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Abstract

We propose a novel approach to unsupervised facial im-

age alignment. Differently from previous approaches, that

are confined to affine transformations on either the entire

face or separate patches, we extract a nonrigid mapping be-

tween facial images. Based on a regularized face model, we

frame unsupervised face alignment into the Lucas-Kanade

image registration approach. We propose a robust optimiza-

tion scheme to handle appearance variations. The method

is fully automatic and can cope with pose variations and ex-

pressions, all in an unsupervised manner. Experiments on a

large set of images showed that the approach is effective.

1. Introduction

Image alignment or registration is essential to many vi-

sion tasks. These include depth extraction, mosaicking, and

motion analysis, but also object tracking [25] and recogni-

tion [15]. In particular, face recognition [1, 2] can benefit

by first bringing the faces into a canonical pose.

Face alignment is the task of finding a transformation

between two facial images so that they can be matched as

good as possible. Facial appearance changes with different

poses and expressions. In addition, there are large differ-

ences among individuals.

Recently, unsupervised image alignment techniques,

such as Learned-Miller’s congealing [11] and least squares

congealing [7], emerged as a new promising direction to-

ward face alignment. Unlike typical supervised image

alignment methods [6, 23, 10, 19] that often require manual

labeling, the unsupervised approaches only assume that the

parameterization of the alignment is known and the input

images have similar appearance, making them more flexi-

ble and practical for some real applications.

Least squares congealing [7] treats the entire facial re-

gion at once. It assumes an affine transformation suffices

for the alignment. Such approach can only deal with frontal

faces with a neutral expression. Moreover, the method has

a high computational cost and can therefore only handle

Figure 1. Illustration of our unsupervised face alignment with a

nonrigid mesh model. We first fit a set of template images to the

input image by a robust deformable Lucas-Kanade fitting scheme.

Then, the input face image is rectified into the canonical frontal

view.

few images at a time. To better deal with pose variations,

one can split the face into several patches and apply image

alignment to each patch separately. Such approach [1] im-

proves recognition performance under pose variations, but

discards the consistency between neighboring patches and

still assumes a rigid transformation per patch. Splitting a

face into disconnected patches also precludes the synthesis

of photo-realistic, rectified facial images.

In this paper, we address these current limitations by al-

lowing for nonrigid transformations. Inspired by Zhu et al.’s

nonrigid shape recovery [25], the mapping between two fa-

cial images is parameterized directly by the vertex coordi-

nates. We employ a nonrigid face model to triangulate a

template image and to preserve the regularity of deforma-

tions. The related optimization problem can be efficiently

solved by the Lucas-Kanade algorithm for deformable reg-

istration [19]. Moreover, we propose a robust optimization

scheme to account for outliers. Furthermore, to incorporate

more appearance information from different individuals, we

propose a joint face alignment scheme can employ multiple

templates simultaneously. Once the nonrigid mapping is

found, we can rectify the face image into a canonical frame.

The rectified face images can be directly used for recog-

nition and face swapping applications. Fig. 1 illustrates the

main ideas of the proposed unsupervised face alignment ap-

proach.

In summary, the main contributions of this paper are: (1)



a novel unsupervised face alignment method, which allows

for non-rigid mapping; (2) a robust and efficient optimiza-

tion scheme to make the solution reliable against outliers;

(3) a joint face alignment scheme that allows to use multiple

templates to deal with large appearance changes; (4) exper-

iments on large sets of images, comparing against state-of-

the-art face alignment techniques, showing good qualitative

and quantitative performance.

The rest of this paper is organized as follows. Sec-

tion 2 goes somewhat deeper into previous methods for

face/image alignment. Section 3 proposes our novel ap-

proach to tackle the unsupervised, deformable face align-

ment problem, and presents the optimization scheme. Sec-

tion 4 describes the experimental results. Section 5 con-

cludes the paper and suggests some future work.

2. Related Work

Face alignment received quite a bit of attention already.

A traditional show-stopper has been the amount of user in-

teraction needed. Some methods [6, 23, 10, 19] depend on

statistical shape models built from a set of representative

examples, in which landmark points have to be manually

labelled. Blanz and Vetter [5] proposed a sophisticated 3D

model learnt from 3D scans. The alignment is computation-

ally rather intensive and often requires a good initialization.

To align facial images without any supervision, earlier

methods have focused on estimating a set of aligned ba-

sis images to account for spatial variations. Most of this

work is closely related to subspace learning again, such as

principal component analysis and transformed component

analysis [9]. Recently, a new strand of fully unsupervised

face alignment from exemplars has been introduced. The

seminal congealing method [15, 11] employed a sum of

entropies cost function and a sequential algorithm to find

some transformation parameters. Later, Cox et al. [7] ex-

tended this approach by introducing a sum-of-squared er-

ror cost function. The alignment was formulated under the

Lucas-Kanade framework [17], and the optimization can be

iteratively solved by the Gauss-Newton method. However,

their approach only handles frontal face alignment, using

2D affine transformations. Only a small set of facial images

with neutral expressions and uniform lighting were evalu-

ated.

Our work is also related to viewpoint invariant face

recognition. Kanade and Yamada [14] developed a prob-

abilistic model of how face appearance changes with view-

point, in which the facial images are separated into a set

of independent patches. Later, Lucey and Chen [18] pro-

posed a joint distribution model of individual patches to

deal with the misalignment problem. Ashraf et al. [1]

added a stack flow algorithm to find the spatial deformations

through the transformation between the separate patches.

Although gaining great improvements on face recognition

under viewpoint changes, this method assumes the face is

aligned and the head pose is known. In addition, the input

facial images must be grouped by their poses at the start.

Unlike existing approaches, our unsupervised face align-

ment method can effectively handle various challenging

conditions, including pose and moderate lighting variations

as well as differences in identity and expression. This is be-

cause we can find the nonrigid mapping between two facial

images. To the best of our knowledge, this is the first un-

supervised alignment scheme that finds such nonrigid map-

ping.

3. Unsupervised Face Alignment

In this section, we present the proposed framework for

unsupervised face alignment. Firstly, we formulate the face

alignment problem as a Deformable Lucas-Kanade (DLK)

fitting task, employing a 2D nonrigid face model directly

parameterized by the mesh vertex coordinates (section 3.1).

Secondly, we adapt it further to our face problem (3.2),

through an alignment algorithm which can handle outliers

effectively (3.2.1) and an efficient dual inverse composi-

tional method to address lighting variations (3.2.2). Thirdly,

we suggest a joint face alignment approach that employs

multiple template images to improve the performance by

incorporating more information (3.3).

3.1. Problem Formulation

The key idea of alignment is to iteratively align a single

image with respect to another by minimizing the sum of

squared differences between these two images. Let I and T

denote an input image and a template image, respectively.

The goal is to find parameters p that minimize the following

energy function:

E(p) =
∑

x

(

I(W (x;p)) − T (x)
)2

(1)

where W (x;p) is some parametric warping function for the

pixel coordinates x. As already discussed, a global or even

patch-wise affine warp does not suffice for faces. Instead,

we overlay a triangular mesh (see Fig. 2(a)) and directly

parameterize the transformation by the mesh vertex coordi-

nates s =
[

x1 . . . xN y1 . . . yN

]⊤
.

This brings the formulation close to that of general im-

age registration approaches, such as the Lucas-Kanade al-

gorithm [17]. Cox et al. [7] already proposed such unsu-

pervised face alignment formulation. With its 2N free vari-

ables, the problem is ill-posed. To overcome this challenge,

we adopt the algorithm proposed by Zhu et al. [25], who

successfully tackle this optimization problem by introduc-

ing a regularization term. This term represents the mesh

deformation, and is composed of the sum of the squared



(a) Model mesh (b) Template (c) Initialization (d) Sampled face (e) Fitting results (f) Rectified face (g) Average

Figure 2. Example of image-to-image face alignment. (a) the model mesh is automatically generated from a frontal face image based on

detected eye corners and the distance between two eyes. (b) the template image is mapped onto the reference frame. (c) the model mesh is

aligned to the input image helped by the detected eye corners. (e) the resulting mesh is overlaid on the input image. (f) We rectify the face

image by mapping it onto the reference frame. We can now compare the differences between the initialization (d) and the rectified image

(f). The average face of the template (b) and the rectified face (f) is plotted in (g).

second-order derivatives of the mesh vertex coordinates.

Specifically, let λs be a regularization coefficient, we em-

ploy the inverse compositional method [2] to formulate the

problem as follows:

E(s) =
∑

x

(

T (x; ∆s) − I(W (x; s))
)2

+ λss
⊤Ks (2)

where ∆s is defined as the increments to the mesh vertices

and the matrix K ∈ R
2N×2N is a sparse matrix determined

by the neighborhood structure of the mesh model [21, 24,

25].

The nonlinear optimization problem in Eqn. 2 can be lin-

earized by taking the first order Taylor expansion:

E(s) ≈
∑

x

(T + A∆s − I(s))
2

+ λs(s + ∆s)⊤K(s + ∆s)

where A = ∇T ∂W

∂s
is the steepest descent image, ∇T is

defined as the gradient of T , and ∂W

∂s
is the Jacobian of the

warp parameters evaluated at s. Let H ∈ R
2N×2N denote

the Hessian matrix:

H =
∑

x

A⊤A + λsK (3)

Thus, the solution of the above equation can be computed

below:

∆s = H−1

(

∑

x

A⊤(I(s) − T ) − λsKs

)

(4)

The solution to the deformable Lucas-Kanade algorithm in

Eqn. 2 can be found through the Gauss-Newton optimiza-

tion method [2]. In particular, we iteratively calculate ∆s

and update the estimated mesh vertices by s ← s − ∆s.

3.2. Image-to-Image Face Alignment

The above algorithm was originally designed for de-

formable object tracking, but still falls short of success-

fully aligning faces across different individuals with various

poses and expressions. As a solution, we propose a robust

fitting scheme and a dual inverse compositional algorithm.

They address practical issues such as outliers and lighting

changes. Facial feature detectors are employed to locate

the eye corners in order to facilitate a fully automatic ap-

proach. More specifically, we initially position and scale

the template mesh based on the eye coordinates and the

inter-ocular distance. The whole process for the proposed

image-to-image face alignment is illustrated in Fig. 2.

3.2.1 Robust Deformable Lucas-Kanade Algorithm

In order to effectively handle outliers in intensity, we ap-

ply a robust estimator ρ(u) to the image differences u in

Eqn. 2. Thus, we derive the energy function for the robust

deformable Lucas-Kanade algorithm as follows:

E(s) =
∑

x

ρ
(

(T − I(s))
2
)

+ λss
⊤Ks (5)

where ρ(u) can be chosen among a variety of robust estima-

tors, such as the German-McClure function [2], exponential

function [7], and Huber loss function [13]. To facilitate the

first order Taylor expansion [2], we choose the modified Hu-

ber loss function:

ρ(t) =

{

t 0 ≤ t ≤ σ2

σ(2
√

t − σ) t > σ2
(6)

where the threshold parameter σ determines the switch from

quadratic to linear.

As described in [2], we perform a Taylor expansion of

the energy function in Eqn. (5). Let ρ′ denote the first order

derivative of the robust estimator, we can obtain the follow-

ing update equation:

∆s = H−1

R

(

∑

x

ρ′(u2)A⊤
(

I(s) − T
)

− λsKs

)

(7)

Then, the Hessian matrix HR for the robust deformable

Lucas-Kanade algorithm is

HR =
∑

x

ρ′(u2)A⊤A + λsK (8)



3.2.2 Lighting Variations

Global lighting variations are an important issue for faces

captured in an uncontrolled environment. We employ a

global gain and bias transformation l(I) of the image to ac-

count for uniform lighting changes:

l(I) = a · I + b · 1

where a is the gain factor, and b is the bias. We put the gain

and bias into a vector g =
[

a b
]⊤

. In our optimization

functional, we add an extra term to regularize the lighting

parameters, and arrive at the following energy function:

E(s) =
∑

x

(

T − l
(

I(s)
)

)2

+ λss
⊤Ks+ λg‖g− ḡ‖ (9)

where λg is a regularization coefficient, and the expecta-

tion ḡ =
[

1 0
]⊤

. The above optimization problem can

be efficiently solved by a dual inverse compositional algo-

rithm [3], which takes advantage of a constant Hessian ma-

trix. With the step descent matrix for lighting parameters

Ag =
[

T 1
]⊤

, the update function becomes

∆s = H−1

L

(

∑

x

[

A

Ag

]⊤

(I(s) −T ) −λsKs − λg(g − ḡ)

)

where the Hessian matrix accounting for lighting variations

is computed as

HL =
∑

x

[

A

Ag

]⊤ [

A

Ag

]

+

[

λsK 0
0 λg · 1

]

(10)

Note that we also impose a robust estimator on the lighting

models.

3.3. Joint Face Alignment

Face alignment with a single template image may suffer

from appearance variations across different individuals with

various poses and expressions. To increase the chances of

homing in on the solution, we introduce multiple template

images into the energy function. These jointly drive forward

the evolution of the mesh on the input – i.e. target – face.

Therefore, we have the following energy function for joint

face alignment:

E(s) =
∑

i

∑

x

ρ
(

(

Ti − I(s)
)2

)

+ λss
⊤Ks (11)

In general, there are two ways to expand the above equation

and solve the corresponding optimization problem. One

strategy is simply to treat the image averaged over all tem-

plates as a single template, and then solve the optimization

problem by the previous image-to-image alignment method.

This approach is an efficient and straightforward implemen-

tation. Unfortunately, it smoothes out the texture variations

and therefore may lead to poor results. An alternative and

more effective strategy is to employ the steepest descent

matrices computed from each of the template images [1, 7].

This strategy no longer loses texture detail and has been ap-

plied in the experiments. Similar to [1, 7] we obtain the

following update equation:

∆s = H−1

M

(

∑

i

∑

x

ρ′(u2)A⊤

i

(

I(s) − Ti

)

− λsKs

)

(12)

where Ai = ∇Ti
∂W

∂s
is the steepest descent image, and

HM ∈ R
2N×2N is the Hessian matrix that is computed as

follows:

HM =
∑

i

∑

x

ρ′(u2)A⊤

i Ai + λsK (13)

Remark. Regarding the issue of building the template

images, we use a bootstrap procedure. We start from a sin-

gle template image with a frontal face, where we build the

reference mesh based on detected eye corners and the dis-

tance between two eyes. For a first set of additional images,

the mesh is aligned with the image-to-image face align-

ment. From then on, the template images are formed by the

aligned images and corresponding meshes with the lowest

sum of squared texture differences.

4. Experimental Results

In this section, we give details of our experimental im-

plementation and discuss the results of face alignment per-

formance tests. We examine how effective the proposed ap-

proach is in aligning face images that were obtained via in-

ternet crawling. These have often been captured in uncon-

trolled environments. In addition, we demonstrate promis-

ing results when applying our technique for face swapping,

which is a key component for a face de-recognition system.

4.1. Experimental Testbed

To conduct comprehensive evaluations, we have col-

lected face images belonging to 101 different individuals 1

using Google image search. To facilitate an automatic ap-

proach, we cascade a face detector [22] with a facial fea-

ture detector [8] to locate faces and eye corners in the input

images. We remove face images of very small sizes, and

eliminate duplicate face images by comparing grid color

moments for each pair of images. Finally, we formed our

testbed of 3467 images in total, in which each individual

has 17 ∼ 62 images. Besides the collected face images, we

also evaluated our method on the LFW dataset [12].

1http://www.vision.ee.ethz.ch/ zhuji/facealign



(a) Congealing (b) CMU’s method (c) JDLK (d) Rectified face (e) Congealing (f) CMU’s method (g) JDLK (h) Rectified face

Figure 3. Comparison of face alignment for various head poses. We show the results of the congealing algorithm, CMU’s online system

and the proposed joint deformable Lucas-Kanade approach respectively. Also, we rectify the faces on canonical view by recovered meshes.

4.2. Comparison Schemes and Setup

For simplicity, our proposed image-to-image face align-

ment method is denoted by “DLK” for short, and the pro-

posed joint face alignment approach is denoted by “JDLK”,

resp. To evaluate them, we conduct an extensive compari-

son with several state-of-the-art approaches, incl. the con-

gealing algorithm [11], CMU’s face alignment method [10],

and the direct face alignment method [8].

Specifically, to make a fair comparison, we adopt the

authors’ own implementation of the congealing algorithm

with the default parameter settings. For CMU’s method, as

no public code was available, we compare the same set of

images with the results returned from CMU’s online face

alignment system 2, which is based on a state-of-the-art su-

pervised face alignment method proposed in [10]. Finally,

for the direct face alignment method [8], we simply align

the face images to the predefined template using the de-

tected eye corners from the facial feature detector [8].

For the proposed joint image alignment approach, we

employ 20 templates, which are built using the method de-

scribed in Section 3.3. The regularization coefficient λs is

empirically set to 106 for DLK and 107 for JDLK, and λg

is set to 103. With a software rendering engine, the pro-

posed DLK method is able to process around 6 images per

2http://facealignment.ius.cs.cmu.edu/alignment/webdemo.html

second, and 0.5 images per second for JDLK. All of our ex-

periments were carried out on a PC with Intel Core-2 Duo

2.0GHz processor and 2GB RAM.

4.3. Evaluation on Face Alignment

We now evaluate the performance of face alignment un-

der challenging conditions, including pose variations, vari-

ous expressions, with glasses and beards.

Pose Variations. In Fig. 3(c) we overlaid the estimated

mesh onto the slightly zoomed in faces as they appear in

the original images (for reasons of clarity), which demon-

strates the robustness of the proposed method in handling

various poses, such as out-of-plane rotations, pitch, and

yaw. The resulting mesh tends to deform to the geometry

of the target face. Also, we plot the rectified faces by ren-

dering the input face image onto the reference frame using

the recovered mesh. Every face component comes out to be

accurately registered in the canonical view, which is crucial

for a face recognition task. The congealing algorithm can

roughly correct the in-plane rotations of face images. How-

ever, it performs quite poorly on estimating the facial region

size of these non-frontal images. This is mainly due to its

rigid transformation assumption that does not account for

the out-of-plane rotations. CMU’s face alignment system

was mainly trained from frontal face images, which leads



(a) Congealing (b) CMU’s method (c) JDLK (d) Rectified face (e) Congealing (f) CMU’s method (g) JDLK (h) Rectified face

Figure 4. Comparison on face images with various expressions. We show the results of the congealing algorithm, CMU’s online system,

and the proposed joint deformable Lucas-Kanade approach.

(a) Congealing (b) CMU’s method (c) JDLK (d) Rectified face (e) Congealing (f) CMU’s method (g) JDLK (h) Rectified face

Figure 5. Comparison on face images with glasses and moustache.

to some poor results on non-frontal faces as shown in the

figures. Despite the promising results shown in Fig. 3, our

method still has some limitations. For example, when the

facial feature locator [8] fails for faces with heavily eye-

occluded eyes, then the poor initialization may lead fur-

ther steps of the method astray. Besides, in some cases of

faces with large out-of-plane rotation, large artifacts were

observed in the rectified images due to the lacking of ap-

propriate textures.

Expressions. We also evaluated our methods for face

images with various expressions. As shown in Fig. 4, both

the congealing algorithm and the proposed approach are ro-

bust to such expressions. Since it is hard to model the large

variations of mouth shapes through a statistical model, large

errors occur in the mouth regions in CMU’s method.

Glasses and Beards. We also consider faces with

glasses, moustaches and beards, as shown in Fig. 5. The

proposed method can handle these partially occluded faces.

The robust estimator component has proven to be of key

importance here.

Finally, Fig. 6 shows the mean faces, averaged over all

aligned facial images. From the results, we found that the

mean faces using both image-to-image alignment and joint

face alignment are generally much clearer than those of

the other two approaches. This means that the proposed

methods can more effectively remove the spatial variations

across pose variations and individuals. On the other hand,

we found that the eyes are accurately aligned in the di-

rect alignment method, while for the congealing algorithm,

large spatial variations still exist in the alignment results.

4.4. Evaluation on Face Recognition Performance

4.4.1 Google Image Dataset

To further examine the performance of the proposed un-

supervised face alignment techniques, we compare our

method with the congealing algorithm and the direct align-



(a) Align by eyes (b) Congealing (c) DLK (d) JDLK

Figure 6. Average of aligned facial images.
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(b) Gabor wavelets feature

Figure 7. Correct recognition rate on face images from the Internet

(3467 images from 101 persons).

ment by eye corners for face recognition tasks. We partition

the collected face dataset into a training set and a test set.

The number of labeled examples for each person is grad-

ually increased from 1 to 5. A variation of 10-fold cross

validation was performed in the experiments, in which the

labeled data were randomly selected. We adopt the correct

recognition rate as the performance metric, and employ a

linear Support Vector Machine (SVM) as the classifier. The

penalty parameter C for SVMs is set to 10 for all experi-

ments. Besides the evaluation on the raw intensity, we also

extract Gabor wavelet features [16] for evaluation.

Fig. 7 summarizes the experimental results of recogni-

tion rates under different settings. We can make several

observations from the results. First of all, the proposed

two face alignment methods, DLK and JDLK, significantly

outperform the congealing algorithm and the direct align-

ment by eye corners. Specifically, the correct recognition

rate achieved by the proposed JDLK is almost double of

those achieved by the two reference methods when using

one training example for each person. In addition, we found

that the recognition performance of all methods is greatly

improved by using Gabor wavelet features. They boost the

performance around 22% over the raw intensity for the pro-

posed JDLK method on the tough task with a single training

example per person. Compared to our technique, it is dif-

ficult for some patch-based methods, such as [1], to take

advantage of such effective features. Finally, we found that

the joint image alignment method, JDLK, achieves consid-

erably better results than DLK, the image-to-image align-

ment approach. This indicates that the alignment accuracy

can be effectively improved by exploring more information

from multiple template images.

4.4.2 LFW Dataset

Figure 8. ROC curves on LFW dataset.

We also evaluate the proposed method on the LFW

dataset [12] using image-restricted training. To facilitate

the mutually exclusive requirement, we only evaluate the

proposed DLK method. Since we concentrate on face align-

ment rather than the pairwise image matching problem, we

only compare with the reported results using the congealing

method [11]. Similarly, we directly feed the rectified im-

ages into the binary version of Nowak’s program [20] with

the same settings. Fig. 8 shows the ROC curves with sev-

eral baselines [12]. Although Nowak’s method has already

handled the misalignment issue by sampling corresponding

patches, the rectified images by the proposed DLK can fur-

ther improve the performance considerably.

4.5. Application to Face Swapping

As an additional application, the alignment techniques

are used to swap faces, i.e. to overlay the inner part of one

face onto the image of another. This is relevant for movies,

where an actor’s face should replace that of a stuntman.

Also, as a protection of privacy, people’s faces could be re-

placed by some standard, average face (think of Google’s

problems with privacy and the visually disturbing smooth-

ing of faces applied now). Fig. 9 shows two examples of

face swapping.

Comparing with recent work in computer graphics [4],

our approach more fully exploits the appearance informa-

tion by a novel nonrigid image mapping approach. Our

technique is able to offer more accurate registration results

and flexility in selecting the candidates than the direct face

alignment method using a mere five facial points, proposed

in [4].

5. Conclusions

This paper proposed a novel unsupervised face align-

ment method, which is different from previous unsuper-

vised alignment approaches, e.g. in not assuming a rigid

affine transformation for alignment. The proposed de-

formable Lucas-Kanade algorithm registers the face images



(a) Original (b) Example 1 (c) Example 2

Figure 9. Examples of automatic face swapping.

across different individuals, pose variations, and various ex-

pressions. Moreover, we present a joint image alignment

method that incorporates information from multiple tem-

plates. We have conducted extensive evaluations on a face

image dataset collected from the Internet. The encouraging

experimental results showed that our method performs bet-

ter than alternative approaches, especially on difficult cases.

Despite these promising results, some limitations and fu-

ture directions should be addressed. Currently, our method

was only tested on face images that have similar appear-

ances. Besides, we have yet to carefully address the lighting

issue in the joint face alignment scheme. For future work,

we will address these issues and extend our technique to

other objects by adopting appropriate metrics, such as mu-

tual information.
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