-10 dataset.

Strategy Full w/o R w/o G w/o C w/o F

kNN Acc (%) 83.6 56.2 79.3 75.7 82.6

Table 7: Effects of each data augmentation operation on CIFAR-

10 dataset. ’w/o’: Without. ’R’: RandomResizedCrop, ’G’: Ran-

domGrayscale, ’C’: ColorJitter, ’F’: RandomHorizontalFlip.

Strategy Full No DA Hard Easy

kNN Acc (%) 83.6 37.4 83.2 57.5

Table 8: Different sampling strategies on CIFAR-10 dataset.

To show the importance of data augmentation invariant

property, we firstly evaluate the performance by removing

each of the operation respectively from the data augmen-

tation set. The results are shown in Table 7. We observe

that all listed operations contribute to the remarkable per-

formance gain achieved by the proposed algorithm. In par-

ticular, RandomResizedCrop contributes the most. We al-

so evaluate the performance without data augmentation (No

DA) in Table 8, and it shows that performance drops sig-

nificantly from 83.6% to 37.4%. It is because when train-

ing without data augmentation, the network does not create

any positive concentration property. The features of visual-

ly similar images are falsely separated.

To show the importance of spread-out property, we eval-

uated two different strategies to choose negative samples:

1) selecting the top 50% instance features that are similar

to query instance as negative (hard negative); 2) selecting

the bottom 50% instance features that are similar to query

instance as negative (easy negative). The results are shown

as “Hard” and “Easy” in Table 8. The performance drops

dramatically when only using the easy negative. In com-

parison, the performance almost remains the same as the

full model when only using hard negative. It shows that

separating hard negative instances helps to improve the dis-

criminability of the learned embedding.

4.4. Understanding of the Learned Embedding

We calculate the cosine similarity between the query fea-

ture and its 5NN features from the same category (Positive)
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Query Epoch 0 Epoch 1 Epoch 2

Figure 4: 4NN retrieval results of some example queries on CUB200-2011 dataset. The positive (negative) retrieved results are framed in

green (red). The similarity is measured with cosine similarity.
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Figure 5: The cosine similarity distributions on CIFAR-10 [23]

as well as 5NN features from different categories (Nega-

tive). The distributions of the cosine similarity of different

methods are shown in Fig. 5. A more separable distribution

indicates a better feature embedding. It shows that the pro-

posed method performs best to separate positive and nega-

tive samples. We could also observe that our learned feature

preserves the best spread-out property.

It is interesting to show how the learned instance-wise

feature helps the category label prediction. We report the

cosine similarity distribution based on other category defi-

nitions (attributes in [19]) instead of semantic label in Fig. 6.

The distribution clearly shows that the proposed method al-

so performs well to separate other attributes, which demon-

strates the generalization ability of the learned feature.

5. Conclusion

In this paper, we propose to address the unsupervised

embedding learning problem by learning a data augmen-

tation invariant and instance spread-out feature. In partic-

ular, we propose a novel instance feature based softmax

embedding trained with Siamese network, which explicit-

0.00.20.40.60.81.0
0

5

Positive Negative

0.00.20.40.60.81.0
0

5

Positive Negative

(a) Attribute “animals vs artifacts”

0.00.20.40.60.81.0
0

5

Positive Negative

0.00.20.40.60.81.0
0

5

Positive Negative

(b) Attribute “big vs small shape animal”

Figure 6: The cosine similarity distributions of randomly initial-

ized network (left column) and our learned model (right column)

with different attributes on CIFAR-10 [23].

ly pulls the features of the same instance under different

data augmentations close and pushes the features of differ-

ent instances away. Comprehensive experiments show that

directly optimizing over instance feature leads to significant

performance and efficiency gains. We empirically show that

the spread-out property is particularly important and it helps

capture the visual similarity among samples.
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