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Abstract

This article deals with an original method to estimate the noise introduced by optical imaging systems, such as CCD

cameras. The power of the signal-dependent photon noise is decoupled from the power of the signal-independent

electronic noise. The method relies on the multivariate regression of sample mean and variance. Statistically similar

image pixels, not necessarily connected, produce scatterpoints that are clustered along a straight line, whose slope

and intercept measure the signal-dependent and signal-independent components of the noise power, respectively.

Experimental results carried out on a simulated noisy image and on true data from a commercial CCD camera

highlight the accuracy of the proposed method and its applicability to separate R–G–B components that have been

corrected for the nonlinear effects of the camera response function, but not yet interpolated to the the full size of the

mosaiced R–G–B image.

Introduction
Whenever the assumption of additive white Gaussian

noise (AWGN) no longer holds, noise modeling, and esti-

mation becomes a preliminary step of the most advanced

image analysis and interpretation systems. Preprocessing

of data acquired with certain modalities, like optoelec-

tronic and coherent, either ultrasound or microwave, may

benefit from proper parametric modeling of the depen-

dence of the signal on the noise and from accurate mea-

surements of the noise model parameters. The knowledge

of the noise model parameters is crucial for the task of

denoising. Maximum a posteriori probability estimators

exhibit a scarce tolerance to mismatches in the parametric

noise model [1].

Recent advances in the technology of optoelectronic

imaging devices have lead to the availability of image

data, in which the photon noise contribution may no

longer be neglected with respect to the electronic com-

ponent, which is becoming less and less relevant. As a

consequence, preprocessing and analysis methods must

be revised or even designed anew to take into account that

the noise is signal dependent.
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To date, the most powerful noise estimation models are

based on the multivariate regressions of local statistics

[2-5]. However, the solution is complicated by the pres-

ence of two parametric noise components, one signal-

dependent and another signal-independent.

The original contribution of this article is twofold: on

one side a robust multivariate procedure is proposed to

estimate the parameters of the mixed photon+ electronic

noise from a single image. On the other side, the limits

in the validity of the optoelectronic noise model are dis-

cussed, a topic that has never been clarified by any of the

most prominent articles, e.g., [5,6]. On raw dataa such a

model does not strictly hold, or better it holds only for a

limited range of values above zero. Actually, raw data are

available after a nonlinear mapping performed through

the camera response function (CRF) of the device in

order to avoid saturation effects. The optoelectronic noise

model is correctly estimated on true raw data by other

authors, e.g., [5], only if the range of nonlinearity is care-

fully avoided by the estimation procedure. Conversely, on

CRF-corrected data, which are much more available and

widespread (they might be in principle obtained by prop-

erly decimating the demosaiced R–G–B image) the opto-

electronic noise model holds on the whole dynamic range

and can be more easily estimated. Other authors develop

their analysis in a local mean versus standard deviation

space, which makes hard to devise a specific parametric
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noisemodel [6]. Instead, we develop ourmodel in the local

mean versus variance space, in which a nearly linear rela-

tion can easily be recognized and exploited to obtain the

noise parameters.

Signal-dependent noise modeling
A generalized signal-dependent (GSD) noise model has

been proposed to deal with several different acquisition

systems. Many types of noise can be described by using

the following parametric model [7]

g(m, n) = f (m, n) + f (m, n)γ · u(m, n) + w(m, n)

= f (m, n) + v(m, n) + w(m, n) (1)

where (m, n) is the pixel location, g(m, n) the observed

noisy image, f (m, n) the noise-free image, modeled as

a non-stationary correlated random process, u(m, n) a

stationary, zero-mean uncorrelated random process inde-

pendent of f (m, n) with variance σ 2
u , and w(m, n) is

electronics noise (zero-mean white and Gaussian, with

variance σ 2
w). For a great variety of images, this model has

been proven to hold for values of the parameter γ such

that |γ | ≤ 1. The additive term v = f γ ·u is the GSD noise.

Since f is generally non-stationary, the noise vwill be non-

stationary as well. The term w is the signal-independent

noise component and is generally assumed to be Gaussian

distributed.

A purely multiplicative noise (γ = 1) is typical of coher-

ent imaging systems; the majority of despeckling filters

rely on the multiplicative fully developed speckle model

[8]. In SAR imagery, the thermal noise contribution w is

negligible, compared to the speckle term, f · u [9].

A more complex scenario is related to ultrasound image

generation. Due to the great variability of scatterers size in

each tissue, the electronics noise w cannot be neglected.

Although a simplified noise model without electronic

term with value of γ in (0, 1), e.g., γ = 1/2, is accepted as

characteristic of this kind of images, the presence of the

additional term w alleviates for the need of exactly know-

ing the γ . In fact, if γ is taken to be unity, as for coherent

noise, an equivalent signal-dependent γ may be defined,

such that

f (m, n)·u(m, n)+w(m, n) ≈ f (m, n)γeq(f (m,n)) ·ueq(m, n).

(2)

The signal-dependent noise in Equation (2) is the com-

bination of a purely multiplicative term and of a signal-

independent term. The outcome exhibits a dependence on

the signal that vanishes as f → 0+. Whenever f · u ≫ w,

as it happens for SAR speckle, it stems that γeq(f ) → 1−.

In practice, the left-hand side of (2), i.e., (1) with γ = 1, is

taken as a noise model suitable for ultrasonic images [10].

The model (1) is also suitable for film-grain noise [11],

typical of images obtained by scanning a film (transpar-

ent support) or a photographic halftone print (reflecting

support). In the former case, γ > 0 and values 1/3 ≤

γ ≤ 1/2 are typically encountered; in the latter case, neg-

ative values of γ are found [11]. For images obtained from

monochrome or color scanners, the electronics noise w

may not be neglected. Its variance is easily measured on a

dark acquisition, i.e., when f = 0. The unknown exponent

γ may be found by drawing the scatterplot of the loga-

rithm of measured local variance diminished by the dark

signal variance (estimate of σ 2
w) against the logarithm of

local mean [12]. Homogeneous pixels are clustered along

a straight line in the log-scatterplot plane. The unknown

γ is estimated as the slope of the regression line, σ 2
u as the

intercept.

Eventually, the model (1) applies also to images pro-

duced by optoelectronic devices, such as CCD cameras,

multispectral scanners, and imaging spectrometers. In

that case, the exponent γ is equal to 0.5. The term
√

f u

stems from the Poisson-distributed number of photons

captured by each pixel and is therefore denoted as photon

noise [13]. This case will be investigated in the remainder

of this article.

Optoelectronic noise
In this section, the optoelectronic noise model will be

reviewed in a deeper detail. The main contributions of

photon noise and electronic noise will be derived and

physically related to the instrument. Signal-to-noise ratio

(SNR) will be defined and its relationships to the noise

model parameters will be addressed. Let us rewrite the

model (1) with γ = 0.5:

g(m, n) = f (m, n) +
√

f (m, n) · u(m, n) + w(m, n). (3)

Equation (3) represents the electrical signal resulting

from the photon conversion and from the dark cur-

rent. The mean dark current has preliminarily been sub-

tracted to yield g(m, n). However, its statistical fluctua-

tions around the mean constitute most of the zero-mean

electronic noisew(m, n). The term
√

f (m, n)·u(m, n) is the

photon noise, whose mean is zero and whose variance is

proportional to E[ f (m, n)]. It represents a statistical fluc-

tuation of the photon signal around its noise-free, f (m, n),

due to the granularity of photons originating electric

charge.

SNR

If the variance of (3) is calculated on homogeneous pix-

els, in which σ 2
f (m, n) = 0, by definition, thanks to the
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independence of f , u and w and the fact that both u and w

have null mean and are stationary, we can write

σ 2
g (m, n) = σ 2

u · µf (m, n) + σ 2
w (4)

in which µf (m, n) � E[ f (m, n)] is the non-stationary

mean of f . The term µf (m, n) equals µg(m, n), from (3).

Let us define the local SNR at pixel position (m, n) as

SNRdB(m, n) = 10 log10

(

E[ f 2(m, n)]

µf (m, n)σ 2
u + σ 2

w

)

(5)

which on homogeneous pixels (i.e., σ 2
f (m, n) = 0)

becomes

SNRdB(m, n) = 10 log10

(

µf (m, n)2

µf (m, n)σ 2
u + σ 2

w

)

. (6)

In (6), if µf (m, n)σ 2
u ≫ σ 2

w, then

SNRdB(m, n) ≈ 10 log10

(

µf (m, n)

σ 2
u

)

. (7)

That is SNR depends on the mean photon signal.

Instead, if µf (m, n)σ 2
u ≪ σ 2

w, then

SNRdB(m, n) ≈ 10 log10

(

µf (m, n)2

σ 2
w

)

(8)

which states that the SNR depends on the square of the

mean photon signal.

In practical applications, the average SNR is used:

SNRdB = 10 log10

(

¯f 2

f̄ σ 2
u + σ 2

w

)

. (9)

where f̄ is obtained by averaging the observed noisy

image, the noise being zero-mean and the average local

variance of f is assumed to be negligible, i.e., (f̄ 2) ≈ (f̄ )2.

Estimation procedure

Equation (4) represents a straight line in the plane (x, y) =

(µf , σ
2
g ) = (µg , σ

2
g ), whose slope and intercept are equal

to σ 2
u and σ 2

w, respectively. The interpretation of (4) is that

on statistically homogeneous pixels the theoretical non-

stationary ensemble statistics (mean and variance) of the

observed noisy image g(m, n) lie upon a straight line. In

practice, homogeneous pixels with σ 2
f (m, n) ≡ 0 may be

extremely rare and theoretical expectation are approxi-

mated with local averages. Hence, the most homogeneous

pixels in the scene appear in the mean-variance plane to

be clustered along the straight line y = mx + y0, in which

m = σ 2
u and y0 = σ 2

w.

The problem of measuring the two parameters of the

opto-electronics noise model (3) has been stated to be

equivalent to fitting a regression line to the scatterplot

containing homogeneous pixels, or at least the most

homogeneous pixels in the scene. The problem is now

shifted to detecting the (most) statistically homogeneous

pixels in an imaged scene.

One major drawback of the simultaneous estimation

of the two parameters of a generic line is that at least

two distinct clusters, not necessarily corresponding to

two homogeneous image patches, are necessary to yield

a steady and balanced line. The procedures developed by

some of the authors for signal-independent noise estima-

tion [4] and SAR speckle estimation [14], once they have

been extended to two-parameter noise estimation, have

been found to be inadequate for the new task, mainly

because the overall noise power, though accurately esti-

mated, was not correctly split into its signal-dependent

and independent components.

The new procedure for noise estimation consists either

of partitioning the image into blocks or of manually se-

lecting only some regions of interest (ROI). In both cases

(unsupervised and semi-supervised), the sequence of

blocks/ROIs, “blocks” in the following, is processed in the

same way.

1. Calculate global homogeneity threshold θ on the

most densely populated bins of the binned scatterplot

relative to the whole image, analogously to [14];

2. Set block index k := 1;

3. If k > number of blocks, go to 7, else, within a K × K

window (K = 2m + 1) sliding over the k th block Bk

calculate the local statistics of the noisy image:

• average ḡ(i, j) ≡ µ̂g(i, j)

ḡ(i, j) =
1

K2

m
∑

k=−m

m
∑

l=−m

g(i + k, j + l) (10)

• mean quadratic deviation from the average

σ̂ 2
g (i, j)

σ̂ 2
g (i, j) =

1

K2 − 1

m
∑

k=−m

m
∑

l=−m

[ g(i+k, j+l)− ḡ(i, j)]2

(11)

4. Draw Sk , the σ̂ 2
g (i, j) versus µ̂g(i, j) scatterplot of Bk ;

5. Calculate massmk (number of points) and gravity

center gk (center of mass of the set of the points) of

Sk ;

6. Let R be the average quadratic distance of

scatterpoints to their gravity center measured along

the variance axis (y axis): if R ≤ θ save coordinates of

gk andmk , set k := k + 1 and go to 3. Else, split Sk

into four quadrants (bins), {S
j

k , j = 1, 4}, find the most

densely populated bin S
j

k , set Sk := S
j

k and go to 5;

7. Draw mean-to-variance scatterplot from the

coordinates of {gk} and its mass {mk}. A
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two-parameters regression line is fit to the

scatterplot. The slope and intercept of such a straight

line are estimates of the two noise model parameters.

Figure 1 shows the last step of the noise estimation pro-

cedure. The scatterplot containing the 64 gravity centers

of the 64 partition blocks of the noisy image in Figure 2b

is displayed together with its regression line. The size of

each dot is proportional to its mass, which is considered

in the calculation of the regression line.

The main advantage of the above procedure is that a

little homogeneous image block, i.e., a block containing

few statistically similar pixels, not necessarily forming a

connected set, yield a gravity center with low weight,

while a block containing many homogeneous points will

contribute with a center having a large weight. The multi-

plicity of centers will ensure that the regression line is not

undetermined, as it would happen in the case of a unique

center, originated from an isotropically spread cloud of

dense scatterpoints.

Experiments on simulated noisy images

The proposed method has preliminarily been validated on

simulated noisy images. Results on the synthetic noise-

free test image used in [5] are presented here. The original

test image is shown in Figure 2a. A noisy versions with

average SNR (9) equal to 17 dB and 77% signal-dependent

photon noise (γ = 0.5) and 23% signal-independent elec-

tronic noise has been generated and is shown in Figure 2b.

The variance-to-mean scatterplots, shown in

Figure 2c,d, highlight the noise model. In Figure 2c no

noise has been superimposed and nine points can be
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400
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1000

1200

Figure 1 Calculation of slope and intercept of mixed

photon/electronic noise from centroids of scatterplots

calculated from blocks/ROIs of test image: scatterplot of

homogeneous areas with regression line superimposed (dots

size proportional to mass of clusters).

detected, approximately lying aligned over the x-axis. The

slope of the joining line is equal to zero and the intercept

is equal to the variance of integer roundoff error, i.e., to

1/12. Conversely, Figure 2d evidences the presence of

nine clusters that are aligned along a straight line hav-

ing slope and intercept equal to the parameters of the

superimposed noise.

Noisy versions of the test image with 50% photon and

50% electronic noise have been generated with SNR rang-

ing between 15 and 30 dB. The proposed method and

the method described in [5],b which conversely exploits

a wavelet decomposition in order to find homogeneous

regions, have been used to estimate the noise model

parameters. In the latter case, the noisy image is clipped

below zero, as it happens with a real CCD camera. For

the proposed method, the results without clipping are

almost identical to those with clipping, provided that

the gravity centers of clusters originated by dark image

blocks are preliminarily discarded by thresholding their

mean. Figure 3a,c,e shows estimated slope and intercept

of the noise model in the (µ, σ 2) plane, as well as esti-

mated SNR, varying with the true SNR, for the proposed

method; Figure 3b,d,f for the method in [5]. The accu-

racy of both is very high, especially on SNR. The proposed

method, however, exhibits a slightly better ability in split-

ting the noise contribution into its two signal-dependent

and signal-independent components.

Imagingmodel of CCD cameras
According to a recent article [15] that integrates previ-

ous studies [16,17], CCD imaging can be represented by

three subsystems: the CCD sensor array, which converts

photons at each pixels into electrons and thus voltage;

the camera electronics, which usually forces a nonlinear

compression on the voltage values; and an analog-to-

digital (AD) conversion, which generates the digital image

values.

The conversion of light or photons to electronic charge

depends on many factors. Electronic charge consists of

electrons that are excited from the silicon valence band

to the conduction band. Electrons occur because of the

reaction between the silicon and the incident light. The

amount of charge generated for a given source of light

is determined by several factors, the main of which are

dependent on wavelength, i.e., on photon energy, and to

a less extent on nonlinearities in the conversion process.

As a consequence of the latter effects, there is a degrada-

tion in the efficiency of the charge generation process and

an incomplete conversion of photons to signal electrons

occurs. Other nonlinearities are further introduced by the

electronics of the camera that is often designed to com-

press the wide range of irradiance values of the scene to a

fixed range of measurable values.



Aiazzi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:231 Page 5 of 11

http://asp.eurasipjournals.com/content/2012/1/231

Figure 2 Original piecewise-smooth test image taken from [5]: (a) noise-free original; (b) corrupted with simulated optoelectronic noise

(77% photon, 23% electronic, SNR=17 dB); (c) variance-to-mean scatterplot of original; (d) variance-to-mean scatterplot of noisy version.

The resulting effect is that the mapping between the

incident photons and the camera output is nonlinear and

is described by a function denoted as CRF. CRF can be

assumed as linear for low intensity values of the incident

light and must be considered when modeling CCD noise

from the digital counters at the AD converter (ADC).

According to Figure 4, we can assume that ideal CCD

output values, before processing and digitization, belong

to a linear space denoted as light space (LS) [18]. Any

CCD nonlinearity can be incorporated in the CRF. The

output of the imaging device is assumed to belong to

a nonlinear image space (IS). If LS values are denoted

as q, then IS are modeled as f (q), where f (·) repre-

sents the CRF. Eventually, after inverting the CRF, the

image values are restored to the LS, where the depen-

dencies of pixel values on incident light become linear

again. More complex noise models accounting for a wider

range of phenomena can be devised [19], with the draw-

back that model-based analytical solutions may become

intractable [6].

We wish to highlight that the main contribution to

the overall CRF is a nonlinearity purposely introduced

by the manufacturer to prevent clipping above the maxi-

mum value allowed by the ADC. Therefore, clipped upper

values are never encountered unless for the case of a

severe and uncontrolled overexposure. Instead, negative

values that are clipped below zero may occur in dark

image regions. Incidentally, negative values depend on

the electronic noise only, after the average dark signal is

subtracted, not on the photon noise, because the overall

number of photons received cannot be negative. Now, if

the inverse CRF is derived in a laboratory in such a way

that the overall response of the instrument is linearized,

the correction would also include a partial compensa-

tion of the nonlinearity, more exactly of the positive bias

in the mean response for very low levels, introduced by

negative clipping in the presence of “dark” noise (noise

associated to the dark signal). In other words, negative

clipping, whose extent is limited to a few counts, on pix-

els having photon signal approximately zero, by the RMS
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Figure 3 Tests with simulated signal-dependent noise on a piecewise-smooth test image. Estimated (solid) and true (dashed) parameters of

the photon (slope of regression line) and electronic (intercept) noise model as a function of true SNR. (a) Slope of the proposed method; (b) slope

of the method in [5]; (c) intercept of the proposed method; (d) intercept of the method in [5]; (e) SNR of the proposed method; (f) SNR of the

method in [5].
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(a)

(b)

Figure 4 Basic flowchart of a CCD R-G-B camera: (a) the incoming photons are transduced into electrons by the photon imaging device

and produce an analog image; (b) the analog image is digitized and preprocessed with three steps corresponding to as many

intermediate products.

value of dark noise, is simply approximated as another

contribution to the overall CRF, together with the unde-

sired nonlinearity of the opto-electronic chain (imperfect

conversion of photons to electrons, as the number of pho-

tons increases) and especially of the saturated nonlinear

response imposed to prevent overflow in the ADC.

Experiments on a CCD camera
A further experiment was made on the data produced

by a commercial CCD color camera. The imaging device

is a Nikon D70s digital camera equipped with a 3008 ×

2000 pixel CCD of 23.7 × 15.6mm physical dimensions.

The radiometric resolution is 12 bit. Acquired images

are made available in NEF (Nikon electronic file) 12-

bit lossless compressed mosaiced raw data format. On

the decompressed raw images demosaicing is performed

to pass from the Bayer pattern images made available

by the optoelectronic acquisition system to conventional

RGB image format [20]. Figure 5 shows that demosaic-

ing is equivalent to split the mosaiced images into their

polyphase components R–G–G–B and to interpolate the

latter to yield an R–G–B image of the same size as the

mosaiced image. The inverse CRF, shown in Figure 6, can

be applied to raw data to pass from the 12-bit IS repre-

sentation to the LS radiance images an ideal CCD would

collect in ideal noise-free conditions. The inverse CRF has

the purpose of restoring the linear dependence between

light and image values, represented as radiance values.

Since the CRF accounts both for the compression of val-

ues introduced to avoid overflow in the ADC and for

the intrinsic nonlinearities of the photo-electronic instru-

ment, it is experimentally obtained, in order to produce

the inverse function (CRF−1) to return back from IS to

LS values. Split R–G–G–B components, both raw and
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Figure 5Work flow amongmosaiced R–G–B image, split R–G–G–B components, and demosaiced R–G–B three-band image. Demosaicing is

equivalent to split the mosaiced image and interpolate the outcome four polyphase components, though it is usually accomplished in a unique step.

CRF-corrected have been analyzed in this study, together

with the demosaiced R–G–B image. The CRF-corrected

and demosaiced R–G–B format is available at the end of

the processing chain in Figure 4b. A 1024 × 768 detail of

the test scene is displayed in Figure 7.

In order to estimate the CCD noise there are two pos-

sibilities. The first is to recover noise parameters in IS for

small values of digital counters that correspond to a linear

mapping from LS, taking into account saturation and/or

clipping effects [5]. More exactly, saturation is a reversible

Figure 6 Inverse CRF of the test color camera (see block CRF-1 of

Figure 4b).

nonlinearity purposely introduced by the manufacturer to

prevent the values of bright pixels of the mosaiced image

to fall outside the dynamic range of the ADC, thereby

being clipped above the maximum. Clipping is an irre-

versible operation and is associated to partial or total loss

of information. Clipping below zero may occur when the

dark signal is subtracted (see Figure 4b). Its effect has care-

fully been analyzed in [5] and found to be beneficial for

noise parameters estimation. Clipping over the maximum

level allowed by the ADC is always an undesired effect. Its

occurrence, usually originated by overexposure, should be

avoided.

Figure 7 Detail of size 1024×768 of the full image in

CRF-corrected demosaiced R-G-B format.



Aiazzi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:231 Page 9 of 11

http://asp.eurasipjournals.com/content/2012/1/231

Whenever ADCs with high bit-depth, e.g., 14 bit, are

employed, the nonlinearity of the imaging chain is weak

because there is no longer need to purposely compress

the range of values of the signal. Only undesired nonlin-

earity effects due to imperfect conversion of photons into

electrons survive.

The second possibility, which is pursued, e.g., by [15],

is to estimate the noise after applying an inverse CRF

to image values of IS to return back to LS. This is the

approach followed in this study. The proposed method

might be applied also at the end of the chain, i.e., on

the demosaiced R–G–B bands, because estimation meth-

ods based on multivariate regressions, as those used in

the present context, are insensitive of the spatial correla-

tion of the noise [3] introduced by interpolation. However,

noise estimation on interpolated data will depend on the

interpolation algorithm, which creates new pixel values

where the noise model before interpolation may no longer

hold. Consider the simple case of a linear interpolation

of two pixel values affected by purely photon noise. The

new value generated by interpolation is the average of the

existing values. The signal component will be the average

of the two signal components of the interpolating nodes,

as well as the noise component will be the average of the

two noise components. However, it does no longer holds

that the noise component exhibits variance proportional

to the mean noise-free signal. In summary, interpolation

of signal-independent noise preserves the noise model, i.e.

the dependence of the signal on the noise, of the inter-

polating nodes. Interpolation of signal-dependent noise

preserves the noise model only if γ = 1, i.e., for speckle

noise. The noise variance is always reduced by the aver-

aging process. The interpolated image is cyclo-stationary

and the noise model depends on the pixel position within

a period equal to the interpolation factor.

With reference to Figure 4b, the experiments are aimed

at verifying the noise model on raw split colors (Step 1),

on CRF-corrected split colors (Step 2), and on demo-

saiced CRF-corrected data (Step 3). Step 1 is before CRF

correction; Steps 2 and 3 after CRF correction.

Figure 8a,b refers to the blue band and exhibit pro-

nounced linear trends in the variance-to-mean scatter-

plots, both before and after CRF correction. However, the

dynamic range of raw data does not exceed the linear

Figure 8 Variance-to-mean scatterplots of split color bands. (a) Blue component, raw format (Step 1); (b) blue band, CRF-corrected radiance

format (Step 2); (c) either of green components, raw format (Step 1); (d) same green band after CRF correction (Step 2).
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portion of the inverse CRF function (Figure 6). Apart from

the different values along axes, digital count in the for-

mer, radiance values in the latter, the scatterplots before

and after correction are very similar and suggest that the

optoelectronic noise model (3) holds in both cases.

Conversely, Figure 8c,d, that is relative to either of the

green components, shows that the opto-electronic noise

model does not hold for raw data, whose amplitudes

exceed the linear part of the forward CRF (see Figure 4a),

unlike the blue data. However, the noisemodel is well veri-

fied once the CRF has been corrected and thus the original

LS has been restored (see Figure 4b). The red channel

yields trends intermediate between those of blue and of

green and thus are not reported as scatterplots, but only

among quantitative results in Table 1. The comparison

between data at Steps 1 and 2 suggests that CRF cor-

rection is crucial for the fulfillment of the optoelectronic

noise modeling (3).

Table 1 reports the estimated noise model parameters,

σ 2
u and σ 2

w, and the coefficient of determination (CD) of

least squares fit, which ranges in [0,1] and measures the

strength of matching (CD = 1 means all scatter-points lie

on the straight line). Also, the percentage of photon noise

over the cumulative noise power (PN%) is provided. Aver-

age SNR is reported for each fit. SNR is computed from

the two noise model parameters and from the average sig-

nal in the corresponding channel, according to (9). Both

raw (Step 1) and corrected (Steps 2 and 3) data have been

analyzed.

Table 1 Noise model parameters estimated from the

whole test picture

σ
2
u σ

2
w PN% CD SNRdB SNR

′

dB

Step 1

B 0.173 8.96 49 0.90 24.41 28.76

G1 0.033 18.77 17 0.08 29.85 32.14

G2 0.036 17.22 20 0.09 30.09 32.35

R 0.104 11.71 33 0.56 26.81 30.08

Step 2

B 3.435 1985.8 58 0.91 24.23 28.65

G1 2.959 2417.4 72 0.84 29.54 32.53

G2 3.149 2044.0 76 0.90 29.51 32.54

R 2.973 2032.7 63 0.94 26.48 30.06

Step 3

B 1.252 1035.6 49 0.96 27.88 29.19

G 1.944 1276.1 76 0.83 31.59 34.27

R 1.124 870.1 61 0.83 30.48 31.76

CD ranges in [0,1] and measures the alignment of scatter-points. PN% is the

percentage of photon noise in the total amount. SNR’ is SNR calculated after

LMMSE denoising tailored on noise model parameters.

What stands out from the results in Table 1, especially

from the CD, is that the opto-electronic noise model (3)

is highlighted in the corrected data (Steps 2 and 3), while

it is not evident in the raw data (Step 1), apart from the

blue band. So, reliable noise values are only those rela-

tive to corrected and possibly interpolated data appearing

in the middle and lower parts of Table 1. On Step 1

raw data, there is a good fit of the noise model only on

the blue channel; both green components fit very poorly;

the red channel, being moderately affected by saturation,

exhibits intermediate values of CD. On Step 2 corrected

data, there is an excellent fit of the model for all color

components B, G1, G2, and R. The contribution of pho-

ton noise is generally larger than that of electronic noise,

especially on the brightest green channels, as evidenced

by PN%. The electronic noise, however, is not negligible

with respect to the photon noise. Hence, methods aimed

at converting pure photonic noise into signal-independent

Gaussian noise, like the Anscombe transform [21], may

not in principle be employed. Concerning Step 3 data,

interpolation produces cyclo-stationary as well as spatially

correlated noise. Average values of parameters are esti-

mated by the proposed procedure. The discrepancy of

values of noise parameters model between Steps 2 and

3 is still due to interpolation, which increases SNR. As

an example, a bilinear interpolation increases the average

SNR of B and R bands by 3.59 and by 1.25 dB the SNR

of the G band, respectively. Hence, the values of mea-

sured noise parameters are expected to be lower for Step

3 data than for Step 2 data. Eventually, noise reduction

by means of a wavelet-based LMMSE filter [22] tailored

on the estimated parameters of the optoelectronic noise

model has been performed. The SNR values after filtering

are denoted as SNR’ in the last column of Table 1. By com-

paring SNR’ at Steps 1 and 2 we must consider that the

inverse CRF (see Figure 6), Being a convex function, low-

ers its input SNR. The decrement is approximately 0.2 dB

and may be found as difference of blue SNR at Step 1 and

blue SNR at Step 2. If such an offset is applied to SNR’ val-

ues of Step 2, we can conclude that noise is estimated and

filtered out in Step 2 domain better than in Step 1 domain.

Noise filtering at Step 3 is less effective because of interpo-

lation, which makes noise to become spatially correlated,

and hence more difficult to reject, at least with conven-

tional LMMSE estimators. The differences SNR’ – SNR

at Steps 3 and 2 evidence this trend, which is otherwise

expected from theory.

Conclusions and developments
Modern CCD color cameras produce corrected R–G–B

images dominated by opto-electronic noise, a mixture of

signal-dependent photon noise and signal-independent

electronic noise. The parameters of the noise model can



Aiazzi et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:231 Page 11 of 11

http://asp.eurasipjournals.com/content/2012/1/231

be measured on a single image by means of an origi-

nal unsupervised procedure relying on a bivariate linear

regression of local mean and variance. It is noteworthy

that such a noise model does not strictly hold for raw data,

but only once the CRF has been corrected and the orig-

inal LS has been restored from nonlinearities introduced

by the electronic chain.

The full knowledge of the parametric noise model

can be useful not only in applications requiring prelimi-

nary denoising, but also in application of surveillance, in

which no denoising is performed, but automatic detec-

tion is ruled by thresholds that are presumably related

with the noise model. Also restoration will benefit from

the knowledge of a parametric noise model, including its

autocorrelation function. Its estimation, however, when-

ever performed on R–G–B data, is complicated by the

demosaicing and interpolation steps, especially because

interpolation algorithms, aimed at reducing impairments

originated by Bayer’s mosaicing pattern, are generally

adaptive, may be nonlinear and especially they are not

disclosed by manufacturers. Therefore, the most suitable

domain for this kind of processing is undoubtedly the one

where color components have been split, but have not yet

been interpolated.

Endnotes
aThemost usual acceptance of “raw data” is data expressed

in digital counts that have not yet converted to physical

units, according to the relationship between what is mea-

sured and the outcome of the measurement.
bAMATLAB implementation of the algorithm is available

at http://www.cs.tut.fi/∼foi/sensornoise.html.
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