
Unsupervised extrinsic calibration of depth sensors in dynamic scenes

Stephen Miller, Alex Teichman, and Sebastian Thrun

Abstract— While inexpensive depth sensors are becoming
increasingly ubiquitous, field of view and self-occlusion con-
straints limit the information a single sensor can provide. For
many applications one may instead require a network of depth
sensors, registered to a common world frame and synchronized
in time. Historically such a setup has required a tedious manual
calibration procedure, making it infeasible to deploy these
networks in the wild, where spatial and temporal drift are
common. In this work, we propose an entirely unsupervised
procedure for calibrating the relative pose and time offsets of a
pair of depth sensors. So doing, we make no use of an explicit
calibration target, or any intentional activity on the part of a
user. Rather, we use the unstructured motion of objects in the
scene to find potential correspondences between the sensor pair.
This yields a rough transform which is then refined with an
occlusion-aware energy minimization. We compare our results
against the standard checkerboard technique, and provide
qualitative examples for scenes in which such a technique would
be impossible.

I. INTRODUCTION

With the advent of inexpensive depth sensors such as the

Microsoft Kinect or Asus Xtion Pro, virtually anyone can

now collect 3D pointclouds for the cost of a point-and-

shoot camera. Rather than discerning information from a

rectangular grid of pixels, algorithms can instead reason in

the intuitive world of Euclidean space. This has simplified

many perceptual tasks—be it mapping, reconstruction, object

detection, or scene understanding.

However, these sensors are confined to a rather limited

field of view. As such, algorithms must reason about non-

intuitive, self-occluding hulls rather than full, 3D shapes.

One can imagine instead a room with a network of mounted

depth sensors, each with a novel view of the scene. With

proper extrinsic calibration—knowledge of the translation,

rotation, and time offset of each sensor with respect to

a world frame—full pointclouds of moving objects could

be constructed in realtime, allowing algorithms to analyze

dynamic 3D scenes.

Such extrinsics are often difficult to obtain, since they

typically require ground-truth correspondences by means of

a precise calibration pattern. If any camera is bumped or is

prone to drift, the entire routine must be redone. Even in

the research setting, this is frustrating and time-consuming.

When deployed in large-scale environments where there is

no dedicated engineer to monitor the setup, it becomes a very

serious stumbling block.

The task of automating this procedure has been well-

studied in the 2D domain. Sensor registration is typically

Stephen Miller, Alex Teichman, and Sebastian Thrun are with the
Department of Computer Science at Stanford University.
E-mail: {stephen, teichman, thrun}@cs.stanford.edu

done by matching 2D keypoints—SIFT [1] and ORB [2]

being two common examples. Typical indoor scenes, how-

ever, are often fairly untextured. These environments, when

seen from wildly different viewing angles and exposures,

do not lend themselves to feature-based approaches. This is

particularly true for commodity depth sensors, whose RGB

cameras—-if they exist at all—-are often low resolution and

imperfectly registered to the depth image.

In this paper, we aim to make the extrinsic calibration

task as painless and off-the-shelf as the sensors themselves,

requiring no intentional human effort or distinctive texture

cues. Rather than relying on structured calibration patterns,

we will use the dynamic scene itself to calibrate. As objects

move within the scene, their positions at each time frame

provide candidate correspondences from which crude extrin-

sics can be inferred. This initial hypothesis is then refined

by densely aligning the dynamic geometry of the scene,

optimizing both the spatial and temporal offsets of the two

sensors. We make no assumptions about the shape of the

objects or the way they move, nor do we assume anything

about the relative poses of the cameras beyond the basic

requirement that something in the scene must be visible to

both simultaneously.

In Section II we consider related work in the 2D and

3D domains. We then briefly introduce the problem in Sec-

tion III, and present our unsupervised solution in Section IV.

In Section V we compare our results against the standard

checkerboard calibration approach, and give a number of

qualitative examples.

II. RELATED WORK

Camera calibration

The problem of registering two sensors together has been

extremely well studied in Computer Vision. By far the most

common technique is the approach of Zhang [3], as widely

popularized by Bouget’s MATLAB toolbox [4] and the

calibration tools present in the OpenCV library [5]. This ap-

proach uses a planar calibration target to establish camera-to-

world correspondences, which can then be used to estimate

intrinsic and extrinsic parameters. Although a checkerboard

is the most common source of correspondences, others have

used circular [6] and point [7] targets for similar purposes.

Target-free techniques also exist for autocalibrating multiple

cameras, particularly in the stereo domain. Demirdjian et

al. [8] solve for a stereo baseline by means of a moving,

textured plane. Houraud et al. [9] use sensor egomotion to

solve for the stereo baseline in unstructured environments.

Similar to our intuitions, Stauffer and Tieu [10] solve for the

topology of a large sensor network by tracking the motion

2013 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS)

November 3-7, 2013. Tokyo, Japan

U.S. Government work not protected by U.S.

copyright

2695

Fig. 1. An example calibration task. Left: the image and associated pointcloud for both sensors. Right: The combined cloud returned by our calibration
routine.

of multiple arbitrary objects which are assumed to be planar.

This assumption works well for their surveillance use case,

for which distant cars are well approximated by planes.

Structure from motion, bundle adjustment

The goal of sensor alignment is not unique to extrinsic

calibration. There is a large body of work in the Computer

Vision community which aims to reconstruct the 3D structure

of static scenes via multiple discrete camera views. In this

task the sensor pose is often estimated as an inner loop of an

alternating optimization algorithm, and thus these methods

could be adapted for extrinsic calibration purposes. Seminal

work by Pollefeys et al. [11], Agarwal et al. [12], Bao et

al. [13], and numerous others have shown that sensor pose

and scene geometry can be inferred from multiple, often

uncalibrated sensors. An excellent survey of these methods

is given by Triggs et al. [14], for those interested. Recent in-

dustrial advances such as Autodesk’s 123D1 have also shown

impressive performance on a small scale, reconstructing

shape from unordered cellphone images. And while state of

the art reconstruction techniques such as DTAM [15] require

a continuous trajectory rather than disparate viewpoints, the

task of finding loop closures is quite similar to our own.

The above methods are clearly infeasible for calibrating

sensors with only a depth channel. For those which provide

registered RGB information, however, they could easily be

adapted to the task at hand. Unfortunately, we’ve found

that camera quality and depth registration error tend to

limit their effectiveness. Even with high quality sensors,

these approaches naturally favor highly textured scenes with

maximally redundant fields of view. This is not unreasonable

when calibrating a low-baseline stereo rig, reconstructing

objects of interest, or inferring sensor egomotion in cluttered

environments. When the scene itself is relatively featureless

1http://123dapp.com

and sensors are placed to maximize coverage, however, these

assumptions no longer hold.

Depth sensor calibration

Calibration techniques have also been designed explicitly

for RGB-D sensors. Zhang and Zhang [16] use a checker-

board to track correspondences between the RGB and IR sen-

sors. Others have developed a glass checkerboard2, which has

the advantage of being directly visible in the depth image.

While these approaches attempt to register a depth sensor

with an RGB camera, the task of finding correspondences is

the same in the multi-sensor scenario.

In recent years, a body of work has emerged which

attempts to perform extrinsic calibration in an unsupervised

fashion, by optimizing the geometry of the reconstructed

scene. Levinson and Thrun [17] propose a method for

calibrating 2D and 3D LIDAR sensors mounted on a moving

platform, using the observation that, on a small scale, local

regions tend to be planar. Maddern et al. [18] and Pandey et

al. [19] propose similar techniques, replacing the planarity

assumption with entropy and mutual-information terms, re-

spectively.

While the task of aligning a sensor to a vehicle reference

frame is distinct from our own, the spirit of these approaches

is quite similar. Both approaches, however, require an initial

estimate of the sensor pose. This is reasonable for a spe-

cialized vehicle but less convenient when mounting sensors

in new environments. We also note that depth discretization

error is far more extreme in the Primesense-style sensors we

wish to calibrate than it is in Velodyne data, and it is doubtful

that a point-to-plane or entropy term alone would suffice.

Perhaps most similar to ours in spirit, if not domain, is

the work of Kodagoda et al. [20], which tracks the motion of

objects in a scene to align the 2D poses of coplanar LIDARs.

This uses a fairly sophisticated motion model to directly align

2No known citation; see, for example: http://doc-ok.org/?p=289

2696

Fig. 2. (A) Foreground pixels (shown in red) are extracted from the background. (B) Connected components in the foreground image are used to find
candidate objects for each frame. (C) The centroids of these objects, aggregated over all time, provide candidate correspondences which RANSAC can use
to estimate an initial pose. (D) This initialization is refined with an alternating grid search on foreground objects across all frames simultaneously.

the seen trajectories; while we too exploit motion, we are

largely agnostic to the way in which things move. It is unclear

whether the trajectory-based approach would be robust or

scalable in the 6DOF domain.

Pointcloud registration

Finally, the problem of data association in pointclouds has

been explored for a wide range of applications. As is the case

in 2D, this is often done for the purposes of reconstruction

from a continuously moving sensor. Recent work by Endres

et al. [21], Henry et al. [22], and Whelan et al. [23] leverage

both RGB and depth channels found in commodity sensors,

while Newcombe et al. [24] and Bylow et al. [25] use

the depth map alone. These systems, which depend on

continuous egomotion, are not applicable to the task at hand.

However, the loop-closure and registration techniques they

rely on solve a similar problem to ours. While 2D feature

matching is the most common, depth features such as the

Fast Point Feature Histogram [26] have also been proposed.

Other methods, like that of Makadia et al. [27], register

clouds by globally aligning histograms of surface normals.

Both approaches, by relying on accurate surface normals,

do not scale well to large, noisy environments. Once crude

initializations are given, local techniques such as point-to-

plane [28] or generalized [29] ICP are often used to refine

these registrations. While these could easily be adapted to

our approach, we found that a dense grid search is better at

overcoming poor initializations.

III. NOTATION

We consider a pair of sensors S0 and S1, each of which

records timestamped depth maps and, optionally, color im-

ages. Given proper camera intrinsics, each depth reading can

be converted into a 3D point measurement. This yields a

stream of 3D pointclouds {C
(t)
0 },{C

(t)
1 }, where p≡C(u,v) is

the 3D point measurement at pixel (u,v). Here our coordinate

system follows standard pinhole camera conventions, where

the image plane lies in XY and +Z denotes forward distance

from the sensor.

While our timestamps are continuous, depth readings are

only given at discrete points in time. For notational simplic-

ity, then, we let C(t) denote the cloud whose timestamp is

nearest to t.

We wish to bring these clouds into a common reference

frame. Without loss of generality, we assume S0 lies at the

origin of the world frame with accurate timestamps. The goal

of this work, then, is to find the 6DOF transform T and time

offset ∆t such that T C
(t+∆t)
1 is aligned with C

(t)
0 .

IV. METHOD

As noted in Section I, this work hinges on the premise that

the unstructured scene alone contains enough information to

align two sensors. We will frame this as an optimization task,

formulating an energy term E[T ,∆t] such that its minimum

will be attained when the two sensors are properly aligned.

However, the search space is large and the objective non-

convex, rendering a good initialization essential. To get a

rough estimate of pose, we observe that even under drasti-

cally different viewing conditions one cue is fairly stable:

the motion of foreground objects. These objects—or more

accurately, their centroids—provide a sparse set of candidate

correspondences, much like the corners of a checkerboard

or results of a keypoint detector. Aggregated across all

timesteps, these correspondences are used to predict an

initial transform T0 via RANSAC. This prediction is then

refined by an alternating minimization of E[T ,∆t]. This

approach is demonstrated visually in Figure 2, and outlined

in Algorithm 1.

Algorithm 1: Calibration Pipeline

Data: Two sequences, {C
(t)
0 }, {C

(t)
1 }

Result: Transform T and time offset ∆t

{O
(t)
k,i}← ExtractObjects({C

(t)
k });

T0← CentroidRANSAC({O
(t)
0,i},{O

(t)
1,i});

T ←T0;

∆t← 0;

while ||∆T − I||F > ε do

T ← argmin
T̃

E[T̃ ,∆t];

∆t← argmin
∆̃t

E[T , ∆̃t];

end

2697

A. Object extraction

We first segment each frame into foreground and back-

ground pixels. To do so, we sweep through the entire

sequence and build up a per-pixel depth histogram

Hk(u,v, ẑ) ∝ ∑
t

1{b[C
(t)
k (u,v)z] = ẑ}

Where b[z] maps depth values to histogram bins. A fore-

ground mask is then computed for each frame by finding

pixels whose current depth values do not frequently occur in

the sequence. Candidate objects O
(t)
k,i are then extracted by

finding large connected components in the foreground mask.

B. Initial alignment via Centroid RANSAC

We now wish to use these foreground objects to infer an

initial transform. To do so, we follow the standard RANSAC

approach: sample 3 pointwise correspondences, use them to

estimate a 6DOF transform, and repeat for a set number of

iterations. The transform which yielded the most inliers is

chosen, and subsequently refined.

In the sampling step, a foreground object O
(t)
0,i is chosen

at random, among all clouds given by S0. A corresponding

object O
(t)
1, j is sampled at random from C

(t)
1 . We repeat this

three times, then use Levenberg Marquardt to solve for the

6DOF transform Tguess which minimizes the sum of squared

distance to the corresponding objects’ centroids.

Note that this sampling step is done jointly across all

frames; thus, the need for three point correspondences does

not mean that three objects must move. In fact, a single

moving object, aggregated across multiple frames, provides

ample correspondences.

This procedure is detailed in Algorithm 2.

C. Pose and synchronization Refinement

With a rough transform T0 given by Centroid RANSAC

and an initial guess of ∆t = 0, we can now perform our

optimization. To do so, we formulate an energy function

E[T ,∆t] which encodes the intuition that points which are

visible in both scenes should align, while being robust to the

largely non-overlapping portions of the scene.

It is tempting to use a simple Nearest Neighbor penalty

across all frames:

E[T ,∆t] = ∑
t

∑
p1∈C

(t)
1

φ (t−∆t)[T p1] (1)

φ (t)[p̂1] = h(‖ p̂1−NN(p̂1,C
(t)
0)‖) (2)

h(x) = min(x,d+
max) (3)

Where NN(p,C) denotes the nearest neighbor of point p

in cloud C, and the hinge loss h(x) minimizes the effect of

distant outliers.

However, as can be seen in Figure 3, this penalty can have

adverse effects when the area of overlap between the sensors

is small. When an object is viewed from the left and right

sides, the penalty serves to compress the object, favoring

Algorithm 2: Centroid RANSAC

Data: Two roughly synchronized sets of foreground

objects, {O
(t)
0,i},{O

(t)
1,i}

Result: Rough guess of transform, T0

BestInliers ←{};
for K iterations do

Corr ←{};
for 3 correspondences do

t ′← RandomSelect({t});

O
(t ′)
0,i ← RandomSelect({O

(t ′)
0,i });

X0← CentroidOf(O
(t ′)
0,i);

O
(t ′)
1, j ← RandomSelect({O

(t ′)
1, j });

X1← CentroidOf(O
(t ′)
1, j);

Corr = Corr ∪{(X0↔ X1)};
end

Tguess← EstimateTransform(Corr);

Inliers ← ComputeInliers(Tguess, dinlier);

if |Inliers|> |BestInliers| then

T ←Tguess;

BestInliers ← Inliers;

end

end

T ← EstimateTransform(BestInliers);

pointwise overlap at the cost of plausibility. To correct for

this, we add a free space violation term:

φ (t)[p̂1] = h(‖ p̂1−NN(p̂1,C
(t)
0)‖xyz−)+FSV (4)

‖x‖xyz− =

{

‖x‖1, x ·u >−d−max

‖x− (x ·u+d−max)u‖1 otherwise
(5)

FSV =

{

|p
proj
0,z − p̂1,z|, p

proj
0,z − p̂1,z >−d−max

d−max, otherwise
(6)

Where pproj = C
(t)
0 (up̂,vp̂) is the point in C

(t)
0 which

projects to the same pixel as p̂1, and ‖x‖xyz− an anisotropic

L1 distance which does not penalize for large positive dis-

placement along the ray from S1 to p1, denoted u. Here, the

penetration limit d−max signifies the minimum allowable object

thickness, below which any disparity should be attributed to

noise. These combine to encode the intuition that if a point in

one sensor is mapped to space which was observed to be free

in the other, modulo sensor noise, it should incur a penalty.

Otherwise it may be plausibly explained by occlusion, and

should incur no additional cost.

We optimize this objective with an alternating minimiza-

tion scheme. Holding ∆t fixed, we solve for T by with a

dense 6DOF grid search. We then hold T fixed and solve

for ∆t via a 1DOF grid search on the same objective. This

is repeated until convergence.

2698

Fig. 3. Left: When a naive nearest-neighbor metric is applied, two sides of
an object will be drawn toward each other, often at the expense of violating
free space. Right: Our occlusion-aware energy term is able to recover from
many of these situations.

Parameter Description Value

b[z] Depth binning function ⌈z/10cm⌉
d+

max Correspondence limit 10cm

d−max Penetration limit 3cm

ε Minimum grid search step 0.01

K Number of RANSAC iterations 1000

dinlier RANSAC inlier threshold 10cm

Fig. 4. A list of free parameters used in our approach, and the values used
for our experiments.

D. Implementation Details

Our objective E[T ,∆t] requires a nearest-neighbor lookup

over all points in all frames. To make this problem tractable,

we randomly sample 5-frame fragments among those which

exhibit motion. We have found that 50 such frames often

suffice, putting the run time at an average of 10 minutes and

37 seconds. Also, when evaluating E[T ,∆t], to avoid double-

counting background points, we align only foreground ob-

jects {O
(t)
1,i} with the full cloud C

(t)
0 .

It is also well known that these sensors suffer from fairly

high distortion at a distance, as observed by Herrera et

al. [30]. To counter this effect, we preprocess our initial

depth maps via a learned undistortion model, following the

unsupervised calibration method proposed by Teichman et

al. [31].

V. EXPERIMENTAL RESULTS

Our experiments were done with a pair of ASUS Xtion

Pro Live sensors, plugged into separate machines. Shortly

before recording each sequence, an NTP update was done to

synchronize the frames. As mentioned previously, while this

synchronizes the machines fairly well, a small time offset is

typically incurred throughout the duration of the sequence.

Perfect ground truth is difficult to attain for this task,

as 6DOF transforms and millisecond-level time offsets are

too subtle for precise human labeling. For lack of a perfect

method, then, we look to the de facto standard: checker-

boards. For all configurations in which the sensors shared a

wide enough field of view to make checkerboard calibration

possible, we recorded a second calibration sequence with the

sensors in the same pose. This employed a simple technique:

• Carry a checkerboard through the scene, as shown in

Figure 5.

• Detect corners of the checkerboard in the registered

RGB images of both sensors

Fig. 5. Ground truth evaluation was provided by using a checkerboard to
align the two sensors for each configuration. Quantitative results using this
method can be seen in Figure 6.

Seq Trans (cm) Rot (◦) PtP (cm) ChStd (cm/◦)

01 3.43 0.70 3.86 ±1.02 / ±0.35

02 2.75 0.49 2.49 ±0.18 / ±0.05

03 4.67 1.23 4.67 ±0.25 / ±0.08

04 10.49 1.54 6.57 ±2.07 / ±0.33

05 4.21 1.30 4.56 ±1.25 / ±0.25

06 5.11 0.19 4.62 ±6.68 / ±1.20

Avg 5.11 0.91 4.46

Std ±2.53 ±0.48 ±1.21

Fig. 6. The results of our experiments on 6 sequences. Trans is the
translation error. Rot is the minimal angle needed to rotate Tunsupervised

into Tground. Point to Point error refers to the average distance between
corresponding points in the estimated and checkerboard-predicted frames,
thresholded at 3m—beyond which readings are known to be noisy. ChStd

is the approximate standard deviation of the checkerboard approach, using
the Bootstrap method described in [32]. Note that this metric still does not
capture the inherent bias of the checkerboard technique, and these numbers
should not be taken as ground truth error; we urge those interested to
visit http://stanford.edu/˜sdmiller/iros2013 and compare
the pointclouds directly.

• Project these corners into 3D space, and use RANSAC

to estimate a transform.

To estimate the noise inherent in this approach, we em-

ployed the Bootstrap method as described in [32], substi-

tuting the final transformation given by RANSAC for the

mean.

We compared our unsupervised results with those given

by a checkerboard in six sequences, as shown in Figure 6.

As can be seen, they tend to agree with one another within

5cm and 1 degree. Note, however, that the bias inherent in

the checkerboard approach makes it difficult to treat this

comparison as a true error metric—the poorest scoring results

are visually quite compelling. To illustrate, in Figure 8 we

show the best and worst scoring results on the dataset.

We also perform a comparison between limited versions

of our system, as shown in Figure 7. RANSAC yields the

worst performance, showing that the refinement phase is

quite crucial. Replacing the robust occlusion-aware energy

term with the strict Nearest Neighbor metric of Equation 1

also leads to drastic performance reductions. Removing time

optimization resulted in a significant error in one of the

sequences, but otherwise the differences were well within

2699

Fig. 7. Performance with different subcomponents removed. RANSAC does no refinement; the standard L2 Nearest Neighbor (NN) metric does not reason
about occlusions and is prone to outliers, occasionally doing even worse than the unrefined estimate; when no synchronization (NOSYNC) is performed
the results are fairly precise, likely because the synchronization error is fairly low to begin with.

Fig. 8. The best (top) and worst (bottom) scoring calibration runs in our experiments. Sensor 0 is given in red, our unsupervised estimate of sensor 1 is
given in blue, and the checkerboard estimate is given in green.

the noise of the calibration routine itself, suggesting that

synchronization was not a serious issue in our dataset.

Figure 9 shows a number of results on our dataset.

However, it is difficult to observe the reconstruction quality

from single images. To better understand the performance

of both approaches, we encourage those interested to visit

http://stanford.edu/˜sdmiller/iros2013 and

examine the 3D clouds directly.

One advantage of an unsupervised approach is that we

are able to handle situations where, due to field-of-view con-

straints, checkerboard calibration is infeasible. See Figure 11

for an example. We note, however, that even an occlusion-

aware energy suffers from “squishing” artifacts under such

extreme field of view changes, as shown in Figure 10.

Fig. 10. Failure mode: when the angle between the cameras is extremely
drastic and no thin objects are visible, our energy minimization approach
still has a tendency to pull objects too tightly toward each other.

2700

Fig. 9. Example results as compared to the checkerboard approach. Left: our unsupervised approach, Right: Results using a checkerboard. See website
for details.

Fig. 11. An example result where few, if any, surfaces are visible to both sensors at the same time. Note that while this recovers the camera poses fairly
well, it is not perfect: see Figure 10

2701

VI. CONCLUSIONS AND FUTURE WORK

We propose a fully unsupervised technique for registering

depth sensors in space and time, using the unstructured

motion of foreground objects in a scene as our only cue. So

doing, we eliminate the need to rely on distinctive calibration

objects, textured environments and RGB registration, or

indeed any intentional action at all. While this is meant to

be used in environments where a manual routine would be

impractical, we have shown it to perform competitively in

those scenarios where both are feasible.

While this work dealt specifically with a pair of sensors,

we recognize that it can be extended to—and made more reli-

able by—a higher number of sensors, via graph optimization

techniques such as those in G2O [33]. In the future we hope

to explore this extension.

VII. ACKNOWLEDGEMENTS

Stephen Miller is supported by the Stanford Graduate

Fellowship and Google Hertz Foundation Fellowship.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” International journal of computer vision, vol. 60, no. 2, pp.
91–110, 2004.

[2] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in International Conference on Computer

Vision, 2011.

[3] Z. Zhang, “A flexible new technique for camera calibration,” Pattern

Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,
no. 11, pp. 1330–1334, 2000.

[4] J.-Y. Bouguet, “Camera calibration toolbox for matlab,” 2004.

[5] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software

Tools, 2000.

[6] G. G. Mateos, “A camera calibration technique using targets of circular
features.”

[7] T. Svoboda, D. Martinec, and T. Pajdla, “A convenient multicamera
self-calibration for virtual environments,” Presence: Teleoperators &

Virtual Environments, vol. 14, no. 4, pp. 407–422, 2005.

[8] D. Demirdjian, A. Zisserman, and R. Horaud, “Stereo autocalibration
from one plane,” in Computer VisionECCV 2000. Springer, 2000,
pp. 625–639.

[9] R. Horaud, G. Csurka, and D. Demirdijian, “Stereo calibration from
rigid motions,” Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 22, no. 12, pp. 1446–1452, 2000.

[10] C. Stauffer and K. Tieu, “Automated multi-camera planar tracking
correspondence modeling,” in Computer Vision and Pattern Recogni-

tion, 2003. Proceedings. 2003 IEEE Computer Society Conference on,
vol. 1. IEEE, 2003, pp. I–259.

[11] M. Pollefeys, R. Koch, and L. V. Gool, “Self-calibration and metric
reconstruction inspite of varying and unknown intrinsic camera pa-
rameters,” International Journal of Computer Vision, vol. 32, no. 1,
pp. 7–25, 1999.

[12] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and R. Szeliski,
“Building rome in a day,” in Computer Vision, 2009 IEEE 12th

International Conference on. IEEE, 2009, pp. 72–79.

[13] S. Y. Bao, M. Bagra, Y.-W. Chao, and S. Savarese, “Semantic structure
from motion with points, regions, and objects,” in Proceedings of

the IEEE International Conference on Computer Vision and Pattern

Recognition, 2012.

[14] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon,
“Bundle adjustmenta modern synthesis,” in Vision algorithms: theory

and practice. Springer, 2000, pp. 298–372.

[15] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, “Dtam: Dense
tracking and mapping in real-time,” in Computer Vision (ICCV), 2011

IEEE International Conference on. IEEE, 2011, pp. 2320–2327.

[16] C. Zhang and Z. Zhang, “Calibration between depth and color sensors
for commodity depth cameras,” in International Workshop on Hot

Topics in 3D, 2011.

[17] J. Levinson and S. Thrun, “Unsupervised calibration for multi-beam
lasers,” in ISER, 2010.

[18] W. Maddern, A. Harrison, and P. Newman, “Lost in translation (and
rotation): Rapid extrinsic calibration for 2D and 3D LIDARs,” in
ICRA, 2012.

[19] G. Pandey, J. R. McBride, S. Savarese, and R. Eustice, “Automatic
targetless extrinsic calibration of a 3d lidar and camera by maximizing
mutual information.” in AAAI, 2012.

[20] K. Kodagoda, A. Alempijevic, J. Underwood, S. Kumar, and G. Dis-
sanayake, “Sensor registration and calibration using moving targets,”
in Control, Automation, Robotics and Vision, 2006. ICARCV’06. 9th

International Conference on. IEEE, 2006, pp. 1–6.
[21] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W. Bur-

gard, “An evaluation of the rgb-d slam system,” in Robotics and

Automation (ICRA), 2012 IEEE International Conference on. IEEE,
2012, pp. 1691–1696.

[22] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-d mapping:
Using depth cameras for dense 3d modeling of indoor environments,”
in the 12th International Symposium on Experimental Robotics (ISER),
vol. 20, 2010, pp. 22–25.

[23] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald, “Kintinuous: Spatially extended kinectfusion,” in RGB-

D Workshop at Robotics: Science and Systems (RSS), 2012.
[24] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges,

J. Shotton, D. Molyneaux, S. Hodges, D. Kim, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International

Symposium on. IEEE, 2011, pp. 127–136.
[25] E. Bylow, J. Sturm, C. Kerl, F. Kahl, and D. Cremers, “Real-

time camera tracking and 3d reconstruction using signed distance
functions,” in Robotics: Science and Systems (RSS), June 2013.

[26] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature his-
tograms (fpfh) for 3d registration,” in Robotics and Automation, 2009.

ICRA’09. IEEE International Conference on. IEEE, 2009, pp. 3212–
3217.

[27] A. Makadia, A. Patterson, and K. Daniilidis, “Fully automatic registra-
tion of 3d point clouds,” in Computer Vision and Pattern Recognition,

2006 IEEE Computer Society Conference on, vol. 1. IEEE, 2006,
pp. 1297–1304.

[28] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algo-
rithm,” in 3-D Digital Imaging and Modeling, 2001. Proceedings.

Third International Conference on. IEEE, 2001, pp. 145–152.
[29] A. Segal, D. Haehnel, and S. Thrun, “Generalized-icp.”
[30] D. Herrera C., J. Kannala, and J. Heikkilä, “Accurate and practical

calibration of a depth and color camera pair,” in Computer Analysis

of Images and Patterns, 2011, pp. 437–445.
[31] A. Teichman, S. Miller, and S. Thrun, “Unsupervised intrinsic cali-

bration of depth sensors via slam,” in Robotics: Science and Systems

(RSS), 2013.
[32] B. Efron and R. Tibshirani, “Bootstrap methods for standard errors,

confidence intervals, and other measures of statistical accuracy,” Sta-

tistical Science, vol. 1, no. 1, pp. 54–75, 1986.
[33] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,

“g2o: A general framework for graph optimization,” in ICRA, 2011.

2702

